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Abstract. The comparative research of the influence of different types of auroral particle precipitation and polar cap patches 10 

(PCP) on the GPS signals disturbances in the polar ionosphere was done. For this purpose, we use the GPS scintillation 

receivers at Ny-Ålesund and Skibotn, operated by the University of Oslo. The presence of the auroral particle precipitation 

and polar cap patches was determined by using data from the EISCAT 42m radar on Svalbard. The optical aurora 

observations in 557.7 nm, 630.0 nm spectrum lines on Svalbard were used as well for the detection of ionospheric 

disturbances. The cusp identification was done with using SuperDARN (Hankasalmi) data. 15 

We consider about 150 events when the simultaneous EISCAT 42m and GPS data were available for the 2010-2017 years, in 

paper we present in detail only typical examples describing the overall picture. It was considered the dayside/cusp 

precipitation, substorm precipitations, daytime and nighttime PCP, precipitation associated with the interplanetary shock 

wave arrival. Cusp phase scintillations are lower than dayside PCP scintillations. We demonstrate that substorm-associated 

precipitations (even without PCP) can lead to a strong GPS phase (σϕ) scintillations up to ~2 radians which is much stronger 20 

than those usually produced by other types of the considered ionosphere disturbances. At the same PCPs can lead to stronger 

ROT (rate of total electron content) variations. So our observations suggest that the substorms and PCPs, being different 

types of the high-latitude disturbances, lead to the development of different types and scales of ionospheric irregularities.     

 

1. Introduction 25 

The Global Navigation Satellite Systems (GNSS) have a great influence on human society today. The ionosphere as a 

medium for the radio waves propagation can produce a negative impact on the quality of the received signal. Global 

Positioning System (GPS) uses two frequencies: f1 = 1575.42 MHz and f2 = 1227.60 MHz. There are a lot of dual frequency 

GPS receivers all over the world which are used for the ionosphere studies. Irregularities in the plasma density can lead to 

rapid fluctuations of amplitude and phase of the signal which is referred to as ionosphere scintillations [Basu et al., 2002]. 30 
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Strong scintillations reduce the quality of the signal and even lead to the signal loss. Thus, the investigation of GPS 

scintillations is an important aspect of space weather. The level of scintillations is characterized by the phase (σΦ) and 

amplitude (S4) scintillation indices. Amplitude scintillations are caused by the plasma irregularities with scale sizes ranging 

from tens to hundreds of meters, while the phase scintillations are caused by the irregularities with the sizes from hundreds 

of meters to several kilometers. Ionospheric scintillations are most severe in the equatorial region and at high latitudes [Basu 35 

et al., 2002; Kintner et al., 2007].  

The high-latitude ionosphere is very dynamic and unpredictable structure forming plasma irregularities on a wide variety of 

scale sizes (from 1000 km to decameter scale). Case studies have indicated a relationship between auroral appearance and 

GPS scintillations [Smith, 2008; Prikryl et al., 2010, Kinrade et al., 2013]. Mostly discrete aurora cause strong scintillations 

and cycle slips (i.e. jump in differential phase TEC). Phase scintillation is more prominent than amplitude scintillation in the 40 

polar ionosphere [Prikryl et al., 2010]. Ionospheric phase disturbances over auroral region are frequent phenomena which 

often occur during night time [Prikryl et al., 2011]. 

One of the most dynamic ionospheric disturbances at high latitudes is the substorm. Magnetosphere substorm is a transient 

process originated on the nightside of the Earth, when a significant amount of energy derived from the solar wind-

magnetosphere interaction is stored in the in the magnetosphere tail and then realized into the auroral ionosphere [Rostoker 45 

et al., 1980]. The substorms are characterized by the sporadic precipitation of energetic electrons from the magnetotail that 

leads to the appearance of the bright aurora. GPS signal phase correlate well with substorm-associated auroral disturbances. 

It was found that polar moving auroral forms (PMAF) which are discrete auroral forms produced by the transient 

magnetopause reconnection have big impact on GNSS phase scintillations [Oksavik et al., 2015]. Authors found that the 

scintillation impact is strongest when PMAFs are in coincidence with PCP. Studies of [Van der Meeren et al., 2016] showed 50 

the sun-aligned arc in the polar cap does not cause significant phase scintillations. At polar latitudes polar cap patches have 

produce severe ionosphere disturbances. Polar cap patches are 100–1000 km islands of enhanced F-region plasma density. 

The patches are appeared near the cusp and then propagate along the ionospheric convection streams into the nightside 

auroral oval modulated by the nightside tail reconnection, after that patches returned to the dayside [Lockwood and Carlson, 

1992; Zhang et al., 2013]. During strong and stable polar cap convection, segmentation may not happen and a continuous 55 

tongue of ionization (TOI) may be formed across the polar cap [Foster et al., 2005]. Phase scintillations in TOI were studied 

in the paper [Van der Meeren, 2014], it was observed bursts of phase scintillation and no amplitude scintillation in relation to 

the leading gradient of the TOI. Patches may develop smaller-scale irregularities down to decameter scale through the 

Kelvin-Helmholtz (KH) and gradient drift instabilities [Oksavik et al., 2012; Clausen et al., 2016]. In the auroral oval, polar 

cap patches are termed auroral blobs [Lorentzen et al., 2010]. Several types of auroral blobs are selected in previous 60 

investigations: boundary blobs, subauroral blobs, and auroral blobs [Crowley et al., 2000]. These airglow emissions are 

detectable from ground optical instruments as structures propagating from high to low latitudes. 

Statistical studies found one peak in the occurrence rate of GPS phase scintillation around magnetic noon and another peak 

around magnetic midnight [Jin er al., 2015].  It is also found that the phase scintillation occurrence rate is higher in the 
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dayside, while the strong phase scintillation occurs more frequently during night. Nonetheless, strong phase scintillation 65 

events can also be triggered at daytime in association with the PMAF.  

Jin et al. (2014) found that polar cap patches have their biggest impact on GPS signals once they reach the nightside auroral 

oval, in particular when combined with upward field-aligned currents [Clausen et al. 2016]. Jin et al. [2014] focused on 

phase scintillation measurements inside polar cap patches identified in airglow imager data and found that patches have a 

moderate scintillation impact (  ∼0.2). They also found, however, that the strongest impact on scintillations occurred when 70 

these patches cross from the polar cap into the auroral oval to become auroral blobs [Jin et al., 2016]. It was shown in the 

paper [Jin et al., 2014; Jin et al., 2016] that PCP can produce GPS scintillations quite comparable with scintillations during 

the particle precipitation with appearance of strong green aurora. But it was a case study therefore this question needs further 

studies.  

The high-latitude disturbances have a great negative influence of radio propagation. So it is important to know what type of 75 

the high-latitude ionosphere disturbances has strongest influence on GPS navigation systems. In the present work we address 

the following question: what disturbances in the polar ionosphere (particle precipitation or polar cap patches) have stronger 

impact on the scintillations of GPS signals?  

 

2. Instruments 80 

 

The Ny-Ålesund (NYA) GPS scintillation receiver of the University of Oslo (UiO) was the main instrument used in our 

study. Upon availability of data, the Skibotn (Norway, mainland) GPS receiver was also used. The UiO GNSS scintillation 

receiver is the standard GNSS Ionospheric Scintillation/total electron content (TEC) Monitor (GISTM), model GSV4004B 

[Van Dierendonck et al., 1993]. The carrier phase and power at the L1 frequency (1.57542 GHz) are tracked and recorded at 85 

50 Hz rate. The phase (σϕ) and amplitude scintillation indices (S4) are also calculated and recorded automatically. The phase 

scintillation index is defined as the standard deviation of the carrier phase that has been detrended by the high-pass sixth-

order Butterworth filter with a cutoff frequency of 0.1 Hz. The amplitude scintillation index (S4) is defined as the standard 

deviation of the received signal power, based on the 50-Hz sampling rate, normalized to the average signal power over one 

minute periods. The phase scintillation index is defined as the standard deviation of the carrier phase that has been detrended 90 

by a high-pass sixth-order Butterworth filter that were computed over one minute intervals are used in this study.  

The GPS TEC data have been postprocessed by using WinTEC-P [Carrano et al., 2009]. The ROT (Rate of TEC) data over 1 

min are also used to depict the TEC variations [see, e.g., Alfonsi et al., 2011], where ROT = ΔTEC/Δt.  

For the describing the ionospheric plasma parameters (density, ion and electron temperature, line of sight ion velocity as a 

function of range) we used the Svalbard EISCAT 42m radar and UHF radar in Tromsø. The beam of the EISCAT 42m radar 95 

is directed along the geomagnetic field (azimuth = 184°, elevation = 82°). The UHF radar beam was fixed at an azimuthal 

angle of 185˚ and elevation angle of 77˚ (i.e., in the field-aligned direction in the F region).  
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 For some convenient cases the optical aurora observations by all-sky imager of University of Oslo, Polar Geophysical 

Institute on Svalbard was used. The ASI in Ny-Ålesund (named NYA4) was located at Sverdrup Research Station. The 

NYA4 ASI used an EMCCD (electron multiplying charge-coupled device). Imager record emission intensity across the sky 100 

with a 180° field of view fish eye lens at 630.0 nm every 30 s and 557.7 nm every 15 s, respectively. The intensity of ASI is 

calibrated into the standard kilo Rayleigh (kR) intensity scale.  

The stations mentioned in this study have the following geographic and geomagnetic (CGM) coordinates:  

Ny Ålesund (NYA) – [78.92°N, 11.95°E], [75.25°N, 112.08°E];  

Longyearbyen (LYR) – [78.20°N, 15.82°E], [75.12°N, 113.00°E];  105 

Hornsund (HOR) – [77.00°N, 15.60°E], [74.13°N, 109.59°E];  

Tromsø (TRO) – [69.66°N, 18.94°E], [66.64°N, 102.90°E];  

Skibotn (SKN) – [69.43°N, 20.38°E], [66.28°N, 103.41°E].  

IMAGE magnetometer data was used for the geomagnetic field observations. OMNI database was used for the evaluating 

the solar wind and interplanetary magnetic field parameters. We use the 1 min resolution Sym-H index and AE indices to 110 

show the geomagnetic storm and substorm activity. The Sym-H and AE indices were obtained from the World Data Center 

for Geomagnetism at Kyoto University (http://wdc.kugi.kyoto-u.ac.jp/). 

 

3. Analysis of ionosphere disturbances   
 115 

In the present study, we considered the influence of different geophysical phenomena on the GPS scintillations: dayside/cusp 

precipitation, nighttime substorm precipitation, daytime and nighttime polar cap patches, precipitations associated with the 

interplanetary shock arrival. We focused mainly on the phase scintillation index because amplitude scintillation index (S4) 

practically has no large variations t high latitudes. The presence of the particle precipitation into the ionosphere associated 

with the appearance of the aurora was determined as the density increase between 100-200 km altitudes according to the 120 

EISCAT radar data. The presence of the polar cap patches was determined as a strong density increase above 200 km 

altitude. We consider mainly the winter time because the EISCAT radar works most often in winter season. In general we 

identified about 150 different cases for 2010-2017 years when the data from the EISCAT 42m radar was available, however, 

in this paper we present only typical examples. The presented conclusions are valid for the common picture. The preliminary 

analyze was done in the proceeding paper [Belakhovsky et al., 2019].  125 

3.1. Dayside/cusp precipitations  

Example of the dayside precipitations on 9 January 2016 is shown on Figure 1. It was geomagnetically quite period (SYM-H 

= -10 nT), solar wind speed has moderate values (V = 460 km/s). At time intervals 04-08 UT and 12-14 UT it is seen the 

ionosphere density increase at altitudes 100-200 km associated with the charge particle precipitation according to the 
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EISCAT 42m data (MLT = UT + 3). The increase of the aurora intensity in 557.7 nm emission line measured by the NYA 130 

all-sky imager testify about presence of the particle precipitation as well (Fig. 2.).  

During this geomagnetic conditions NYA station often located near the cusp region. Cusp is a small area near noon, it 

reaches about 3 MLT in longitude and some degrees in latitudes. The cusp can be identified by the spectral width of reflected 

ionosphere signal. In the region of the cusp, an increase in the spectral width of the reflected signal is observed due to an 

increase in turbulence. Cusp is observed with an increase in the spectral width of the reflected signal up to 200 m/s at near 135 

noon hours. The methodic of the cusp identification with using SuperDARN data was done for example in [André et al., 

2000l Pilipenko et al., 2017]. According to the SuperDARN radar observations in Hankasalmi (Figure 2) the cusp near the 

Svalbard was registered approximately from 08 to 12 UT. The equatorial boundary of the cusp was located at 78 degrees of 

geographic latitudes and higher. The growth of the aurora intensity in 630.0 nm emission lines at 07-09 UT during low 

intensity in 557.7 nm may also testify about the optical identification of the cusp.  140 

The different colors on panels 2-5 (Figure 1) is a projections of different GPS satellites into the ionosphere. The GPS phase 

scintillation index reaches the value about 0.4-0.5 radian. Possibly the jumps in phase index variations in time interval 08-11 

UT may testify about the passing of the station near the cusp. There is no strong Ne increase below 200 km, testifying about 

the particle precipitation, according to the EISCAT 42m data at 08-11.30 UT. At the moment of the passing under the cusp 

region the VTEC (up to 12 TECU), ROT (up to 5 TECU/min) increase was also observed (Figure 1).  145 

The growth of the phase index was seen not during all period of Ne enhancement (100-200 km) measured by the EISCAT 

radar. Possibly it’s due to the field of view of EISCAT radar not coincides with the field of view of GPS receivers. So for 

small-scale and medium-scale Ne increase is not always correlate with phase index growth.  

The ROT variations have small disturbances (2-4 TECU/min) during the presence of the particle precipitation. Amplitudes 

scintillation index have no distinct response to the morning and daytime precipitations.   150 

It was not observed substorm disturbances during this day. It is seen small amplitude Pc5 pulsations (10-20 nT) in X-

component of the geomagnetic field at NYA stations during morning precipitations. These Pc5 pulsations can have 

contribution to the charge particle precipitation into the ionosphere [Belakhovsky et al., 2016].   

 

3.2. Substorm precipitation  155 
 

The example of the substorm precipitation and the GPS scintillations response to it is shown in Figure 3 (11 December 

2015). It was observed two substorms during this day. The first one was at 15.30-17.00 UT, the second was at 20.00-22.00 

UT. It was polar substorms because it mainly observed at latitude higher than 70º. It can be noticed that the amplitude of the 

first substorm reaches the value about 1400 nT at Hornsund (HOR) station, at NYA station the amplitude of the substorm 160 

was 600 nT. The second substorm was has lower amplitude than first substorm (600 nT at HOR station). These substorms 

was observed without geomagnetic storm (SYM-H ≈ - 10 nT), however the solar wind speed was quite high (V = 640-680 

km/s) according to the OMNI database (data not shown).  
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The ionosphere plasma density increases during substorm on more that order from 9·10
4
 to 1·10

6
 cm

-3
 at altitudes 100-160 

km. The substorms were accompanied by the strong increase of aurora intensity in different spectrum lines. The growth of 165 

the phase scintillation index was accompanied by the appearance of the bright aurora arc according to LYR all-sky camera 

observations (Figure 4) oriented approximately in east-west direction.  

The phase index reaches the value about 2 radians during the first substorm. The growth of the phase scintillation index was 

seen mainly during the substorm expansion phase (30-40 minutes). During the second substorm the phase scintillation index 

has the lower value (0.5-1.5 radians). The growth of the phase scintillation index was seen as sharp increases during 5-10 170 

minutes time intervals.  

Substorms do not lead to significant TEC increase. It is seen the absence of the TEC data during the substorm. It testifies 

about the cycle slips of GPS signal at this moment.  

The ULF waves in Pi3 frequency range embedded into the substorm structure can have contribution into the particle 

acceleration into the ionosphere, growth of the field-aligned currents (FAC) which leads to such strong values of the phase 175 

scintillation index.  

  

3.3.  Polar cap patches 

 

 180 
Nighttime polar cap patches. The example of the evening-nighttime polar cap patches (PCP) is shown on Figure 5 for the 10 

February 2015. The PCP was observed at 19.00-23.30 UT as a density increase above 200 km according to the EISCAT 

data. At NYA GPS receiver the phase scintillation index reaches the medium value (0.4 radians). However the ROT 

variations for the PCP reach the high values  (10-15 TECU/min).  

During the PCP appearance the Bz-component of IMF has negative values (-6 nT) during 3 hours (data not shown). It leads 185 

to the development of the small substorm. The amplitude of the substorm is 120-140 nT in X-component of the geomagnetic 

field at NYA station. The PCP is also identified in the aurora intensity variations as forms propagating from the polar to low 

latitudes in 630.0 nm (red line) emission (Figure 7) at 19.00-23.00 UT according to LYR all-sky camera observations. 

It was done the comparison of the PCP development on EISCAT 42m radar (Svalbard) and UHF radar located at lower 

latitudes, in Tromsø (Figure 6). The sharp increase of the plasma density (Figure 6) from 12 to 17 UT above 200 km is 190 

caused by the sunlight. At latitudes of SKN (TRO) stations the PCP manifests itself as a long lasting substorm (more than 4 

hours duration) with the amplitude 200-250 nT. At SKN station the phase scintillation index has approximately the same 

values (0.4-0.5 radians) as in polar latitudes (NYA station).   

 

Daytime polar cap patches. It was also analyzed the influence of GPS signals scintillations the polar cap patches 195 

propagating on the dayside. The typical example is event on 7 November 2013. It was CIR (corotating interaction region) 

geomagnetic storm conditions, the SYM-H index reached the value about -55 nT. According to the ionosphere plasma 
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density measurements on EISCAT 42m radar the PCPes were registered in time interval 06.00-12.00 UT (09-15 MLT) – 

Figure 8. The negative bay on geomagnetic field variations with amplitude about 200 nT seen on NYA station.   

During this event the strong GPS phase scintillations (0.8 radians) was registered in whole time interval of the PCP 200 

appearance. Amplitude S4 index have no any clear response.  

It was observed VTEC increase (from 12 to 25 TECU) caused by the PCP contribution. ROT variations have high values (7-

10 TECU/min).   

[Jin et al., 2017] investigated the GPS scintillations around cusp region and found that cusp precipitation has stronger 

influence on GPS phase scintillation when it combined with the PCP. Our analyses also confirm this finding. The event on 9 205 

January 2016 (Figure 1) was without PCP while event on 7 November 2013 (Figure 8) was accompanied by PCP.   

For the all of the considered PCP cases phase index has the value less than 1.    

   

3.4.  Precipitations associated with the interplanetary shock arrival 

 210 

It is also considered the example of the interplanetary shock influence on scintillations of GPS signals. Here the example for 

the event of 22 January 2012 is presented. It is well known that the interplanetary shock interaction with the Earth’s 

magnetosphere leads to strong particle precipitation into the ionosphere and leads to the appearance of the so named shock-

aurora [Zhou et al., 2003]. In the paper [Belakhovsky et al., 2016] it is shown that shock wave arrival leads to the global 

TEC increase at high latitudes up to 40%.  215 

The considered interplanetary shock is accompanied by an abrupt increase of the solar wind velocity (from 320 to 400 km/s), 

density (from 20 to 40 cm
-3

), temperature, module of the interplanetary magnetic field (from 12 to 25 nT) according to the 

OMNI database, abrupt growth of the SYM-H index at 06.10 UT (Figure 9). The NYA station at the moment of 

interplanetary shock arrival was located on the morning side (09 MLT). For the SSC event the phase index reaches the value 

near about 0.3-0.4 radians (Figure 10). The ROT reaches the value about 4 TECU/min. So SSC event does not lead to the 220 

strong GPS scintillations. After the beginning of the geomagnetic storm it is seen from the EISCAT 42m radar data the 

development of the PCP which leads to the GPS phase scintillations (0.8 radians).  

For the considered interplanetary shock cases the phase index reaches similar values (less than 1 radian).    

 

 225 

4. Discussion 

 

The high-latitude ionosphere is a very dynamic structure due to the charge particles (mainly electrons and protons) 

penetrating from the outer space which can lead to the appearance of the different times-scale ionosphere irregularities. 

Variations of the ionospheric electron density cause variable group delay and phase advance of the radio wave, resulting in 230 

rapid phase fluctuations or phase scintillation. The scintillation of the GPS radio signal is caused by refraction and 
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diffraction of radio waves passing through ionospheric irregularities on scales from tens of meters to a few kilometers [Basu 

et al., 1998; Kintner et al., 2007].   

There are a lot of disturbances at polar ionosphere. The main phenomena are substorm and polar cap patches. In this work it 

is considered the influence of different types of the high latitude ionosphere disturbances (such us dayside/cusp precipitation, 235 

substorms, nighttime and daytime polar cap patches, interplanetary shock wave) on perturbations of GPS signals with using 

GPS scintillation receiver on Svalbard. For some events also SKN GPS scintillation receiver on mainland (Norway) was 

used. In this study we try to do some statistical investigation concerning the degree of influence of PCP, substorms of GPS 

signals disturbances. Here we present only typical events.  

Concerning amplitude GPS scintillations at high latitudes we confirm the previous findings and did not found any certain 240 

reaction of the S4 index to the considered disturbances. However [Jin, 2018] have found S4 scintillations for the very strong 

geomagnetic storm on 17 March 2017. But it was extreme event. For the ordinary events S4 index at high latitudes haven’t 

great increases. Possibly low values of amplitude scintillations at high latitudes are caused by the low elevation angles of 

GPS satellites at these regions.   

The analysis shows that the polar substorms even if it observed without polar cap patches lead to the maximum values of the 245 

phase scintillation index (1.5-2 radians). From one side it is obvious because the substorm is a most powerful disturbance in 

the magnetosphere-ionosphere system. The ULF waves (Pi3 pulsations) embedded into substorm can accelerate electron 

along the field lines and produce auroral arcs. The durations of the substorm are about 1.5-3 hours while the growth of the 

phase scintillation index was observed during 30-40 minute (expansion phase). So the substorm leads to the high but short-

time growth of the phase index. In paper [Kim, 2014] it is shown that ULF waves in Pi2 frequency range can have a 250 

dominant role in producing accelerated auroral electrons. During the substorms bright and discrete auroral forms are 

appeared on the sky. Such inhomogeneous ionization structures produce significant changes in the refractive index and 

enhance the phase scintillation index [Hosokawa, 2014]. In addition, field-aligned currents, produced field-aligned 

irregularities, can be the major driver of high-latitude ionospheric irregularities [Prikryl et al., 2011]. 

The phase scintillations are typically produced by variations in the refractive index due to ionospheric irregularities of the 255 

scale from a few kilometers to a few tens of kilometers [Kintner et al. 2007]. The phase scintillations during the substorm 

interval were produced through the refractive process caused by large-scale density irregularities associated with rapidly 

moving auroral arc. Hosokawa et al. [2014] found that phase scintillation was enhanced in relation to substorm onset and 

decreased as the aurora became more diffuse. They suggested that discrete aurora in the GPS signal path is necessary for the 

occurrence of phase scintillation during substorm intervals. In addition to scintillation, other effects such as loss of lock 260 

[Smith et al., 2008] and cycle slips [Prikryl et al., 2010] have been directly observed in relation to auroral emissions. 

Polar cap patches are the source of decameter to kilometer-scale irregularities causing scintillation. In some of the considered 

cases the polar cap patches was observed during 6 hours on EISCAT 42m radar. Analysis shows that PCPs are accompanied 

by the lower values of phase index than during a substorm but this growth is registered during longer time intervals. At the 

same time the PCP leads to the substantially higher values of the ROT variations. ROT is the time rate of change of the 265 
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differential carrier phases, it providing information about scale size of the electron density irregularities scale which 

produces GPS signal scintillations. We used in our study 1-minute ROT time resolution. The typical velocity of the plasma 

convection at high latitudes is between 100 m/s and 1 km/s. So 1-minute ROT variations are caused by the irregularities with 

the scale about 6-60 km. Our observations suggest that the substorms and PCPs, being different types of the high-latitude 

disturbances, lead to the development of different types and scales of ionospheric irregularities.     270 

Comparison of the EISCAT observations on Svalbard and in Tromso shows that PCP manifest itself at lower latitudes as 

typical substorm which produce quite comparable phase scintillations at high (Tromso) and polar (Svalbard) latitudes.   

There are two plasma instabilities which can explain the ionospheric irregularities at high latitudes: the gradient drift 

instability (GDI) and the Kelvin–Helmholtz instability (KHI). The GDI requires a density gradient and it can produce 

irregularities at the trailing edge of a plasma patch, while the KHI requires a velocity shear and the irregularities can be 275 

created around boundaries of velocity shears. The GDI can work on these sharp density gradients very efficiently [Moen et 

al., 2013] to produce small-scale irregularities which cause scintillations. The polar cap patches represent the largest scale 

structure in the high latitude ionosphere. During their convection in the polar cap, the Gradient Drift Instability (GDI) acts on 

them and develops small scale irregularities on the trailing edge.  

It was done in our study the identifications of the cusp regions with using the SuperDARN ionosphere reflected signals and 280 

optical data. Cusp region is a source of the plasma turbulence of the different scales. It is found the medium growth of the 

TEC, ROT near the cusp region. Cusp phase scintillations are lower than dayside PCP scintillations. On the dayside, the cusp 

is an active region of the GPS scintillation [Moen et al., 2013], where loss of signal locks is known to occur [Oksavik et al., 

2015]. By analyzing GPS phase scintillation around magnetic noon, it is suggested that GPS phase scintillations are sensitive 

to a combination of the cusp aurora and the intake of solar EUV-ionized plasma [Jin et al., 2015].  285 

The common analysis shows that in all of the considered events we observed significant phase scintillations. PCPs lead to 

the prolonged variations of phase index but with smaller values (less than 1). Shock induced precipitation, daytime and cusp 

precipitation leads to the medium values of phase index (0.4-0.5 radians) and not high values of the ROT. But among the all 

types of the disturbances the substorms leads to the greatest values of the phase scintillations index. Thus, the substorm 

precipitation has the strongest impact on the scintillation of GPS radio signals in the polar ionosphere even without PCP. 290 

Substorm leads to short-time (10-20 minute) and strongest values of GPS phase scintillations while PCP to long-time (some 

hours) medium values of GPS phase scintillations. So both types of these ionosphere disturbances are dangerous for the 

quality of communications, navigations, and locations at polar latitudes.     

 

 295 

5. Conclusions  

 
It is considered the influence of different types of the high latitude ionosphere disturbances (such us daytime/cusp 

precipitations, substorms, nighttime and daytime polar cap patches, interplanetary shock wave) on perturbations of GPS 
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signals with using receivers on Svalbard and in Skibotn. All of the considering types of the ionospheric disturbances leads to 300 

the growth of phase scintillations index and ROT variations.  

Substorms (even without PCP) lead to the maximum values of the phase scintillation index (1.5-2 radians). The growth of 

the phase index observed mainly during the substorm expansion phase. ULF waves in Pi3 frequency range during a substorm 

producing auroral arcs can lead to such high values of the phase index.  

Polar cap patches lead to the prolonged variations of phase index with smaller values (less than 1). At the same time polar 305 

cap patches can lead to strong ROT variations (10-15 TECU/min) in comparison with the substorms disturbances. So our 

observations suggest that the substorms and PCPs, being different types of the high-latitude disturbances, lead to the 

development of different types and scales of ionospheric irregularities. 

Cusp region, indentified with using SuperDARN radar, leads to the moderate growth of phase scintillation index, TEC ROT 

variations.  Shock induced precipitations leads to medium values of the phase scintillation index (0.4-0.5 radians), and 310 

medium values of the ROT (4-6 TECU/min). Our analyses show no clear response of the amplitude GPS scintillation index 

to the different types of the ionosphere disturbances.  
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Figure 1: Ionosphere plasma density according to the EISCAT 42m radar data; phase scintillation index and amplitude 

scintillation index according to the GPS receiver at NYA station; TEC and ROT variations according to the GPS receiver at NYA 

station; geomagnetic field variations (X-component) at NYA station for the 9 January 2016. 440 
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 455 

Figure 2: Latitude-time plot of the spectral width according SuperDARN Hankasalmi radar, keograms (557.7 nm and 630.0 nm 

emission line) from the all-sky imager at NYA station for the 9 January 2016. 
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 465 

Figure 3: Ionosphere plasma density according to the EISCAT 42m radar data; phase scintillation index and 

amplitude scintillation index according to the GPS receiver at NYA station; TEC and ROT variations according to 

the GPS receiver at NYA station; geomagnetic field variations (X-component) at NYA station for the 11 December 

2015. 
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Figure 4: The all-sky camera image (557.7 nm emission) at LYR station projected into the map for the 15.50 UT 11 December 480 
2015. 
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Figure 5: Ionosphere plasma density according to the EISCAT 42m radar data; phase scintillation index and amplitude 490 
scintillation index according to the GPS receiver at NYA station; TEC and ROT variations according to the GPS receiver at NYA 

station; geomagnetic field variations (X-component) at NYA station for the 10 February 2015. 
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Figure 6: Ionosphere plasma density according to the UHF EISCAT radar data; phase scintillation index and amplitude 

scintillation index according to the GPS receiver at SKN station; TEC and ROT variations according to the GPS receiver at SKN 

station; geomagnetic field variations (X-component) at TRO station for the 10 February 2015. 500 
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Figure 7: Keogram (630.0 nm emission line) from the all-sky imager at LYR station for the 10 February 2015.  
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 525 

Figure 8: Ionosphere plasma density according to the EISCAT 42m radar data; phase scintillation index and amplitude 

scintillation index according to the GPS receiver at NYA station; TEC and ROT variations according to the GPS receiver at NYA 

station; geomagnetic field variations (X-component) at NYA station for the 7 November 2013.   

https://doi.org/10.5194/angeo-2020-93
Preprint. Discussion started: 21 January 2021
c© Author(s) 2021. CC BY 4.0 License.



22 

 

 

 530 

 

 

 

Figure 9: Solar wind speed V [km/s], solar wind density N [cm-3], module of the IMF B [nT], Bz-component [nT] of IMF 

according to the OMNI database, SYM-H index [nT], AE index [nT] for the 22 January 2012.  535 
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Figure 10: Ionosphere plasma density according to the EISCAT 42m radar data; phase scintillation index and amplitude 

scintillation index according to the GPS receiver at NYA station; TEC and ROT variations according to the GPS receiver at NYA 

station; geomagnetic field variations (X-component) at NYA station for the 22 January 2012. 
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