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Abstract. The concept of electromotive force appears in various electromagnetic applications in geophysical and astrophysical

fluids. A review of the electromotive force and its applications to the solar wind are discussed such as the electromotive

force profile during the shock crossings and the observational tests for the mean-field model against the solar wind data. The

electromotive force is being recognized as serving as a useful tool to construct a more complete picture of space plasma

turbulence when combined with the energy spectra and helicity profiles.5

1 Introduction

Electromotive force is one of the electric field realizations in electrically conducting fluids or plasmas, and is excited by tur-

bulent fluctuations of flow velocity and magnetic field on smaller spatial or temporal scales. The electromotive force plays

an essential role in the dynamo mechanism in which the large-scale magnetic field is generated by amplifying small-scale

magnetic fields in turbulent fluid motions (Elsasser, 1956; Moffatt, 1978; Roberts and Soward, 1992). Examples of large-scale10

magnetic field generation associated with the dynamo mechanism can be found in geophysical, solar system, and astrophys-

ical applications such as Earth’s magnetic field (Glatzmaier and Roberts, 1998; Glatzmaier, 2002; Roberts and Glatzmaier,

2000; Kono and Roberts, 2002), planetary magnetic fields (Jones, 2011), Jupiter’s moon (Ganymede) intrinsic field (Schubert

et al., 1996; Sarson et al., 1997), solar magnetic field (Charbonneau, 2010, 2014; Brandenburg, 2018), stellar magnetic fields

(Berdyugina, 2005; Brun and Browning, 2017), and galactic and extragalactic fields (Vainshtein and Ruzmaikin, 1971; Kron-15

berg, 1994; Widrow, 2002; Beck et al., 2020). Our understanding of the dynamo mechanism is being deepened and broadened

by using numerical simulations using the fundamental equations and analytic treatment and modeling (Brandenburg, 2018).

Recent theoretical study by Yokoi (2018a) suggests that the electromotive force and the density variation are locally enhanced

such as in the shock-front region, and the density enhancement would lead to a fast magnetic reconnection.

Along with the advent of the inner heliospheric missions such as Parker Solar Probe (Fox et al., 2016) and Solar Orbiter20

(Müller et al., 2020), the concept of electromotive force is being re-introduced in the field of space plasma physics after

pioneering works by Marsch and Tu (1992, 1993). In particular, it is found that the electromotive force computed from the

Helios spacecraft data in the solar wind becomes locally enhanced during the magnetic cloud or shock crossing in interplanetary

space (Bourdin et al., 2018; Narita and Vörös, 2018; Hofer and Bourdin, 2019).

This article presents a review of the electromotive force studies in the solar wind in view of the current in situ observations25

in the inner heliosphere such as Parker Solar Probe (since 2018), Solar Orbiter (since 2020), and BepiColombo’s cruising
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to the Mercury orbit (since 2018) (Benkhoff et al., 2010; Mangano et al., 2021). The theoretical treatment of electromotive

force is first introduced (section 2) and the applications (though the number of literatures is limited) to the solar wind are

presented (section 3). The article concludes with summary and outlook (section 4). The concept of electromotive force can be

implemented in the spacecraft data in order to construct a more complete picture of the turbulent fluctuations in the solar wind,30

and has the potential to fill the gap between the processes in the dynamo mechanism in the conducting fluids and turbulence in

collisionless space plasmas.

2 Theoretical background

The electromotive force is defined as the averaged vector product between the fluctuating flow velocity u and the fluctuating

magnetic field b,35

Eemf = 〈u× b〉. (1)

Note that the electromotive force is expressed in units of the electric field [V/m]. Derivation of Eq. 1 is as follows. We apply

the decomposition of the magnetic field and flow velocity into the mean or large-scale fields (〈B〉 and 〈U〉) and the fluctuating

fields as

B = 〈B〉+ b (2)40

U = 〈U〉+u, (3)

where the angular bracket 〈· · · 〉 denotes the operation of statistical averaging or smoothing. The fluctuating fields b and u have

vanishing mean values, 〈b〉= 0 and 〈u〉= 0, but the average of a product of fluctuating fields does not vanish, for example, the

energy density of the fluctuating magnetic field is (2µ0)
−1〈b ·b〉, where µ0 is the permeability of free space. The electromotive

force arrises when the mean field picture is applied to the induction equation in magnetohydrodynamics,45

∂t〈B〉 = ∇× (〈U〉× 〈B〉)+∇×〈u× b〉+ η∇2〈B〉. (4)

Here, η is the magnetic diffusivity, which is related to the conductivity σ through (µ0σ)
−1. The first term on the right hand

side in Eq. (4) represents frozen-in of the large-scale magnetic field (strictly speaking, deformation of the large-scale magnetic

field by the large-scale flow), the second term represents the curl of electromotive force, and the third term represents the

diffusion of large-scale field. The electromotive force can act both as constructive to the large-scale field (e.g., amplification50

of large-scale field by fluctuations such as in the dynamo mechanism) and as destructive (e.g., scattering or disturbance of

large-scale field by fluctuations such as in plasma turbulence) The electromotive force is one of the second-order fluctuation

quantities and is closely related to the concept of energy densities (magnetic energy; kinetic energy) and helicity densities

(cross helicity; current helicity; kinetic helicity). Magnetic helicity, for example, describes the three-dimensional topological

properties of magnetic field lines (Berger and Field, 1984; Berger, 1999). Helical structures also play an important role in fluid55

dynamics (Moffatt, 2014). The build-up of large-scale magnetic field in a helical flow is demonstrated using a semi-analytic

treatment of magnetohydrodynamic turbulence (Pouquet et al., 1976).
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The electromotive force can be observationally determined when the flow velocity data and the magnetic field data are

available. In general, in the observational studies, it is more practical to construct the covariance matrices for the magnetic

field as Mbb, for the flow velocity as Muu, and for the cross correlation between the flow velocity and the magnetic field60

as Mub. The electromotive force is constructed from the off-diagonal elements of the cross correlation matrix Mub. The

mean-field dynamo theory predicts that the electromotive force is related to the energy and helicity quantities. Magnetic energy

corresponds to the diagonal elements of the matrix Mbb, and the kinetic energy corresponds to the diagonal elements of the

matrix Muu. Magnetic helicity and current helicity are constructed from the off-diagonal elements of the magnetic field matrix

Mbb, and the kinetic helicity from the off-diagonal elements of the flow velocity matrix Muu. The cross helicity is constructed65

from the diagonal elements of the cross correlation matrix Mub. The appendix section shows the second-order quantities that

are accessible to the spacecraft observations.

Amplification and scattering of the large-scale field by fluctuating fields are formulated in the turbulent dynamo mechanism

by associating the electromotive force with the large-scale field and its spatial derivatives to close the equations for the large-

scale fields. A simpler yet symmetric (with respect to the curl of magnetic field and that of flow velocity) form is proposed70

from the study of reversed field pinch (Yoshizawa, 1990) and cross helicity dynamo (Yokoi, 2013) as

〈u× b〉 = α〈B〉−β∇×〈B〉+ γ∇×〈U〉. (5)

The first term with the coefficient α represents amplification of the large-scale magnetic field by helical flow motions (cf.

alpha dynamo mechanism). The second term with the coefficient β represents scattering of the large-scale field by turbulent

fluctuations. In fact, the β term yields β∇2〈B〉 in the induction equation, which is identified as turbulent diffusion of the75

large-scale field. The third term with the coefficient γ represents amplification of the large-scale field (and hence leading to a

type of dynamo mechanism) by the non-zero cross helicity effect. It is important to note that the association of electromotive

force with the large-scale fields is an assumption, and its validity needs to be studied by, e.g., numerical simulations, laboratory

experiments, or in situ measurements in space. With the Ansatz in Eq. 5, the induction equation for the large-scale field (Eq. 4)

has amplification and turbulent diffusion terms explicitly:80

∂t〈B〉 = ∇× (〈U〉× 〈B〉)+∇× (α〈B〉+ γ∇×〈U〉)

+(β+ η)∇2〈B〉. (6)

The coefficient α represents the strength of the kinetic helicity (a measure of helical flow) and the coefficient β represents

the turbulent diffusion. Practical forms of the transport coefficients α and β are, after Steenbeck and Rädler (1966) and Krause

and Rädler (1980), expressed as85

α = −1

3
τ〈u · (∇×u)〉 (7)

β =
1

3
τ〈u ·u〉, (8)
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with a proper time scale τ (turbulence correlation time). which needs to be evaluated separately using some turbulence model

(e.g., eddy turnover time). The coefficient γ is modeled, in analogy to the coefficients α and β, after Bourdin et al. (2018), as

γ =
1

3
τ〈u · b〉 (9)90

More comprehensive forms of the transport coefficients are presented in view of cross helicity dynamo (Hamba, 1992; Yoshizawa,

1998; Yokoi and Balarac, 2011; Yokoi, 2013, 2018b) as

α = Cατ

〈
−u · (∇×u)− b

√
µ0ρ
·
(
∇× b

√
µ0ρ

)〉
(10)

β = Cβ
τ

2

〈
|u|2 + 1

µ0ρ
|b|2
〉

(11)

γ = Cγτ 〈u · b〉 . (12)95

with Cα =O(10−2), Cβ =O(10−1) and Cγ =O(10−1).

It is worth noting that the assumptions in the derivation of the transport coefficients are different between Eqs. (7)–(8) and

Eqs. (10)–(12); the former expressions are based on homogeneous turbulence in a rotating flow, while the lattere expressions are

based on the response function (Green function) of inhomogeneous turbulence. Extension of Eq. (7) to Eq. (10) indicates that

the residual helicity between the kinetic helicity and the current helicity drives the dynamo effect (Pouquet et al., 1976). The100

importance of the cross helicity term (with the coefficient gamma) has largely been overlooked in the earlier studies because

the large-scale flow velocity was eliminated by using the Galilean invariance.

Transport of the kinetic helicity and the current helicity (or magnetic helicity) from the solar convection zone to the helio-

sphere remains one of the open questions. The spacecraft observations indicate that magnetic helicity changes the sign nearly

randomly over the spacecraft-frequencies (Matthaeus et al., 1982). However, as discussed in section 3, the alpha effect may105

locally be enhanced when a transient event (e.g., coronal mass ejections) passes by.

Diffusion of large-scale magnetic field by the beta term is expected to be persistently large in the solar wind, considering the

fact that the solar wind exhibits sign of developed or fully-developed turbulence with power-law energy spectra for the flow

velocity and the magnetic field.

The cross helicity effect may play an important role in the solar wind, as the cross helicity can be interpreted as the energy110

difference between two counter-propagating Alfvén wave packets when using the Elsässer variables, and is expected to evolve

in the solar wind over the heliocentric distances if the Alfvén waves are excited near the Sun, propagate uni-directionally (away

from the Sun) in the inner heliosphere, and gradually undergoes scattering or instabilities to excite backward-propagating

Alfvén waves.

3 Applications in the solar wind115

3.1 Overview

In the observational studies, the electromotive force is computed as the cross product of the fluctuating flow velocity and fluc-

tuating magnetic field, and represents the second-order fluctuation quantity. The units of electromotive force can be represented
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Figure 1. Time series plots of magnetic field magnitude, flow velocity, proton number density, and instantaneous electromotive force (without

statistical averaging or smoothing) obtained by Helios-2 spacecraft. Note a magnetic cloud or shock crossing at about 1800-1900 UT on 19

April, 1978. Figure is produced using the data after Narita and Vörös (2018).

in units of electric field as follows,

[u× b] = km s−1 nT (13)120

= mV km−1 (14)

when using the induction equation relating the electric field to the magnetic field that the ratio of electric to magnetic field has

a dimension of velocity.

One of the applications of the electromotive force is diagnosis of plasma and magnetic field dynamics across transient

events in the solar wind (e.g., magnetic clouds, coronal mass ejections, co-rotating interaction regions). Both magnetic field125

amplification (through the alpha term) and turbulent diffusion (the beta term) are locally enhanced during the transient events,

suggesting that the solar wind serves as a natural laboratory for testing for the dynamo theory.

An example of electromotive force profile is displayed in Fig. 1. The magnetic field and ion measurements by the Helios-2

spacecraft are used to compute the electromotive force for a quiet solar wind interval (on 17 April, 1978), a magnetic cloud (or

shock crossing) event on 18 April, 1978, and a post-shock interval on 19 April, 1978. Electromotive force has different levels130

of activity, and varies between 10 mV km−1 (quiet solar wind) and 10 V km−1 (magnetic cloud or shock crossing).

3.2 Spectral feature

The electromotive force has nearly random fluctuations as shown in Fig. 1, but the fluctuations are not Gaussian but rather

exhibit a turbulence-like power-law energy spectrum. Figure 2 exhibits a spectrum of the out-of-ecliptic component of electro-
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Figure 2. Frequency spectrum (in the spacecraft frame) of the out-of-ecliptic component (the z component) of electromotive force derived

from the Helios-1 at a radial distance of 0.53 AU, after the spectral data presented by Marsch and Tu (1992). The magnitude value of the

electromotive force is plotted here.

motive force Eemf,z as a function of the spacecraft-frame frequencies after Marsch and Tu (1992, 1993). The magnetic field135

and ion data obtained by the Helios-1 spacecraft at a distance of about 0.53 AU in 1980 are used to compute the electromotive

force spectrum.

The solar wind speed is about 637 km s−1 on the analyzed time interval, and the fluctuations are highly Alfvénic (with the

components propagating away from the Sun dominating the fluctuations) and the energy spectrum is close to Kolmogorov’s

inertial-range spectrum with a slope of−5/3. The frequency spectrum may thus be regarded as nearly streamwise wavenumber140

spectrum when Taylor’s frozen-in flow hypothesis is used. The electromotive force vanishes in the purely Alfvénic fluctuations,

since the fluctuating flow velocity is either positively or negatively correlated to the fluctuating magnetic field. The overall

power-law spectral formation is indicative of some turbulent cascade mechanism operating in the electromotive force.

3.3 Observational tests

3.3.1 Test for the alpha effect145

The validity of mean-field model can be tested against solar wind data in various ways. Marsch and Tu (1992) regarded the

mean field model as a Taylor expansion with respect to the mean magnetic field 〈B〉 as the leading order and and its spatial

gradients (or curl of mean magnetic field) ∇×〈B〉 as higher-order terms. If the large-scale current is in the direction to the

mean magnetic field (force-free configuration for the large-scale fields), and if the cross helicity term (with the coefficient γ)

is negligible, the electromotive force is proportional to the mean magnetic field150

Eemf ∝ α〈B〉. (15)
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Figure 3. Test for the alpha effect by plotting the electromotive force Eemf as a function of the mean magnetic field 〈B〉 using the Helios-2

solar wind data near perihelion (0.29 AU from the Sun) in 1976. The x component (EMF-X) is radially away from the Sun, the y component

(EMF-Y) is azimuthally westward (with respect to the ecliptic north), and the z component (EMF-Z) is northward to the ecliptic plane. Figure

is produced using the data set presented by Marsch and Tu (1992).

The simplified model (Eq. 15) is tested against the Helios-2 observation of fast solar wind near 0.29 AU in 1976. Figure

3 displays a scatter plot of the electromotive force as a function of the mean magnetic field for three components: radially

outward direction from the Sun (the x component) with plus signs in black, azimuthally westward direction (the y component)

with asterisk symbols in dark gray, and solar-ecliptic north direction (the z component) with diamond symbols in light gray.155

The alpha effect test result (Fig. 3) shows that no clear correlation is observed between the electromotive force and the mean

magnetic field. The scatter is larger in the electromotive force than that in the mean field.

3.3.2 Evaluation of the alpha and beta coefficients

For the simple model with the alpha and beta terms (indicating the field amplification and the turbulent diffusion, respectively),

analytic forms are proposed to estimate the transport coefficients alpha and beta (Narita and Vörös, 2018). For this purpose we160

model the electromotive force in the following form:

Eemf = α〈B〉−β∇×〈B〉. (16)

Vector product between the mean magnetic field 〈B〉 and the electromotive force Eemf in Eq. (16) yields

〈B〉×Eemf =−β〈B〉× (∇×〈B〉), (17)

which can be arranged into an estimator for the beta coefficient as165

β =
1

F 2
F · (〈B〉×Eemf). (18)
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Here, F denotes the Lorentz force for the large-scale magnetic field and is defined as (by setting the permeability of free space

µ0 to unity for simplicity)

F = (∇×〈B〉)×〈B〉. (19)

For the coefficient alpha we multiply Eq. (16) by the mean magnetic field 〈B〉 and obtain:170

〈B〉 ·Eemf = α(〈B〉)2−β〈B〉 · (∇×〈B〉). (20)

Equation (20) can be arranged into:

α=
1

〈B〉2

[
〈B〉 ·Eemf +

hcrt
F 2

F · (〈B〉×Eemf)

]
, (21)

by using the estimator for the coefficient beta (Eq. 18) and introducing the large-scale current helicity density hcrt as

hcrt = (∇×〈B〉) · 〈B〉. (22)175

The coefficients alpha and beta are evaluated observationally using Eqs. (18) and (21), and graphically plotted as functions

of the fluctuating flow speed u= |u| and fluctuating magnetic field b= |b| on the logarithmic scale in Fig. 4. The coefficients

alpha and beta exhibit the following properties:

1. Both the coefficients are scattered to a larger extent over the flow speed fluctuation u and the magnetic field fluctuation b.180

Variation of the coefficient alpha spans from 10−4 km s−1 to 104 km s−1 (8 orders of magnitude), and that of beta span

from 106 km2 s−1 to 1016 km2 s−1 (10 orders of magnitude).

2. Yet, both the coefficients show a systematic trend that the values of coefficients increase at larger fluctuation amplitudes.

The systematic trend appears not only in the flow speed domain (left panels) but also in the magnetic field domain

(right panels). The systematic trend may as well be (observationally) modeled using a power-law scaling (linearly on the185

logarithmic scale).

3.3.3 Test for the mean-field model

The electromotive force can be evaluated by directly computing the cross product between the fluctuating flow velocity and

the fluctuating magnetic field after Eq. (1) and also by making use of the mean-field model with the helical dynamo term (the

alpha term), the magnetic diffusion term (the beta term), and the cross helicity dynamo term (the gamma term) after Eq. (5).190

By doing so, it is possible to validate the mean-field model using in situ plasma and magnetic field measurements in the solar

wind.

Figure 5 displays the time series plot of electromotive force using the Helios-2 observation of magnetic cloud (or shock

crossing) event on 18 April, 1976 (the same event as shown in Fig. 1). The electromotive force is then computed with Eq. (5)

by estimating the kinetic helicity, magnetic fluctuation energy, and cross helicity, and turbulence correlation time (shown by the195
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Figure 4. Transport coefficients alpha and beta as functions of the fluctuating flow speed and fluctuating magnetic field for the two-component

electromotive force model with the alpha and beta terms. The Helios solar wind data and the transport coefficients studied by Narita and

Vörös (2018) are used for the graphics.

curve in gray). Though not exact, the mean-field model can qualitatively the observationally-determined electromotive force in

the sense that both the peak time and the peak value are in good agreement.

It is interesting to note that the test for the single alpha effect (i.e., proportionality of electromotive force solely to the mean

magnetic field without the beta and the gamma effects) fails against the solar wind data after by Marsch and Tu (1992), yet that

the test for the model with the three terms including the alpha, beta, and gamma terms successfully reproduces the measured200

electromotive force after Bourdin et al. (2018). The scaling analysis using Eq. (23) indicates that the alpha term should be

almost as important as the beta term (in fact, 4 times larger) which is as important as the gamma term. Hence, the lesson is

that the simplest model using only the alpha term is not sufficient, and that the magnetic diffusion and the cross helicity effect

should be considered as well in the electromotive force composition. Under which conditions the alpha effect will dominate

remains an observationally open question; perhaps there is a dependence on, e.g., fast or slow solar wind, quieter or more205

disturbed solar wind, association with transient events such as coronal mass ejections and corotating interaction regions.

It is interesting to compare among the three terms in the electromotive force model (alpha-term, beta-term, and gamma-

term) in Eq. (5) using the order-of-magnitude estimate method. The reconstruction work by Bourdin et al. (2018) determined

the values of coefficients alpha, beta, and gamma as shown in Tab. 1. The ratio of the alpha term (helical dynamo term) to the

beta term (turbulent diffusion term) is estimated nearly of the order of unity:210

|α〈B〉|
|β∇×〈B〉|

∼ αL

β
∼ 4 (23)

where the spatial gradient scale is estimated about L= 4× 106 km in the solar wind corresponding to a Doppler-shifted

frequency of about 104 Hz (e.g., Tu and Marsch, 1995). The order-of-unity estimate as in Eq. (23) is valid for both the active

solar wind and the quiet solar wind when referring to the observational values of the transport coefficients in Tab. 1. The ratio
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Figure 5. Comparison of the electromotive force magnitude computed from the Helios-2 of plasma and magnetic field fluctuation data (in

black) and that from the mean-field model using the Helios-2 mean field data (in gray) for the shock crossing event on 18 April, 1978 (the

same event as that in Fig. 1). Figure is produced using the data in Bourdin et al. (2018).

Table 1. Transport coefficients estimated from a 12-hour solar wind interval including an interplanetary shock (active solar wind) and a

quasi-stationary turbulent state (quiet solar wind) after Bourdin et al. (2018).

coefficient active solar wind quiet solar wind

α −50 km s−1 ±5 km s−1

β 50× 106 km2 s−1 5× 106 km2 s−1

γ −10× 106 km nT ±1× 106 km nT

of the gamma term (cross helicity term) to the beta term is estimated of the order of unity, too:215

|γ∇×〈U〉|
|β∇×〈B〉|

∼ γB0

βU0
∼ 2. (24)

Here we used a flow speed ofU0 = 400 km s−1 (typical both in the inner heliosphere and around the Earth orbit) and a magnetic

field of B0 = 40 nT (typical in the inner heliosphere but not around the Earth). The cross helicity term plays a more important

role because the flow speed does not change very much over the radial distances from the Sun while the magnetic field decays

radially due to the flux conservation over the spatial expansion. Around the Earth orbit, the ratio of the gamma term to the beta220

term is expected about 10 times larger than that in the inner heliosphere.

3.4 Radial evolution in the heliosphere

The electromotive force becomes enhanced during shock crossings, reaching the order of 1 V km−1. The spatial distribution

or the radial profile of electromotive force during the shock crossings is determined using the whole Helios data in the inner

heliosphere down to the perihelion of about 0.29 AU. A shock detection algorithm was developed using the electromotive225

force, and the algorithm was applied to the whole Helios data to identify 531 shock crossing events (Hofer and Bourdin, 2019).

Figure 6 displays a scatter plot of electromotive force during the shock crossings as a function of the radial distance of

observation from the Sun. The shock-enhanced electromotive force a tendency of decay at larger distances from the Sun. The
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Figure 6. Distribution of peak values of electromotive force (as a magnitude) as a function of radial distance from the Sun for shock crossing

events in the Helios-1 and Helios-2 data. Figure is produced using the data in Hofer and Bourdin (2019).

electromotive force is 1–10 V km−1 near the perihelion (0.29 AU), and decays to 0.1–10 V km−1 near the apohelion (close to

1 AU). The spatial decay or radial decay of electromotive force can in practice be fitted by a power-law curve as r−1.54 (Hofer230

and Bourdin, 2019).

4 Summary and outlook

The electromotive force has largely been overlooked in space plasma studies in contrast to the conventional turbulence analysis

methods such as energy spectra and helicity profiles. The electromotive force is one of the second-order fluctuation quantities

(cf., the Reynolds stress tensors in fluid dynamics). Though the number of studies is limited, the properties of electromotive235

force are determined using the Helios spacecraft data in the inner heliosphere. To summarize, the properties are:

1. The electromotive force is non-zero even in the quiet solar wind. Its magnitude is of the order of mV km−1 in the quiet

solar wind, corresponding to the fluctuating flow velocity of 1 km s−1 and the fluctuating magnetic field of 1 nT, and can

reach the order of 1 or 10 V km−1 during the magnetic clouds or shock crossings.

2. The fluctuations of electromotive force are nearly random, and the spectrum (in the spacecraft-frame frequency domain)240

represents a power-law curve with a slope close to −5/3.

3. The mean-field model of electromotive force can be tested against the Helios data. The proportionality does not hold

between the electromotive force and the alpha effect, but together with the magnetic diffusion (beta term) and the cross

helicity effect (gamma term) the electromotive force can qualitatively be reconstructed using the large-scale magnetic

field and flow velocity.245

4. The electromotive force during the shock crossings decays as a function of the radial distance from the Sun, from 1–10

V km−1 at a distance of 0.3 AU down to 0.1–1 V km−1.
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Local magnetic field amplification is possible in the solar wind, and is associated with the electromotive force (in particular,

the alpha and cross helicity effects). Crossing of coronal mass ejections or transient events or wake region behind obstacles

such as planets or other solar system bodies (asteroids, satellites, and comets) may be potential regions of interest for testing250

for non-zero electromotive force.

Statistical behavior of turbulent fields is more complete when the electromotive force is properly assessed or modeled in ad-

dition to the energy densities (for the magnetic field and the flow velocity) and helicity quantities (for the cross helicity, current

helicity, and kinetic helicity). It is important to note here that the construction of mean field and identification of fluctuating

fields is not unique. The mean field is determined by smoothing (e.g., running average), local filter (boxcar, Gaussian), and low-255

pass filter. Since solar wind turbulence has fluctuations on various spatial and temporal scales, the magnitude of electromotive

force may likely depend on the averaging process such as coarse graining.

The electromotive force can serve as a data analysis tool. Hofer and Bourdin (2019) proposed a classification scheme for the

shock crossings into the jump type (e.g., coronal mass ejections) and the transient type (e.g., co-rotating interaction regions).

Various types of discontinuities or structures may be better identified using the electromotive force, for example, shock types260

(fast, slow, and intermediate shocks), magnetic reconnection exhausts, detailed structures within the current sheets and shocks.
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Appendix: Appendix: Second-order quantities

Energy densities, helicity densities, and electromotive force are the second-order fluctuation quantities using the magnetic field270

and flow velocity. The energy density of fluctuating magnetic field is

em =
1

2µ0
(〈bxbx〉+ 〈byby〉+ 〈bzbz〉) . (25)

The kinetic energy density is

ek =
1

2
ρ(〈uxux〉+ 〈uyuy〉+ 〈uzuz〉) , (26)

where ρ is the mass density of medium.275

The cross helicity density is a correlation between the magnetic field and the flow velocity,

hcrs = 〈uxbx〉+ 〈uyby〉+ 〈uzbz〉. (27)

12



The current helicity density is

hcrt = 〈(∇× b) · b〉 (28)

= ∂x (〈bybz〉− 〈bzby〉)280

+∂y (〈bzbx〉− 〈bxbz〉)

+∂z (〈bxby〉− 〈bybx〉) . (29)

Note that the helicity in general (e.g., magnetic helicity density and current helicity) is non-zero when the field is helical, e.g.,

when choosing the left-handed (or right-hand) helical field around the mean field B0 in the z direction,
bx

by

bz

 =


δb exp(−kz)

δb exp
(
−kz± π

2

)
B0

 , (30)285

where the plus sign is for the left-hand helical field when tracking the field rotation sense along the wavevector in the z direction

k, and the minus sign for the right-hand helical field, respectively. δb denotes the amplitude of the helical rotation. The magnetic

helicity density can also be constructed from the fluctuating magnetic field by un-curling the vector potential A=∇×B in

the Fourier domain under the Coulomb gauge as

hmag = 〈A ·B〉 (31)290

=

∫
d3r eik·r

×
[
− i

k2
[
kx
(〈
b∗ybz

〉
−〈b∗zby〉

)
+ky (〈b∗zbx〉− 〈b∗xbz〉)

+kz
(
〈b∗xby〉−

〈
b∗ybx

〉)]]
. (32)

The kinetic helicity density is constructed as295

hk = 〈(∇×u) ·u〉 (33)

= ∂x (〈uyuz〉− 〈uzuy〉)

+∂y (〈uzux〉− 〈uxuz〉)

+∂z (〈uxuy〉− 〈uyux〉) . (34)

And the electromotive force is300

Eemf =


〈uy bz〉− 〈uz by〉
〈uz bx〉− 〈ux bz〉
〈ux by〉− 〈uy bx〉

 . (35)
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From a data-analysis point of view, the second-order quantities introduced above can be derived from the correlation matrices

(or spectral density matrices when working in the spectral domain):

Mbb = 〈bbt〉 (36)

=


〈bx bx〉 〈bx by〉 〈bx bz〉
〈by bx〉 〈by by〉 〈by bz〉
〈bz bx〉 〈bz by〉 〈bz bz〉

 (37)305

Muu = 〈uut〉 (38)

=


〈uxux〉 〈uxuy〉 〈uxuz〉
〈uy ux〉 〈uy uy〉 〈uy uz〉
〈uzux〉 〈uzuy〉 〈uzuz〉

 (39)

Mub = 〈ubt〉 (40)310

=


〈ux bx〉 〈ux by〉 〈ux bz〉
〈uy bx〉 〈uy by〉 〈uy bz〉
〈uz bx〉 〈uz by〉 〈uz bz〉

 . (41)

The magnetic and kinetic energy densities correspond to the diagonal elements of Mbb and Muu, respectively. The cross

helicity density is derived from the diagonal elements of Mub. The current and kinetic helicity densities are constructed from

the off-diagonal elements of Mbb and Muu, respectively. The electromotive force is constructed from the off-diagonal elements

of Mub. The Reynolds stress tensors for magnetohydrodynamic turbulence are constructed as Rk =Mbb−Muu for the kinetic315

variant and Rm =Mub−Mbu and the magnetic variant (Yoshizawa, 1990).
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