

Semi-Annual Variation of Excited Hydroxyl Emission at Mid-Latitudes

Mykhaylo Grygalashvily¹, Alexander I. Pogoreltsev², Alexey B., Andreyev³, Sergei P. Smyshlyaev², and Gerd R. Sonnemann¹

¹Leibniz-Institute of Atmospheric Physics at the University Rostock in Kühlungsborn,
Schloss-Str.6, D-18225 Ostseebad Kühlungsborn, Germany

²Department of Meteorological Forecasting, Russian State Hydrometeorological University (RSHU), Saint-Petersburg, Russia

³Institute of the Ionosphere, Almaty, Kazakhstan

Abstract

Ground-based observations show a phase shift in semi-annual variation of excited hydroxyl (OH^*) emissions at mid-latitudes (43° N) compared to those at low latitudes. This differs from the annual cycle at high latitudes. We examine this behaviour utilising an OH^* airglow model which was incorporated into the 3D chemistry-transport model (CTM). Through this modelling, we study the morphology of the excited hydroxyl emission layer at mid-latitudes (30° N - 50° N), and we assess the impact of the main drivers of its semi-annual variation: temperature, atomic oxygen, and air density. We found that this shift in the semi-annual cycle is determined mainly by the superposition of annual variations of temperature and atomic oxygen concentration. Hence, the winter peak for emission is determined exclusively by atomic oxygen concentration, whereas the summer peak is the superposition of all impacts, with temperature taking a leading role.

1. Introduction

Since the second half of the 20th century, emissions of excited hydroxyl have been used for three main purposes: 1) to infer information about temperature and its long-term

27 change; 2) to obtain distributions of minor chemical constituents (O_3 , H, and O) at the
28 altitudes of the mesopause; and 3) to investigate dynamic processes such as tides, gravity, and
29 planetary waves (GWs and PWs, respectively), sudden stratospheric warmings (SSWs), and
30 quasi-biennial oscillation (QBO).

31 Hence, a number of authors have studied temperatures in the mesopause region using airglow
32 emission ground-based observations focusing on long-term trends (e.g., Bittner et al., 2002;
33 Holmen et al., 2014; Dalin et al., 2020, and references therein) with attention to seasonal
34 variations (e.g., Reid et al., 2017, and references therein) and the solar-cycle effect (e.g.,
35 Kalicinsky et al., 2016, and references therein).

36 Minor chemical constituents as well as chemical heat have also been retrieved by OH*
37 emission observations. Ever since atomic oxygen concentration was determined by the rocket-
38 born detection of OH* airglow (Good, 1976), this method has come into wide use for
39 obtaining information about distributions of minor chemical constituents in the mesopause
40 region, namely, atomic oxygen concentration (e.g., Russell et al., 2005; Mlynczak et al.,
41 2013a, and references therein), ozone concentration (e.g., Smith et al., 2009, and references
42 therein), atomic hydrogen concentration (e.g., Mlynczak et al., 2014, and references therein),
43 and exothermic chemical heat (e.g., Mlynczak et al., 2013b, and references therein). In future,
44 excited hydroxyl airglow could be used for measurements of hydroperoxy radicals and water
45 vapor concentrations (Kulikov et al., 2009, 2018; Belikovich et al., 2018).

46 Numerous works using airglow observations, have been devoted to dynamic processes, for
47 example, to study mesopause variabilities in time of SSWs (Damiani et al., 2010; Shepherd et
48 al., 2010). Gao et al. (2011) studied the temporal evolution of nightglow brightness and height
49 during SSW events. A year earlier, they found a QBO signal in the excited hydroxyl emission
50 (Gao et al., 2010). The climatology of PWs was investigated in works by Takahashi et al.
51 (1999), Buriti et al. (2005), and Reisin et al. (2014). Tides were studied by Xu et al. (2010)
52 and Lopez-Gonzalez et al. (2005). GW parameters based on the airglow technique were

53 investigated, for example, by Taylor et al. (1991) and Wachter et al. (2015). A more complete
54 description of works in which hydroxyl emissions were used to study dynamic processes can
55 be found in a review by Shepherd et al. (2012).

56 The morphology of the OH* layer is an essential component in the interpretation of
57 observations and in understanding the processes involved in layer variability. Annual
58 variations in the OH* layer have been identified at all latitudes (Marsh et al., 2006).
59 Equatorial and low-latitude semi-annual variations have been observed by satellites (e.g.,
60 Abreu and Yee, 1989; Liu et al., 2008, and references therein), as well as by ground-based
61 instruments (Takahashi et al., 1995), and they have been modelled by several research teams
62 (Le Texier et al., 1987; Marsh et al., 2006, and references therein). The maxima of emissions
63 were found to occur near equinoxes. In spite of the large number of studies on this subject,
64 there are still knowledge gaps. Recently, unexpected behaviour in the semi-annual cycle of
65 excited hydroxyl emission has been found by ground-based observations, with a shift of the
66 peaks from equinoxes to summer and winter at middle latitudes (Popov et al., 2018; Popov et
67 al., 2020); this was also found by modelling (Grygalashvily et al., 2014, Fig. 3). Similar
68 variations in OH* emissions with peaks near equinoxes have been observed at middle
69 latitudes (34.6° N) in the southern hemisphere (Reid et al., 2014). These results were provided
70 without explanations; in our short paper, we offer a preliminary explanation.

71 The second chapter of our manuscript describes the observational technique and model that
72 were applied; in the third chapter, we present results and an analysis of observations and
73 modelling; conclusions are provided in the fourth chapter.

74

75 **2. Observational technique and model**

76

77 **2.1. Observational technique**

78

79 The spectral airglow temperature imager (SATI), which measures nightglow intensity for
 80 vibrational transitions of $\text{OH}^*_{v=6} \rightarrow \text{OH}^*_{v=2}$ and temperature using vibrational-rotational
 81 transitions, was assembled at the Institute of Ionosphere (43° N, 77° E) in Almaty,
 82 Kazakhstan. It represents a Fabry-Perot spectrometer with a CCD (charge-coupled device)
 83 camera as a detector and a narrow-band interference filter as the etalon. Following Lopez-
 84 Gonzalez et al. (2007), we use an interference filter with the centre at 836.813 nm and a
 85 bandwidth of 0.182 nm. This corresponds to the spectral region of the $\text{OH}^*_{v=6} \rightarrow \text{OH}^*_{v=2}$ band.
 86 In order to infer the temperature, the calculated spectra for different vibro-rotational
 87 transitions are compared with those from observations. The SATI operates at a sixty-second
 88 exposure that provides corresponding time resolution. The method of temperature retrieval is
 89 well-described by Lopez-Gonzalez et al. (2004). The observations of temperature were
 90 validated using satellite SABER measurements (Lopez-Gonzalez et al., 2007; Pertsev et al.,
 91 2013). Additional details about this instrument are presented in many papers (Wies et al.,
 92 1997; Aushev et al., 2000; Lopez-Gonzalez et al., 2004, 2005, 2007, 2009). The analysis
 93 presented in this paper uses data averaged over the years 2010-2017.

94

95 **2.2. Model and numerical experiment**

96

97 The model of excited hydroxyl (MEH) calculates the OH^* number densities at each
 98 vibrational level v as the production divided by losses (excited hydroxyl is assumed in the
 99 photochemical equilibrium), which include the chemical sources as well as collisional and
 100 emissive removal:

$$101 [OH_v] = \frac{\left(\zeta_v a_1 [O_3] [H] + \psi_v a_2 [O] [HO_2] + \sum_{v'=v+1}^9 B_{v'v} [O_2] [OH_{v'}] + c_{v+1} [N_2] [OH_{v+1}] + \right.}{\left(a_3(v) [O] + \sum_{v''=0}^{v-1} D_{v''v} [O] [OH_{v'}] + \sum_{v'=v+1}^9 E_{v'v} [OH_{v'}] \right.} \left. \left. + \sum_{v''=0}^{v-1} B_{v''v} [O_2] + \sum_{v''=0}^{v-1} E_{v''v} \right) \right), \quad (v < v'). \quad (1)$$

102 The first term in the numerator of (1) is the reaction $O_3 + H \rightarrow OH_v + O$, where a_1 is the
103 reaction rate, and ζ_v represents the branching ratios (Adler-Golden, 1997). The second term is
104 the $O + HO_2 \rightarrow OH_v + O_2$ reaction, where a_2 and ψ_v are the reaction rate and nascent
105 distribution, respectively (Kaye (1988) after Takahashi and Batista (1981)). The other three
106 summands represent the populations resulting from collisional relaxation from higher v -
107 levels, where B , C , and D are the collisional deactivation coefficients for O_2 (Adler-Golden,
108 1997), N_2 (Makhlof et al., 1995), and O (Caridade et al., 2013), respectively. The last
109 summand is the multi-quantum population by spontaneous emissions, where $E_{v',v}$ is the
110 spontaneous emission coefficient (Xu et al., 2012). The losses occur, additionally, through the
111 chemical removal of the excited hydroxyl by atomic oxygen, where $a_3(v)$ is the vibrationally
112 dependent reaction rate (Varandas, 2004). The calculations in Eq. (1) are incorporated into the
113 chemistry-transport model (CTM). We calculate volume emission for transition
114 $OH^*_{v=6} \rightarrow OH^*_{v=2}$ as the product of the Einstein coefficient for given transition by
115 concentration of excited hydroxyl at corresponding vibrational number, i.e. $V_{62} = E_{62}[OH_6^*]$.
116 All reactions used in Eq. (1) and in appendix, together with corresponding reaction rates,
117 branching ratios, quenching rates and spontaneous emission coefficients, besides those for
118 multi-quantum processes, are collected in Table 1.
119 Here, we enumerate only the main features of the CTM as one can find extended descriptions
120 in manyworks (Sonnemann and Grygalashvily, 2020; Grygalashvily et al., 2014; and
121 references therein). The CTM consists of four blocks: chemical, transport, radiative, and
122 diffusive. The chemical block accounts for 19 constituents, and 63 photo-dissociations and
123 chemical reactions (Burkholder et al., 2015). The chemical code utilises a family approach
124 with the odd-oxygen ($O(^1D)$, O , O_3), odd-hydrogen (H , OH , HO_2 , H_2O_2), and odd-nitrogen
125 ($N(^2D)$, $N(^4S)$, NO , NO_2) families (Shimazaki, 1985). In the radiative part, the dissociation
126 rates are taken from a pre-calculated table depending on zenith angle and altitude (Kremp et
127 al., 1999). The transport block calculates advections in three directions following Walcek

128 (2000). The diffusive part accounts for only vertical molecular plus turbulent diffusion
129 (Morton and Mayers, 1994). This model has been validated against observations of ozone,
130 which plays a role in the formation of OH* (e.g., Hartogh et al., 2011; Sonnemann et al.,
131 2007; and references therein) and water vapour, which is the principal source of odd-
132 hydrogens and, particularly, of atomic hydrogen (e.g., Hartogh et al., 2010; Sonnemann et al.,
133 2008; and references therein). Our current analysis used the run for year 2009 (the choice of
134 this year does not affect our conclusions because calculations for other years show similar
135 semi-annual variations), which was published and described in a number of works
136 (Grygalashvily et al., 2014, section 4; Sonnemann et al., 2015). This run is based on the
137 dynamics and temperature of LIMA (Leibniz Institute Middle Atmosphere) model for the so-
138 called “realistic case”, in which carbon dioxide, ozone, and Lyman- α flux are taken from
139 observations, and the horizontal winds and temperature of ECMWF (European Centre for
140 Medium-Range Weather Forecasts) are assimilated below \sim 35 km (Berger, 2008; Lübken et
141 al., 2009, 2013).

142 Here we assume that the structures in the longitudinal direction are equivalent to local time
143 (LT) behaviour, with 24 LT related to midnight at 0° longitude. The LTs of successive
144 longitudes are used to analyse our calculations. Hence, in the following figures related to the
145 model results, longitude is used as the so-called ‘pseudo time’. The night-time averaged
146 values account for the period from 21:45 LT to 2:15 LT. For the purposes of our discussion,
147 we use ‘pressure-altitude’ (or other words ‘pseudo-altitude’) $Z^* = -H \ln(P/P_0)$, where P
148 represents pressure: $P_0 = 1013 \text{ mbar}$ is the surface pressure, and $H = 7 \text{ km}$ is the scale
149 height.

150

151 **3. Results and discussion**

152

153 Figure 1a illustrates the nightly mean monthly averaged values of the observed annual
154 variability of intensity at 43° N (red line) and the modelled annual variability of volume
155 emission at the peak of the OH* layer at 43.75° N (black line), both for transition
156 OH*_{v=6}→OH*_{v=2}. The error bar shows monthly standard deviation, because we display
157 monthly mean values and standard deviations commonly exceed the errors of measurements.
158 By the observations as well as by modelling, we can clearly see semi-annual variations of
159 emissions with peaks in winter and summer. Note, that the observed intensity is directly
160 proportional to the vertical integral of the volume emissions; hence, they reveal similar
161 variations and dependencies on surrounding conditions near the peak of the excited hydroxyl
162 layer.

163 Grygalashvyly et al. (2014), Sonnemann et al. (2015), and Grygalashvyly (2015) have derived
164 and confirmed through modelling that the concentration of excited hydroxyl (hence, volume
165 emission and intensity) at peak is directly proportional to the product of the surrounding
166 pressure (hence, it depends on altitude), atomic oxygen number density, and the negative
167 power of temperature (Eq. A2 in the Appendix). Thus, in order to infer the reasons for this
168 semi-annual variation, one should consider three drivers of OH* variability: temperature,
169 atomic oxygen concentration, and height of the layer.

170 Figure 1b shows the monthly mean nightly averaged values of the observed annual variability
171 of temperature at 43° N (red line) and the modelled annual variability of temperature at the
172 OH*_{v=6} peak at 43.75° N (black line). Both the observations and the modelling show minima
173 in summer and maxima in winter. Hence, the temperature decline can be one of the reasons
174 for the summer intensity (and volume emission) peak.

175 Figures 1c and 1d depict modelled monthly mean nightly averaged values of atomic oxygen at
176 OH*_{v=6} peak and the height of the excited hydroxyl peak, respectively, at 43.75° N. The
177 modelling shows the peaks of atomic oxygen concentration in July and December–January,
178 with the largest values in winter. The variation of height through the year occurs from ~90 km

179 to 94 km. This is an essential variability and provides input to the variability of the
180 concentration of the surrounding air.

181 In order to study the morphology of this semi-annual variation and assess the impacts of
182 temperature, atomic oxygen concentration, and height (concentration of air) variability, we
183 calculate one-month sliding averaged values based on the model results. Figure 2 illustrates
184 the modelled annual variability at the $OH_{v=6}^*$ peak: a) volume emission ($OH_{v=6}^* \rightarrow OH_{v=2}^*$), b)
185 temperature, c) atomic oxygen concentration, and d) height of the peak.

186 The summer maximum of volume emission (Fig. 2a) shows the strongest values in July and is
187 extended from $\sim 30^\circ$ N to $\sim 50^\circ$ N. The summer maximum is stronger than that in winter. The
188 winter maximum has its strongest values in January and a positive gradient into the winter
189 pole direction; at latitudes 30° – 50° N, it represents the part of the annual variation at high
190 latitudes that occurs because of the annual variation in general mean circulation and fluxes of
191 atomic oxygen which correspond to this variability (Liu et al., 2008; Marsh et al., 2006).

192 Similar behaviour of the emissions for transition $OH_{v=8}^* \rightarrow OH_{v=3}^*$ was captured by WINDII
193 (Wind Imaging Interferometer) and modelled by Thermosphere-Ionosphere-Mesosphere
194 Electrodynamics General Circulation Model at 84–88 km (Liu et al., 2008, Fig. 5 and 6).

195 The temperature (Fig. 2b) shows a clear annual variation from the middle to the high
196 latitudes, with a minimum ~ 150 K at middle latitudes in July. The summer minimum at the
197 middle latitudes is the echo of the one at high latitudes. The atomic oxygen concentrations
198 (Fig. 2c) reveal the annual cycle. The concentrations have a maximum in winter and a
199 minimum in summer at high and middle latitudes, as has already been observed (Smith et al.,
200 2010). However, in the region from $\sim 30^\circ$ to $\sim 50^\circ$ N in summer, atomic oxygen concentrations
201 show one additional peak in June–July. Formation of this summer peak can be explained by
202 the transformed Eulerian mean (TEM) circulation (Limpasuvan et al., 2012, Fig. 7;
203 Limpasuvan et al., 2016, Fig. 5), which brings into the summer hemisphere the air reached by
204 atomic oxygen from the region of its production at high latitudes above 100 km to ~ 90 km at

205 $\sim 30^\circ\text{--}50^\circ$ N. The peak altitude of the $OH_{v=6}^*$ (Fig. 2d) shows complex annual variability.

206 There is a secondary maximum OH* peak at $\sim 30^\circ\text{--}50^\circ$ N in summer.

207 In order to assess the input into annual variability from different sources, we calculate relative
208 to annual averaged variations of volume emissions due to atomic oxygen, temperature, and air
209 density:

$$\begin{aligned} 210 \quad RD'_O &= 100\% \cdot \frac{V'_O}{\bar{V}} = 100\% \cdot \frac{[O]'}{[\bar{O}]}, \\ RD'_T &= 100\% \cdot \frac{V'_T}{\bar{V}} = 100\% \cdot -2.4 \frac{T'}{\bar{T}}, \\ RD'_M &= 100\% \cdot \frac{V'_M}{\bar{V}} = 100\% \cdot \frac{[M]'}{[\bar{M}]}, \end{aligned} \quad (2)$$

211 where overbar denotes annually averaged values and prime denotes difference of actual
212 (modeled or observed) values from annually averaged (in our case this is difference between
213 nightly mean one month sliding averaged values (Fig. 2) and nightly mean annually averaged
214 values). The derivation of these parameters is presented in the appendix. A similar approach
215 can be useful for analysing emission variations due to GWs, PWs, and tides.

216 Figure 3a shows relative variations of emissions due to impacts of atomic oxygen (black line),
217 temperature (red line), and air density (green line) at 43.75° N. The strongest emission
218 variation occurs because of changes in atomic oxygen concentration: the amplitude of its
219 relative deviation amounts to $\sim 50\%$. The amplitudes of relative deviations of emissions due to
220 temperature and air density amount to $\sim 15\%$ and $\sim 20\%$, respectively. The atomic oxygen
221 variation gives the most essential input into the winter maximum of emission (black line).
222 Because of the downward transport of atomic oxygen in winter, the volume emission rises by
223 $\sim 50\%$ of annual average. The summer maximum is determined by the superposition of all
224 three factors. After the spring reduction of emissions due to the decline of atomic oxygen
225 concentration ($\sim 40\%$ of annual averaged values), the emissions rise again to approximately
226 the annual average values in June–July. This is synchronised with the growth of volume
227 emissions by $\sim 20\%$ over the annual average values due to summer temperature declines (red

228 line) and with the growth of volume emissions by ~15% over the annual average due to the
229 decline of peak altitude in April–September and the corresponding rise of air density (green
230 line).

231 Figure 3b illustrates relative variations of emissions due to second momenta (Eq. A7 in the
232 Appendix). The second momenta do not provide essential input to annual variation. The
233 strongest among them, $\frac{[O]'}{[O]\bar{M}} M'$ (blue line), gives emission variability with an amplitude ~6% of
234 annual averaged values.

235 In the context of our short paper, the ultimate question regarding the role of tides and GWs on
236 semi-annual variations of OH* emissions at middle latitudes has not been answered.
237 Undoubtedly, the simultaneous analysis of observations of excited hydroxyl emissions from
238 several stations is desirable to explore this question.

239

240 **4. Summary and conclusions**

241

242 Based on observations and numerical simulation, we confirmed the existence of a
243 semi-annual cycle of excited hydroxyl emission at middle latitudes with maxima in summer
244 (June–July) and winter (December–January). The annual variation in general mean circulation
245 and atomic oxygen concentration corresponding to the excited hydroxyl emission cycle was
246 found to be the leading cause of the winter maximum of this cycle, whereas the summer
247 maximum represents the superposition of three different processes: atomic oxygen meridional
248 transport due to residual circulation from the summer pole to the equator; temperature decline,
249 which represents the rest of the mesopause cooling at summer high latitudes; and air
250 concentration growth at the peak of the excited hydroxyl emission layer due to hydroxyl layer
251 descent at middle latitudes in April–September.

252

253 **Appendix.**

254

255 To obtain the derivation of Eq. (2), we start with a simplified equation for excited hydroxyl
256 concentration. Taking into account that the ozone is in photochemical equilibrium in the
257 vicinity of the $[OH_v]$ layer and above during night-time (Kulikov et al., 2018; Belikovich et
258 al., 2018; Kulikov et al., 2019); utilising the equation for ozone balance during night-time
259 ($a_5[O_3][O] + a_1[H][O_3] = a_4[O][O_2][M]$), where a_4 and a_5 are the coefficients for the
260 corresponding reactions; omitting the reaction of atomic oxygen with ozone as relatively slow
261 (Smith et al., 2008); substituting the reduced ozone balance equation for the excited hydroxyl
262 balance equation (first term in the numerator of Eq. (1)); assuming that the most effective
263 production of excited hydroxyl occurs due to the reaction of ozone with atomic hydrogen and
264 that the most effective losses are due to quenching with molecular oxygen; we obtain from
265 Eq. (1) a simplified expression in which excited hydroxyl concentration is represented in
266 terms of atomic oxygen concentration, temperature (in a_4), and concentration of the
267 surrounding air:

268 $[OH_v] \approx \mu_v a_4 [O][M].$ (A1)

269 Here $\mu_v = \frac{\varsigma_v + \sum_{v'=v+1}^{v'=9} \mu_{v'} B_{v'v}}{\sum_{v''=0}^{v''=v-1} B_{vv''}}$, ($\varsigma_{v>9} = 0$) are the coefficients representing the arithmetic
270 combination of branching ratios ς_v and quenching coefficients $B_{v'v}$. More comprehensive
271 derivations of (A1) can be found in a number of papers (Grygalashvily et al., 2014;
272 Grygalashvily, 2015; Grygalashvily and Sonnemann, 2020). Although the accuracy of (A1)
273 estimate is insufficient for model calculations, it is useful for obtaining information about
274 impacts and for assessing variabilities.

275 By multiplying (A1) by the Einstein-coefficient $E_{vv''}$ for given a transition, writing the
276 reaction rate explicitly $a_4 = 6 \cdot 10^{-34} (300/T)^{2.4}$ (Burkholder et al., 2015), and collecting all

277 constants in $\chi_{vv''}$, we obtain an expression for volume emission in terms of atomic oxygen
 278 concentration, temperature, and air number density:

279
$$V \approx \chi_{vv''} T^{-2.4} [O][M], \quad (A2)$$

280 where $\chi_{vv''} = \mu_v E_{vv''} \cdot 6 \cdot 10^{-34} \cdot 300^{2.4}$.

281 Next, we apply Reynolds decomposition by averaged and variable part to the temperature,
 282 atomic oxygen concentration, and concentration of air in (A2):

283
$$V \approx \chi_{vv''} (\bar{T} + T')^{-2.4} (\overline{[O]} + [O]') (\overline{[M]} + [M']), \quad (A3)$$

284 where \bar{T} , $\overline{[O]}$, $\overline{[M]}$ are average parts, and T' , $[O]'$, $[M]'$ are the corresponding varying parts.

285 After decomposing the term with temperature in the Taylor expansion and cross-multiplying
 286 all terms of (A3), we obtain:

287
$$V \approx \chi_{vv''} \bar{T}^{-2.4} \overline{[O]} \cdot \overline{[M]} + \chi_{vv''} \bar{T}^{-2.4} \overline{[O]} [M]' + \chi_{vv''} \bar{T}^{-2.4} [O]' \overline{[M]} - 2.4 \chi_{vv''} T' \bar{T}^{-3.4} \overline{[O]} \cdot$$

 288
$$\overline{[M]} + \chi_{vv''} \bar{T}^{-2.4} [O]' [M]' - 2.4 \chi_{vv''} T' \bar{T}^{-3.4} \overline{[O]} [M]' - 2.4 \chi_{vv''} T' \bar{T}^{-3.4} [O]' \overline{[M]} -$$

 289
$$2.4 \chi_{vv''} T' \bar{T}^{-3.4} [O]' [M]'. \quad (A4)$$

290 The volume emission for a given transition can be represented as follows:

291
$$V \approx \bar{V} + V'_M + V'_O + V'_T + V''_{OM} + V''_{TM} + V''_{TO} + \text{higher momenta}, \quad (A5)$$

292 where, $\bar{V} = \chi_{vv''} \bar{T}^{-2.4} \overline{[O]} \cdot \overline{[M]}$, $V'_M = \chi_{vv''} \bar{T}^{-2.4} \overline{[O]} [M]'$, $V'_O = \chi_{vv''} \bar{T}^{-2.4} [O]' \overline{[M]}$, $V'_T =$
 293
$$-2.4 \chi_{vv''} T' \bar{T}^{-3.4} \overline{[O]} \cdot \overline{[M]}$$
, $V''_{OM} = \chi_{vv''} \bar{T}^{-2.4} [O]' [M]'$, $V''_{TM} =$
 294
$$-2.4 \chi_{vv''} T' \bar{T}^{-3.4} \overline{[O]} [M]', V''_{TO} = -2.4 \chi_{vv''} T' \bar{T}^{-3.4} [O]' \overline{[M]}$$
.

295 Hence, relative deviations (RD) of emissions due to variations in atomic oxygen, temperature,
 296 and concentration of air are:

$$RD'_O = 100\% \cdot \frac{V'_O}{\bar{V}} = 100\% \cdot \frac{[O]'}{\overline{[O]}},$$

297
$$RD'_T = 100\% \cdot \frac{V'_T}{\bar{V}} = 100\% \cdot -2.4 \frac{T'}{\bar{T}}, \quad (A6)$$

$$RD'_M = 100\% \cdot \frac{V'_M}{\bar{V}} = 100\% \cdot \frac{[M]'}{\overline{[M]}}.$$

298 The relative deviations (RD) of emissions due to second momenta are

$$\begin{aligned}
 RD''_{OM} &= 100\% \cdot \frac{V''_{OM}}{\bar{V}} = 100\% \cdot \frac{[O]'[M]'}{[O][M]}, \\
 299 \quad RD''_{TM} &= 100\% \cdot \frac{V''_{TM}}{\bar{V}} = 100\% \cdot -2.4 \frac{T'[M]'}{\bar{T}[M]}, \\
 RD''_{TO} &= 100\% \cdot \frac{V''_{TO}}{\bar{V}} = 100\% \cdot -2.4 \frac{T'[O]'}{\bar{T}[O]}.
 \end{aligned} \tag{A7}$$

300

301 **Data availability.** The data utilized in this manuscript can be downloaded from
 302 <http://ra.rshu.ru/files/Grygalashvly et al ANGEO 2020>.

303 **Author contributions.** All authors contributed equally to this paper.

304 **Competing interests.** The authors declare that they have no conflict of interest.

305 **Acknowledgements.** This work was supported by the Russian Science Foundation (grant
 306 #20-77-10006). Some data processing have been done under the state task of the Ministry of
 307 science and higher education of the Russian Federation (project FSZU-2020-0009)".

308 The authors are thankful to topical editor Petr Pisoft for help in evaluating this paper and to
 309 two anonymous referees for their constructive comments and improvements to the paper.

310

311 **References**

312

313 Abreu, V. J., and Yee, J. H.: Diurnal and seasonal variation of the nighttime OH (8-3)
 314 emission at low latitudes, *J. Geophys. Res.*, 94(A9), 11949-11957, doi:10.1029/89JA00619,
 315 1989.

316

317 Adler-Golden, S.: Kinetic parameters for OH nightglow modeling consistent with recent
 318 laboratory measurements, *J. Geophys. Res.*, 102(A9), 19969–19976, doi:10.1029/97JA01622,
 319 1997.

320

- 321 Aushev, V. M., Pogoreltsev, A. I., Vodyannikov, V. V., Wiens, R. H., and Shepherd, G. G.:
322 Results of the airglow and temperature observations by MORTI at the Almaty site (43.05 N,
323 76.97 E), *Phys. Chem. Earth*, 25(5–6), 409–415, doi:10.1016/S1464-1909(00)00035-6, 2000.
324
- 325 Belikovich, M. V., Kulikov, M. Yu., Grygalashvyly, M., Sonnemann, G. R., Ermakova, T. S.,
326 Nechaev, A. A., and Feigin, A. M.: Ozone chemical equilibrium in the extended mesopause
327 under the nighttime conditions. *Adv. Space Res.*, 61, 426-432, doi:10.1016/j.asr.2017.10.010,
328 2018.
- 329
- 330 Belikovich, M. V., Kulikov, M. Yu., Nechaev, A. A., Feigin, A. M.: Evaluation of the
331 Atmospheric Minor Species Measurements: a Priori Statistical Constraints Based on
332 Photochemical Modeling, *Radiophys. Quantum Electron.*, 61, 574-588, doi:10.1007/s11141-
333 019-09918-5, 2018.
- 334
- 335 Berger, U.: Modeling of the middle atmosphere dynamics with LIMA, *J. Atmos. Terr. Phys.*,
336 70, 1170–1200, doi:10.1016/j.jastp.2008.02.004, 2008.
- 337
- 338 Bittner, M., Offermann, D., Graef, H.-H., Donner, M., and Hamilton, K.: An 18 year time
339 series of OH rotational temperatures and middle atmosphere decadal variations, *J. Atmos. Sol.*
340 *Terr. Phys.*, 64, 1147-1166, doi:10.1016/S1364-6826(02)00065-2, 2002.
- 341
- 342 Buriti, R. A., Takahashi, H., Lima, L. M., and Medeiros, A. F.: Equatorial planetary waves in
343 the mesosphere observed by airglow periodic oscillations, *Adv. Space Res.*, 35, 2031–2036,
344 doi:10.1016/j.asr.2005.07.012, 2005.
- 345

346 Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M.
347 J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical
348 Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet
349 Propulsion Laboratory, Pasadena, <http://jpldataeval.jpl.nasa.gov>, 2015.
350
351 Caridade, P. J. S. B., Horta, J.-Z. J., and Varandas, A. J. C.: Implications of the O + OH
352 reaction in hydroxyl nightglow modeling, *Atmos. Chem. Phys.*, 13, 1-13, doi:10.5194/acp-13-
353 1-2013, 2013.
354
355 Dalin, P., Perminov, V., Pertsev, N., and Romejko, V.: Updated long-term trends in
356 mesopause temperature, airglow emissions, and noctilucent clouds, *J. Geophys. Res. Atmos.*,
357 125, e2019JD030814, doi:10.1029/2019JD030814, 2020.
358
359 Damiani, A., Storini, M., Santee, M. L., and Wang, S.: Variability of the nighttime OH layer
360 and mesospheric ozone at high latitudes during northern winter: influence of meteorology,
361 *Atmos. Chem. Phys.*, 10, 10291-10303, doi:10.5194/acp-10-10291-2010, 2010.
362
363 Gao, H., Xu, J., and Wu, Q.: Seasonal and QBO variations in the OH nightglow emission
364 observed by TIMED/SABER, *J. Geophys. Res.*, 115, A06313, doi:10.1029/2009JA014641,
365 2010.
366
367 Gao, H., Xu, J., Ward, W., and Smith, A. K.: Temporal evolution of nightglow emission
368 responses to SSW events observed by TIMED/SABER, *J. Geophys. Res.*, 116, D19110,
369 doi:10.1029/2011JD015936, 2011.
370

371 Garcia, R. R., and Solomon, S.: The effect of breaking gravity waves on the dynamics and
372 chemical composition of the mesosphere and lower thermosphere, *J. Geophys. Res.*, 90(D2),
373 3850–3868, doi:10.1029/JD090iD02p03850, 1985.

374

375 Good, R. E.: Determination of atomic oxygen density from rocket borne measurements of
376 hydroxyl airglow, *Planet. Space Sci.*, 24, 389–395, doi:10.1016/0032-0633(76)90052-0, 1976.

377

378 Grygalashvily, M., Sonnemann, G. R., Lübken, F.-J., Hartogh, P., and Berger, U.: Hydroxyl
379 layer: Mean state and trends at midlatitudes, *J. Geophys. Res.*, 119, 12391–12419,
380 doi:10.1002/2014JD022094, 2014.

381

382 Grygalashvily, M.: Several notes on the OH*-layer, *Ann. Geophys.*, 33, 923-930,
383 doi:10.5194/angeo-33-923-2015, 2015.

384

385 Grygalashvily, M., and Sonnemann, G. R.: Note on Consistency between Kalogerakis-
386 Sharma Mechanism (KSM) and Two-Step Mechanism of Atmospheric Band Emission, *Earth*
387 *Planets Space*, 72(187), doi:10.1186/s40623-020-01321-z, 2020.

388

389 Hartogh, P., Sonnemann, G. R., Grygalashvily, M., Li, S., Berger, U., and Lübken, F.-J.:
390 Water vapor measurements at ALOMAR over a solar cycle compared with model calculations
391 by LIMA, *J. Geophys. Res.*, 114, doi:10.1029/2009JD012364, 2010.

392

393 Hartogh, P., Jarchow, C., Sonnemann, G. R., and Grygalashvily, M.: Ozone distribution in
394 the middle latitude mesosphere as derived from microwave measurements at Lindau (51.66°
395 N, 10.13° E), *J. Geophys. Res.*, 116, D04305, doi:10.1029/2010JD014393, 2011.

396

- 397 Holmen, S. E., Dyrland, M. E., and Sigernes, F.: Long-term trends and the effect of solar
398 cycle variations on mesospheric winter temperatures over Longyearbyen, Svalbard (78°N), J.
399 Geophys. Res. Atmos., 119, 6596–6608, doi:10.1002/2013JD021195, 2014.
- 400
- 401 Kalicinsky, C., Knieling, P., Koppmann, R., Offermann, D., Steinbrecht, W., and Wintel, J.:
402 Long-term dynamics of OH* temperatures over central Europe: trends and solar correlations,
403 Atmos. Chem. Phys., 16, 15033-15047, doi:10.5194/acp-16-15033-2016, 2016.
- 404
- 405 Kaye, J. A.: On the possible role of the reaction $O + HO_2 \rightarrow OH + O_2$ in OH airglow, J.
406 Geophys. Res., 93, 285–288, doi:10.1029/JA093iA01p00285, 1988.
- 407
- 408 Kremp, Ch., Berger, U., Hoffmann, P., Keuer, D., and Sonnemann, G. R.: Seasonal variation
409 of middle latitude wind fields of the mesopause region -a comparison between observation
410 and model calculation, Geophys. Res. Lett., 26, 1279-1282, doi:10.1029/1999GL900218,
411 1999.
- 412
- 413 Kulikov, M. Y., Feigin, A. M., and Sonnemann, G. R.: Retrieval of water vapor profile in the
414 mesosphere from satellite ozone and hydroxyl measurements by the basic dynamic model of
415 mesospheric photochemical system, Atmos. Chem. Phys., 9, 8199–8210, doi:10.5194/acp-9-
416 8199-2009, 2009.
- 417
- 418 Kulikov, M. Yu., Belikovich, M. V., Grygalashvyly, M., Sonnemann, G. R., Ermakova, T. S.,
419 Nechaev, A. A., and Feigin, A. M.: Nighttime ozone chemical equilibrium in the mesopause
420 region, J. Geophys. Res., 123, 3228-3242, doi:10.1002/2017JD026717, 2018.
- 421

- 422 Kulikov, M. Yu., Belikovich, M. V., Ermakova, T. S., Nechaev, A. A., and Feigin, A. M.:
423 Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO₂, and
424 O₃ under a photochemical equilibrium assumption – a statistical approach, *Atmos. Chem.*
425 *Phys.*, 18, 7453–7471, doi:10.5194/acp-18-7453-2018, 2018.
- 426
- 427 Kulikov, M. Yu., Nechaev, A. A. , Belikovich, M. V., Vorobeva, E. V., Grygalashvily, M.,
428 Sonnemann, G. R., and Feigin, A. M.: Boundary of Nighttime Ozone Chemical Equilibrium
429 in the Mesopause Region from SABER Data: Implications for Derivation of Atomic Oxygen
430 and Atomic Hydrogen, *Geophys. Res. Lett.*, 46, 997-1004, doi:10.1029/2018GL080364,
431 2019.
- 432
- 433 Le Texier, H., Solomon, S., and Garcia, R. R.: Seasonal variability of the OH Meinel bands,
434 *Planet. Space Sci.*, 35(8), 977-989, doi:10.1016/0032-0633(87)90002-X, 1987.
- 435
- 436 Limpasuvan, V., Richter, J. H., Orsolini, Y. J., Stordal, F., and Kvissel, O.-K.: The roles of
437 planetary and gravity waves during a major stratospheric sudden warming as characterized by
438 WACCM, *J. Atmos. Sol. Terr. Phys.*, 78–79, 84–98, doi:10.1016/j.jastp.2011.03.004, 2012.
- 439
- 440 Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A. K.: On the
441 composite response of the MLT to major sudden stratospheric warming events with elevated
442 stratopause, *J. Geophys. Res. Atmos.*, 121, 4518–4537, doi:10.1002/2015JD024401, 2016.
- 443
- 444 Liu, G., and Shepherd, G. G.: An empirical model for the altitude of the OH nightglow
445 emission, *Geophys. Res. Lett.*, 33, L09805, doi:10.1029/2005GL025297, 2006.
- 446

447 Liu, G., Shepherd, G. G., and Roble, R. G.: Seasonal variations of the nighttime O(¹S) and
448 OH airglow emission rates at mid-to-high latitudes in the context of the large-scale
449 circulation, *J. Geophys. Res.*, 113, A06302, doi:10.1029/2007JA012854, 2008.

450

451 Lopez-Gonzalez, M. J., Rodriguez, E., Wiens, R. H., Shepherd, G. G., Sargoytchev, S.,
452 Brown, S., Shepherd, M. G., Aushev, V. M., Lopez-Moreno, J. J., Rodrigo, R., and Cho, Y.-
453 M.: Seasonal variations of O₂ atmospheric and OH(6-2) airglow and temperature at mid-
454 latitudes from SATI observations, *Ann. Geophys.*, 22, 819–828, doi:10.5194/angeo-22-819-
455 2004, 2004.

456

457 Lopez-Gonzalez, M. J., Rodriguez, E., Shepherd, G. G., Sargoytchev, S., Shepherd, M. G.,
458 Aushev, V. M., Brown, S., Garcia-Comas, M., and Wiens, R. H.: Tidal variations of O₂
459 Atmospheric and OH(6-2) airglow and temperature at mid-latitudes from SATI observations,
460 *Ann. Geophys.*, 23, 3579–3590, doi:10.5194/angeo-23-3579-2005, 2005.

461

462 Lopez-Gonzalez, M. J., Garcia-Comas, M., Rodriguez, E., Lopez-Puertas, M., Shepherd, M.
463 G., Shepherd, G. G., Sargoytchev, S., Aushev, V. M., Smith, S. M., Mlynczak, M. G.,
464 Russell, J. M., Brown, S., Cho, Y.-M., and Wiens, R. H.: Ground-based mesospheric
465 temperatures at mid-latitude derived from O₂ and OH (6-2) airglow SATI data: Comparison
466 with SABER measurements, *J. Atmos. Solar-Terr. Phys.*, 69, 2379–2390.
467 doi:10.1016/j.jastp.2007.07.004, 2007.

468

469 Lopez-Gonzalez, M. J., Rodríguez, E., Garcia-Comas, M., Costa, V., Shepherd, M. G.,
470 Shepherd, G. G., Aushev, V. M., and Sargoytchev, S.: Climatology of planetary wave type
471 oscillations with periods of 2–20 days derived from O₂ atmospheric and OH(6-2) airglow

472 observations at mid-latitude with SATI, Ann.Geophys., 27, 3645–3662, doi:10.5194/angeo-
473 27-3645-2009, 2009.

474

475 Lübken, F.-J., Berger, U., and Baumgarten, G.: Stratospheric and solar cycle effects on long-
476 term variability of mesospheric ice clouds, J. Geophys. Res., 114, D00106,
477 doi:10.1029/2009JD012377, 2009.

478

479 Lübken, F.-J., Berger, U., and Baumgarten, G.: Temperature trends in the midlatitude summer
480 mesosphere, J. Geophys. Res., 118, 13347-13360, doi:10.1002/2013JD020576, 2013.

481

482 Makhlof, U. B., Picard, R. H., and Winick, J. R.: Photochemical-dynamical modeling of the
483 measured response of airglow to gravity waves. 1. Basic model for OH airglow, J. Geophys.
484 Res., 100, 11289–11311, doi:10.1029/94JD03327, 1995.

485

486 Marsh, D. R., Smith, A. K., Mlynczak, M. G., and Russell III, J. M.: SABER observations of
487 the OH Meinel airglow variability near the mesopause, J. Geophys. Res., 111, A10S05,
488 doi:10.1029/2005JA011451, 2006.

489

490 Mlynczak, M. G., Hunt, L. A., Mast, J. C., Marshall, B. T., Russell III, J. M., Smith, A. K.,
491 Siskind, D. E., Yee, J.-H., Mertens, C. J., Martin-Torres, F. J., Thompson, R. E., Drob, D. P.,
492 and Gordley, L. L.: Atomic oxygen in the mesosphere and lower thermosphere derived from
493 SABER: Algorithm theoretical basis and measurement uncertainty, J. Geophys. Res. Atmos.,
494 118, 5724–5735, doi:10.1002/jgrd.50401, 2013a.

495

496 Mlynczak, M. G., Hunt, L. A., Mertens, C. J., Marshall, B. T., Russell III, J. M., Lopez-
497 Puertas, M., Smith, A. K., Siskind, D. E., Mast, J. C., Thompson, R. E., and Gordley, L. L.:

498 Radiative and energetic constraints on the global annual mean atomic oxygen concentration in
499 the mesopause region, *J. Geophys. Res. Atmos.*, 118, 5796–5802, doi:10.1002/jgrd.50400,
500 2013b.

501

502 Mlynczak, M. G., Hunt, L. A., Marshall, B. T., Mertens, C. J., Marsh, D. R., Smith, A. K.,
503 Russell, J. M., Siskind, D. E., and Gordley, L. L.: Atomic hydrogen in the mesopause region
504 derived from SABER: Algorithm theoretical basis, measurement uncertainty, and results, *J.*
505 *Geophys. Res.*, 119, 3516–3526, doi:10.1002/2013JD021263, 2014.

506

507 Morton, K. W., and D. F. Mayers, D. F.: *Numerical Solution of Partial Differential Equations*,
508 Cambridge University Press, 1994.

509

510 Pertsev N. N., Andreyev A. B., Merzlyakov E. G., and Perminov V. I.: Mesosphere-
511 thermosphere manifestations of strato-spheric warmings: joint use of satellite and ground-
512 based measurements, *Current Problems in Remote Sensing of the Earth from Space*, 10(1),
513 93–100, <http://jr.rse.cosmos.ru/article.aspx?id=1154&lang=eng>, 2013.

514

515 Popov, A. A., Gavrilov, N. M., Andreev, A. B., and Pogoreltsev, A. I.: Interannual dynamics
516 in intensity of mesoscale hydroxyl nightglow variations over Almaty, *Solar-Terr. Phys.*, 4(2),
517 63–68, doi:10.12737/stp-42201810, 2018.

518

519 Popov, A. A., Gavrilov, N. M., Perminov, V. I., Pertsev, N. N., and Medvedeva, I. V.: Multi-
520 year observations of mesoscale variances of hydroxyl nightglow near the mesopause at Tory
521 and Zvenigorod, *J. Atmos. Solar-Terr. Phys.*, 205, 1-8, doi:10.1016/j.jastp.2020.105311,
522 2020.

523

524 Reid, I. M., Spargo, A. J., and Woithe, J. M.: Seasonal variations of the nighttime O(¹S) and
525 OH (8-3) airglow intensity at Adelaide, Australia, *J. Geophys. Res. Atmos.*, 119, 6991–7013,
526 doi:10.1002/2013JD020906, 2014.

527

528 Reid, I. M., Spargo, A. J., Woithe, J. M., Klekociuk, A. R., Younger, J. P., and G. G. Sivjee,
529 G. G.: Seasonal MLT-region nightglow intensities, temperatures, and emission heights at a
530 Southern Hemisphere midlatitude site, *Ann. Geophys.*, 35, 567-582, doi:10.5194/angeo-35-
531 567-2017, 2017.

532

533 Reisin, E., Scheer, J., Dyrland, M. E., Sigernes, F., Deehr, C. S., Schmidt, C., Höppner, K.,
534 Bittner, M., Ammosov, P. P., Gavrilyeva, G. A., Stegman, J., Perminov, V. I., Semenov, A. I.,
535 Knlieling, P., Koomann, R., Shiokawa, K., Lowe, R. P., Lopez-Gonzalez, M. J., Rodriguez,
536 E., Zhao, Y., Taylor, M. J., Buriti, R. A., Espy, P. E., French, W. J., Eichmann, K.-U.,
537 Burrows, J. P., and von Savigny, C.: Traveling planetary wave activity from mesopause
538 region airglow temperatures determined by the Network for the Detection of Mesospheric
539 Change (NDMC), *J. Atmos. Sol.-Terr. Phys.*, 119, 71–82, doi:10.1016/j.jastp.2014.07.002,
540 2014.

541

542 Russell, J. P., Ward, W. E., Lowe, R. P., Roble, R. G., Shepherd, G. G., and B. Solheim, B.:
543 Atomic oxygen profiles (80 to 115 km) derived from Wind Imaging Interferometer/Upper
544 Atmospheric Research Satellite measurements of the hydroxyl and greenline airglow: Local
545 time–latitude dependence, *J. Geophys. Res.*, 110, D15305, doi:10.1029/2004JD005570, 2005.

546

547 Shepherd, G. G., Thuillier, G., Cho, Y.-M., Duboin, M.-L., Evans, W. F. J., Gault, W. A.,
548 Hersom, C., Kendall, D. J. W., Lathuillère, C., Lowe, R. P., McDade, I. C., Rochon, Y. J.,
549 Shepherd, M. G., Solheim, B. H., Wang, D.-Y., and Ward, W. E.: The Wind Imaging

550 Interferometer (WINDII) on the Upper Atmosphere Research Satellite: A 20 year perspective,
551 Rev. Geophys., 50, RG2007, doi:10.1029/2012RG000390, 2012.

552

553 Shepherd, M. G., Cho, Y.-M., Shepherd, G. G., Ward, W., and Drummond, J. R.:
554 Mesospheric temperature and atomic oxygen response during the January 2009 major
555 stratospheric warming, J. Geophys. Res., 115, A07318, doi:10.1029/2009JA015172, 2010.

556

557 Shimazaki, T.: Minor constituents in the middle atmosphere, D. Reidel Publishing Company,
558 Dordrecht, Holland, 1985.

559

560 Smith, A. K., Marsh, D. R., Russell III, J. M., Mlynczak, M. G., Martin-Torres, F. J., and
561 Kyrölä, E.: Satellite observations of high nighttime ozone at the equatorial mesopause, J.
562 Geophys. Res., 113, D17312, doi:10.1029/2008JD010066, 2008.

563

564 Smith, A. K., Lopez-Puertas, M., Garcia-Comas, M., and Tukiainen, S.: SABER observations
565 of mesospheric ozone during NH late winter 2002-2009, Geophys. Res. Lett., 36, L23804,
566 doi:10.1029/2009GL040942, 2009.

567

568 Smith, A. K., Marsh, D. R., Mlynczak, M. G., and Mast, J. C.: Temporal variation of atomic
569 oxygen in the upper mesosphere from SABER, J. Geophys. Res., 115, D18309,
570 doi:10.1029/2009JD013434, 2010.

571

572 Sonnemann, G. R., Hartogh, P., Jarchow., C., Grygalashvily, M., and Berger, U.: On the
573 winter anomaly of the night-to-day ratio of ozone in the middle to upper mesosphere in
574 middle to high latitudes, Adv. Space Res., 40, 846-854, doi:10.1016/j.asr.2007.01.039, 2007.

575

576 Sonnemann, G. R., Hartogh, P., Grygalashvly, M., Li, S., and Berger, U.: The quasi 5-day
577 signal in the mesospheric water vapor concentration in high latitudes in 2003 - a comparison
578 between observations at ALOMAR and calculations, *J. Geophys. Res.*, 113, D04101,
579 doi:10.1029/2007JD008875, 2008.

580

581 Sonnemann, G. R., Hartogh, P., Berger, U., and Grygalashvly, M.: Hydroxyl layer: trend of
582 number density and intra-annual variability, *Ann. Geophys.*, 33, 749–767, doi:10.5194/angeo-
583 33-749-2015, 2015.

584

585 Sonnemann G., and Grygalashvly, M.: The slow-down effect in the nighttime mesospheric
586 chemistry of hydrogen radicals, *Adv. Space Res.*, 65, 2800-2807,
587 doi:10.1016/j.asr.2020.03.025, 2020.

588

589 Takahashi, H., and Batista, P. P.: Simultaneous measurements of OH (9,4), (8,3), (7,2), 6,2),
590 and (5,1) bands in the airglow, *J. Geophys. Res.*, 86, 5632–5642,
591 doi:10.1029/JA086iA07p05632, 1981.

592

593 Takahashi, H., Clemesha, B. R., and Batista, P. P.: Predominant semi-annual oscillation of the
594 upper mesospheric airglow intensities and temperatures in the equatorial region, *J. Atmos.*
595 *Terr. Phys.*, 57(4), 407-414, doi:10.1016/0021-9169(94)E0006-9, 1995.

596

597 Takahashi, H., Batista, P. P., Buriti, R. A, Gobbi, D., Nakamura, T., Tsuda, T., and Fukao, S.:
598 Response of the airglow OH emission, temperature and mesopause wind to the atmospheric
599 wave propagation over Shigaraki, Japan, *Earth Planets Space*, 51, 863–875,
600 doi:10.1186/BF03353245, 1999.

601

- 602 Taylor, M. J., Espy, P. J., Baker, D. J., Sica, R. J., Neal, P. C., and Pendleton, Jr. W. R.:
603 Simultaneous intensity, temperature and imaging measurements of short period wave
604 structure in the OH nightglow emission, *Planet. Space Sci.*, 39, 1171–1188,
605 doi:10.1016/0032-0633(91)90169-B, 1991.
- 606
- 607 Varandas, A. J. C.: Reactive and non-reactive vibrational quenching in O + OH collisions,
608 *Chem. Phys. Lett.*, 396, 182–190, doi:10.1016/j.cplett.2004.08.023, 2004.
- 609
- 610 Wachter, P., Schmidt, C., Wüst, S., and Bittner, M.: Spatial gravity wave characteristics
611 obtained from multiple OH(3-1) airglow temperature time series, *J. Atmos. Sol. Terr. Phys.*,
612 135, 192-201, doi:10.1016/j.jastp.2015.11.008, 2015.
- 613
- 614 Walcek, C. J.: Minor flux adjustment near mixing ratio extremes for simplified yet highly
615 accurate monotonic calculation of tracer advection, *J. Geophys. Res.*, 105, 9335-9348,
616 doi:10.1029/1999JD901142, 2000.
- 617
- 618 Wiens, R. H., Moise, A., Brown, S., Sargoytchev, S., Peterson, R. N., Shepherd, G. G.,
619 Lopez-Gonzalez, M. J., Lopez-Moreno J. J., and Rodrigo R.: SATI: A spectral airglow
620 temperature imager, *Adv. Space Res.* 1997, 19, 677–680, doi:10.1016/S0273-
621 1177(97)00162-2, 1997.
- 622
- 623 Xu, J., Smith, A. K., Jiang, G., Gao, H., Wei, Y., Mlynczak, M. G., and Russell III, J. M.:
624 Strong longitudinal variations in the OH nightglow, *Geophys. Res. Lett.*, 37, L21801,
625 doi:10.1029/2010GL043972, 2010.
- 626

627 Xu, J., Gao, H., Smith, A. K., and Zhu, Y.: Using TIMED/SABER nightglow observations to
628 investigate hydroxyl emission mechanisms in the mesopause region, *J. Geophys. Res.*, 117,
629 D02301, doi:10.1029/2011JD016342, 2012.

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651 **Table 1.** List of reactions with corresponding reaction rates (for three-body reactions [cm⁶
652 molecule⁻² s⁻¹] and for two-body reactions [cm³ molecule⁻¹ s⁻¹]), branching ratios, quenching
653 coefficients, and spontaneous emission coefficients (s⁻¹) used in the paper.

	Reaction	Coefficient/branching ratios	Reference
1	$H + O_3 \xrightarrow{\zeta_v a_1} OH_{v=5,\dots,9} + O_2$	$a_1 = 1.4 \cdot 10^{-10} \exp\left(\frac{-470}{T}\right)$ $\zeta_{v=9,\dots,5} = 0.47, 0.34, 0.15, 0.03, 0.01$	Burkholder et al. (2015), Adler-Golden (1997)
2	$O + HO_2 \xrightarrow{\psi_v a_2} OH_{v=5,\dots,9} + O_2$	$a_2 = 3.0 \cdot 10^{-11} \exp\left(\frac{200}{T}\right)$ $\psi_{v=3,\dots,1} = 0.1, 0.13, 0.34$	Burkholder et al. (2015), Kaye (1988), Takahashi and Batista (1981)
3	$O + OH_{v=1,\dots,9} \rightarrow O_2 + H$	$a_3(v = 9, \dots, 5) = (5.07, 4.52, 3.87, 3.93, 3.22, 3.68, 3.05, 3.19, 3.42) \cdot 10^{-11}$	Varandas (2004), Caridade et al. (2013)
4	$O + O_2 + M \rightarrow O_3 + M$	$a_4 = 6 \cdot 10^{-34} (300/T)^{2.4}$	Burkholder et al. (2015)
5	$O + O_3 \rightarrow 2O_2$	$a_5 = 8 \cdot 10^{-12} \exp\left(\frac{-2060}{T}\right)$	Burkholder et al. (2015)
6	$OH_v + O_2, O, N_2 \rightarrow OH_{v' < v} + O_2, O, N_2$	$B_{vv'}, D_{vv'}, C_{vv'}$	Adler-Golden (1997), Caridade et al. (2013), Makhlof et al. (1995)
7	$OH_v \rightarrow OH_{v' < v} + hv$	$E_{vv'}$	Xu et al. (2012)

654

655

656

657

658

659

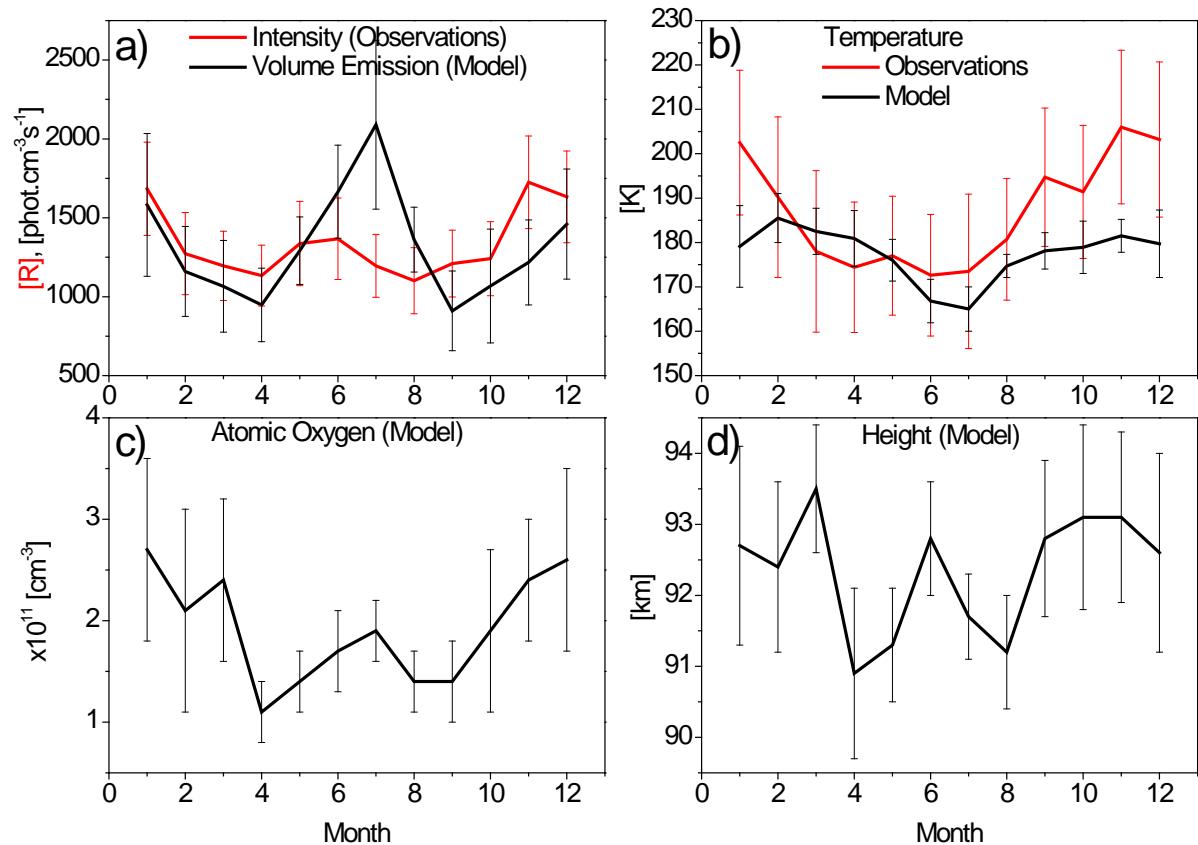
660

661

662

663

664


665

666

667

668 **Figures**

669 Figure 1. Observed at 43° N (red line) and modelled at 43.75° N (black line), annual
 670 variability of intensity and volume emission (a), temperature (b), atomic oxygen
 671 concentration (c), and height at the peak of the $\text{OH}^*_{v=6}$ layer.

672

673

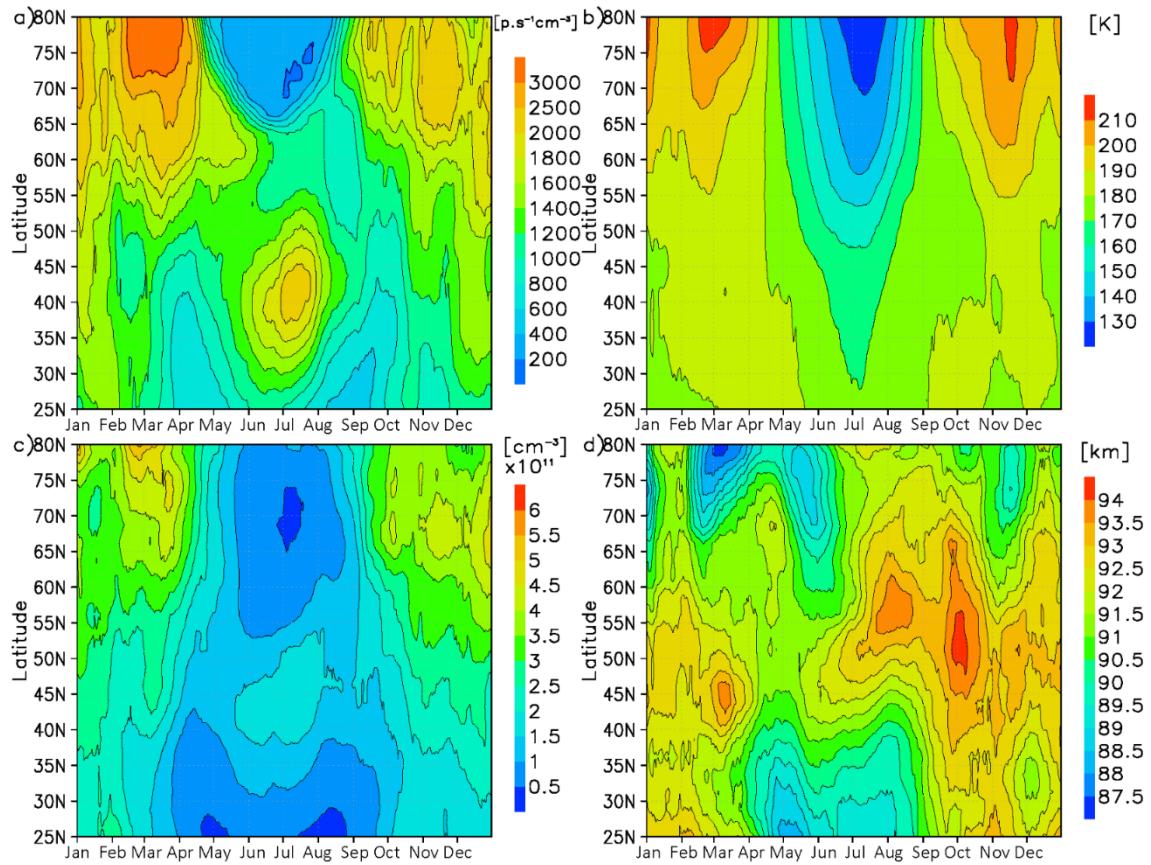
674

675

676

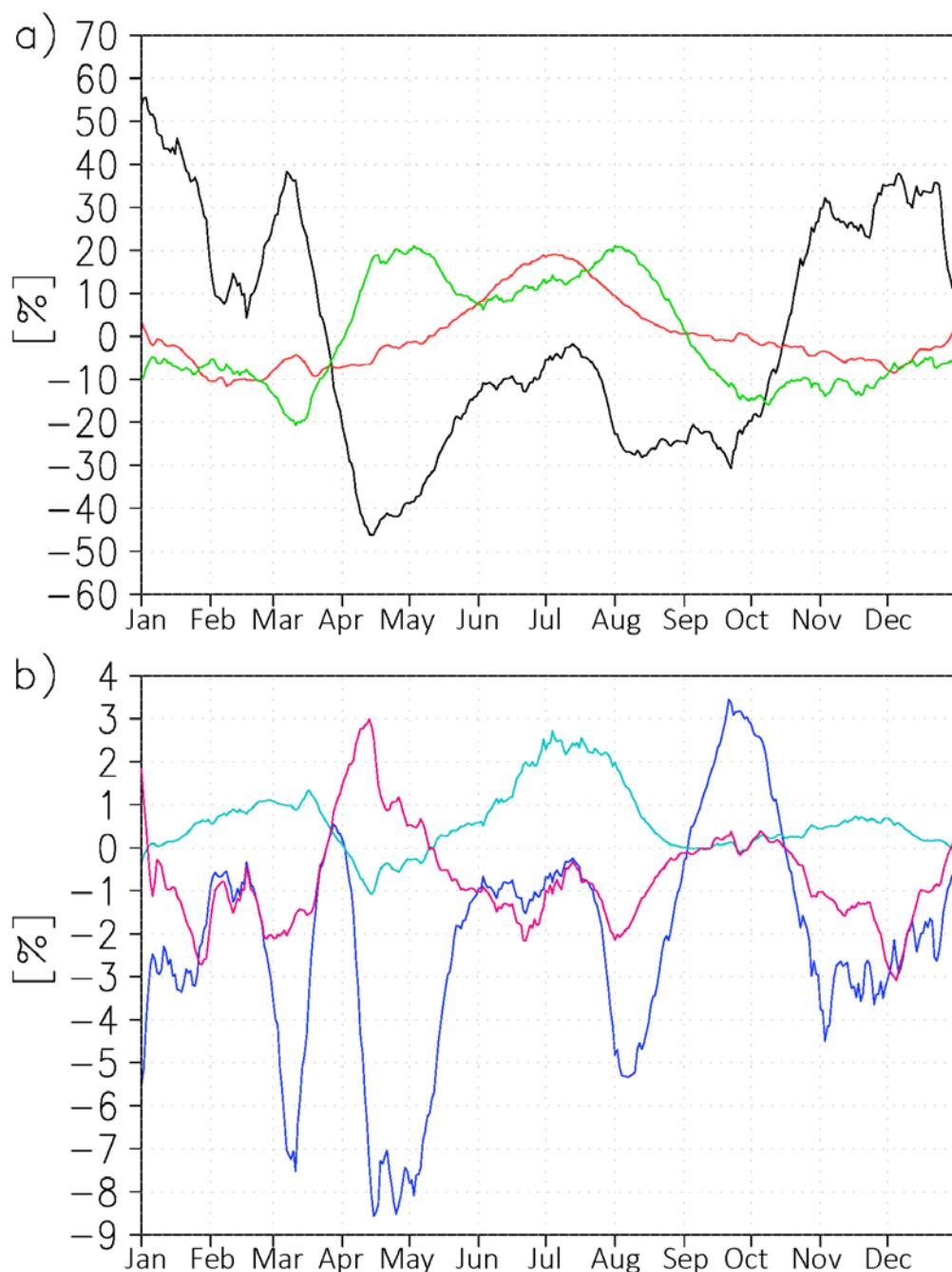
677

678


679

680

681


682

683 Figure 2. Nightly mean one-month sliding average volume emission (a), temperature (b),
684 atomic oxygen at peak of $\text{OH}^*_{v=6}$ (c), and height of peak of $\text{OH}^*_{v=6}$.

685
686
687
688
689
690
691
692
693
694

695 Figure 3. a) relative to annual averaged variations of volume emission (Eq. 2) due to atomic
 696 oxygen (black line), temperature (red line), and height (green line) at 43.75° N, b) relative
 697 variations of volume emissions due to second momentum $\frac{[O]M'}{[O]M}$ (blue line), $\frac{T'M'}{TM}$ (cyan line),
 698 and $\frac{[O]T'}{[O]T}$ (magenta line) at 43.75° N.

699