The paper presents software for effectively processing data from the DEMETER satellite. The processing aims at searching for the effects in geospace that are caused by different sources. The study is urgent since the DEMETER satellite has collected a large amount of data requiring further processing.

The software performance is illustrated by some results of data processing. The paper layout is quite successful.

The manuscripts need some improvement since it contains few physical results. The storm effects are actually absent. The January 20, 2010 storm is described in the literature. The authors should compare their results with the results obtained by others (see, e.g., the results obtained by the incoherent scatter technique [Domnin, I. F., Emelyanov, L. Ya., Pazura, S. A., Kharytonova, S. V., Chernogor, L. F. Dynamic processes in the ionosphere during the very moderate magnetic storm on 20-21 January 2010 (In Russian) // Space Science and Technology. 2011. Vol. 17, no. 4. Pp. 26–40].

The authors should have considered a strong storm.

(2) The authors allegedly discovered the effects arising from the particle precipitation during the storm. However, precipitations from the inner radiation belt can only occur during strong storms. [Baker, D. N., Kanekal, S. G., Li, X., Monk, S. P., Goldstein, J., and Burch, J. L.: An extreme distortion of the Van Allen belt arising from the ‘Hallowe’en’ solar storm in 2003, 432, 878–881, https://doi.org/10.1038/nature03116, 2004.].

(4) The authors mistakenly state that “… effect of radio transmitters on the ionosphere” (line 25). The ionosphere is actually affected by the radio emissions from the transmitter.

(5) It is necessary to expand the figure captions, to make them more informative.

(6) $K_{p\text{max}}$ should be specified.

Recommendation: Return to authors for minor revisions

Sincerely,
Reviewer.