

1 Response to the comments on the paper by Referee 1

2

3 **Semi-Annual Variation of Excited Hydroxyl Emission at Mid-Latitudes**

4 By Mykhaylo Grygalashvily, Alexander I. Pogoreltsev, Alexey B., Andreyev, Sergei P.

5 Smyshlyayev, and Gerd R. Sonnemann

6

7

8 We appreciate the reviewer's constructive comments and positive judgment on our paper. We
9 have taken the reviewer's suggestions into account when preparing the revised version of our
10 manuscript.

11

12 In the following we address the comments of the reviewer point by point.

13

14 1. The data of observations represent nightly mean values averaged over years 2010-
15 2017. We add such notation at line 93 of the revised manuscript: "The analysis
16 presented in this paper uses data averaged over the years 2010-2017."
17 2. Following by your suggestion the labels (months) of Figures 2 and 3 were corrected.

18

19 Other changes are related to the recommendations and demands of other referee.

20 Thank you for taking the time to review our manuscript.

21

22 With respect,

23 Mykhaylo Grygalashvily, Alexander Pogoreltsev, Alexey Andreyev, Sergei Smyshlyayev, and

24 Gerd Reinhold Sonnemann

25

26

27

28

29

30

31

32 Response to the comments on the paper by Referee 2

33 **Semi-Annual Variation of Excited Hydroxyl Emission at Mid-Latitudes**

34 By Mykhaylo Grygalashvyly, Alexander I. Pogoreltsev, Alexey B., Andreyev, Sergei P.

35 Smyshlyayev, and Gerd R. Sonnemann

36

37 Dear Referee,

38

39 We appreciate positive judgment on our paper, constructive comments, and not formal
40 approach to the review. We have taken your suggestions into account when preparing the
41 revised version of our manuscript. In following we mention point by point how the
42 manuscript has been changed according to your suggestions.

43

44 1. We add it at line 93 of the revised manuscript: “The analysis presented in this paper uses
45 data averaged over the years 2010-2017.”

46

47 2. We add the explanation at lines 113-115 of the revised manuscript: “We calculate volume
48 emission for transition $\text{OH}^*_{v=6} \rightarrow \text{OH}^*_{v=2}$ as the product of the Einstein coefficient for given
49 transition by concentration of excited hydroxyl at corresponding vibrational number,
50 i.e. $V_{62} = E_{62}[\text{OH}_6^*]$.”

51

52 3. We add such description at lines 136-141 of the revised manuscript, as well necessary
53 references in the reference list:” This run is based on the dynamics and temperature of LIMA
54 (Leibniz Institute Middle Atmosphere) model for the so-called “realistic case”, in which
55 carbon dioxide, ozone, and Lyman- α flux are taken from observations, and the horizontal
56 winds and temperature of ECMWF (European Centre for Medium-Range Weather Forecasts)
57 are assimilated below ~ 35 km (Berger, 2008; Lübken et al., 2009, 2013).”

58

59 4. We add such a comment at lines 133-135:” (the choice of this year does not affect our
60 conclusions because calculations for other years show similar semi-annual variations)”.
61

62 5. We add such notation at lines 159-162: “Note, that the observed intensity is directly
63 proportional to the vertical integral of the volume emissions; hence, they reveal similar

64 variations and dependencies on surrounding conditions near the peak of the excited hydroxyl
65 layer.”

66
67 6. We add such statements ant lines 156-157: “because we display monthly mean values and
68 standard deviations commonly exceed the errors of measurements”.

69
70 7. Following by your suggestion we add Eq. (A6) into the Section 3 with explanations about
71 mean states and perturbations, as well we modified the description of the Fig. 3:” In order to
72 assess the input into annual variability from different sources, we calculate relative to annual
73 averaged variations of volume emissions due to atomic oxygen, temperature, and air density
74 (Eq. A6):

$$75 \quad RD'_O = 100\% \cdot \frac{V'_O}{\bar{V}} = 100\% \cdot \frac{[O]'}{\bar{[O]}},$$
$$RD'_T = 100\% \cdot \frac{V'_T}{\bar{V}} = 100\% \cdot -2.4 \frac{T'}{\bar{T}},$$
$$RD'_M = 100\% \cdot \frac{V'_M}{\bar{V}} = 100\% \cdot \frac{[M]'}{\bar{[M]}}, \quad (2)$$

76 where overbar denotes annually averaged values and prime denotes difference of actual
77 (modeled or observed) values from annually averaged (in our case this is difference between
78 nightly mean one month sliding averaged values (Fig. 2) and nightly mean annually averaged
79 values).”

80 We did not add the equation (A7) because second momentum have not essential impact on
81 volume emission variability and in future investigations their consideration could be omitted.

82
83 Technical comments:

84
85 Line 86. This technical but very large problem was comprehensively described in large
86 number of works of Lopez-Gonzalez, which we refer in our reference list.

87
88 Part 2.2. Following by your suggestion, we collected description of coefficients for Eq. (1) in
89 the Table (1) and add in the text at lines 116-118 of the revised mynuscript: “All reactions
90 used in Eq. (1) and in appendix, together with corresponding reaction rates, branching ratios,

91 quenching rates and spontaneous emission coefficients, besides those for multi-quantum
 92 processes, are collected in Table 1.”

93
 94 **Table 1.** List of reactions with corresponding reaction rates (for three-body reactions [cm⁶
 95 molecule⁻² s⁻¹] and for two-body reactions [cm³ molecule⁻¹ s⁻¹]), branching ratios, quenching
 96 coefficients, and spontaneous emission coefficients (s⁻¹) used in the paper.

	Reaction	Coefficient/branching ratios	Reference
1	$H + O_3 \xrightarrow{\zeta_v a_1} OH_{v=5,\dots,9} + O_2$	$a_1 = 1.4 \cdot 10^{-10} \exp\left(\frac{-470}{T}\right)$ $\zeta_{v=9,\dots,5} = 0.47, 0.34, 0.15, 0.03, 0.01$	Burkholder et al. (2015), Adler-Golden (1997)
2	$O + HO_2 \xrightarrow{\psi_v a_2} OH_{v=5,\dots,9} + O_2$	$a_2 = 3.0 \cdot 10^{-11} \exp\left(\frac{200}{T}\right)$ $\psi_{v=3,\dots,1} = 0.1, 0.13, 0.34$	Burkholder et al. (2015), Kaye (1988), Takahashi and Batista (1981)
3	$O + OH_{v=1,\dots,9} \rightarrow O_2 + H$	$a_3(v = 9, \dots, 5) = (5.07, 4.52, 3.87, 3.93, 3.22, 3.68, 3.05, 3.19, 3.42) \cdot 10^{-11}$	Varandas (2004), Caridade et al. (2013)
4	$O + O_2 + M \rightarrow O_3 + M$	$a_4 = 6 \cdot 10^{-34} (300/T)^{2.4}$	Burkholder et al. (2015)
5	$O + O_3 \rightarrow 2O_2$	$a_5 = 8 \cdot 10^{-12} \exp\left(\frac{-2060}{T}\right)$	Burkholder et al. (2015)
6	$OH_v + O_2, O, N_2 \rightarrow OH_{v'<v} + O_2, O, N_2$	$B_{vv'}, D_{vv'}, C_{vv'}$	Adler-Golden (1997), Caridade et al. (2013), Makhlof et al. (1995)
7	$OH_v \rightarrow OH_{v'<v} + hv$	$E_{vv'}$	Xu et al. (2012)

97
 98
 99 Line 600. Thank you for this note, it is true. We corrected the description of the Fig. 1.

100
 101 Figures 2 and 3. We changed the time scale of these figures according with your suggestion.

102
 103 Line 83. We change this nomenclature according with common nomenclature of our
 104 manuscript.

105
 106 All of your language and stile corrections at lines 167, 171, 179, 200, 232, and 249-250 were
 107 applied completely.

108
 109 Other changes are related to the recommendations and demands of other referee.

110 Thank you for taking the time to review our manuscript.

112 With respect,
113 Mykhaylo Grygalashvly, Alexander Pogoreltsev, Alexey Andreyev, Sergei Smyshlyayev, and
114 Gerd Reinhold Sonnemann
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139 **Semi-Annual Variation of Excited Hydroxyl Emission at Mid-Latitudes**

140 Mykhaylo Grygalashvily¹, Alexander I. Pogoreltsev², Alexey B., Andreyev³, Sergei P.
141 Smyshlyaev², and Gerd R. Sonnemann¹

142 ¹Leibniz-Institute of Atmospheric Physics at the University Rostock in Kühlungsborn,
143 Schloss-Str.6, D-18225 Ostseebad Kühlungsborn, Germany

144 ²Department of Meteorological Forecasting, Russian State Hydrometeorological University
145 (RSHU), Saint-Petersburg, Russia

146 ³Institute of the Ionosphere, Almaty, Kazakhstan

147

148 **Abstract**

149 Ground-based observations show a phase shift in semi-annual variation of excited hydroxyl
150 (OH*) emissions at mid-latitudes (43° N) compared to those at low latitudes. This differs
151 from the annual cycle at high latitudes. We examine this behaviour utilising an OH* airglow
152 model which was incorporated into the 3D chemistry-transport model (CTM). Through this
153 modelling, we study the morphology of the excited hydroxyl emission layer at mid-latitudes
154 (30° N -50° N), and we assess the impact of the main drivers of its semi-annual variation:
155 temperature, atomic oxygen, and air density. We found that this shift in the semi-annual cycle
156 is determined mainly by the superposition of annual variations of temperature and atomic
157 oxygen concentration. Hence, the winter peak for emission is determined exclusively by
158 atomic oxygen concentration, whereas the summer peak is the superposition of all impacts,
159 with temperature taking a leading role.

160

161 **1. Introduction**

162

163 Since the second half of the 20th century, emissions of excited hydroxyl have been

164 used for three main purposes: 1) to infer information about temperature and its long-term

165 change; 2) to obtain distributions of minor chemical constituents (O_3 , H, and O) at the
166 altitudes of the mesopause; and 3) to investigate dynamic processes such as tides, gravity, and
167 planetary waves (GWs and PWs, respectively), sudden stratospheric warmings (SSWs), and
168 quasi-biennial oscillation (QBO).

169 Hence, a number of authors have studied temperatures in the mesopause region using airglow
170 emission ground-based observations focusing on long-term trends (e.g., Bittner et al., 2002;
171 Holmen et al., 2014; Dalin et al., 2020, and references therein) with attention to seasonal
172 variations (e.g., Reid et al., 2017, and references therein) and the solar-cycle effect (e.g.,
173 Kalicinsky et al., 2016, and references therein).

174 Minor chemical constituents as well as chemical heat have also been retrieved by OH*
175 emission observations. Ever since atomic oxygen concentration was determined by the rocket-
176 born detection of OH* airglow (Good, 1976), this method has come into wide use for
177 obtaining information about distributions of minor chemical constituents in the mesopause
178 region, namely, atomic oxygen concentration (e.g., Russell et al., 2005; Mlynczak et al.,
179 2013a, and references therein), ozone concentration (e.g., Smith et al., 2009, and references
180 therein), atomic hydrogen concentration (e.g., Mlynczak et al., 2014, and references therein),
181 and exothermic chemical heat (e.g., Mlynczak et al., 2013b, and references therein). In future,
182 excited hydroxyl airglow could be used for measurements of hydroperoxy radicals and water
183 vapor concentrations (Kulikov et al., 2009, 2018; Belikovich et al., 2018).

184 Numerous works using airglow observations, have been devoted to dynamic processes, for
185 example, to study mesopause variabilities in time of SSWs (Damiani et al., 2010; Shepherd et
186 al., 2010). Gao et al. (2011) studied the temporal evolution of nightglow brightness and height
187 during SSW events. A year earlier, they found a QBO signal in the excited hydroxyl emission
188 (Gao et al., 2010). The climatology of PWs was investigated in works by Takahashi et al.
189 (1999), Buriti et al. (2005), and Reisin et al. (2014). Tides were studied by Xu et al. (2010)
190 and Lopez-Gonzalez et al. (2005). GW parameters based on the airglow technique were

191 investigated, for example, by Taylor et al. (1991) and Wachter et al. (2015). A more complete
192 description of works in which hydroxyl emissions were used to study dynamic processes can
193 be found in a review by Shepherd et al. (2012).

194 The morphology of the OH* layer is an essential component in the interpretation of
195 observations and in understanding the processes involved in layer variability. Annual
196 variations in the OH* layer have been identified at all latitudes (Marsh et al., 2006).
197 Equatorial and low-latitude semi-annual variations have been observed by satellites (e.g.,
198 Abreu and Yee, 1989; Liu et al., 2008, and references therein), as well as by ground-based
199 instruments (Takahashi et al., 1995), and they have been modelled by several research teams
200 (Le Texier et al., 1987; Marsh et al., 2006, and references therein). The maxima of emissions
201 were found to occur near equinoxes. In spite of the large number of studies on this subject,
202 there are still knowledge gaps. Recently, unexpected behaviour in the semi-annual cycle of
203 excited hydroxyl emission has been found by ground-based observations, with a shift of the
204 peaks from equinoxes to summer and winter at middle latitudes (Popov et al., 2018; Popov et
205 al., 2020); this was also found by modelling (Grygalashvily et al., 2014, Fig. 3). Similar
206 variations in OH* emissions with peaks near equinoxes have been observed at middle
207 latitudes (34.6° N) in the southern hemisphere (Reid et al., 2014). These results were provided
208 without explanations; in our short paper, we offer a preliminary explanation.

209 The second chapter of our manuscript describes the observational technique and model that
210 were applied; in the third chapter, we present results and an analysis of observations and
211 modelling; conclusions are provided in the fourth chapter.

212

213 **2. Observational technique and model**

214

215 **2.1. Observational technique**

216

217 The spectral airglow temperature imager (SATI), which measures nightglow intensity for
 218 vibrational transitions of $\text{OH}^*_{v=6} \rightarrow \text{OH}^*_{v=2}$ and temperature using vibrational-rotational
 219 transitions, was assembled at the Institute of Ionosphere (43° N, 77° E) in Almaty,
 220 Kazakhstan. It represents a Fabry-Perot spectrometer with a CCD (charge-coupled device)
 221 camera as a detector and a narrow-band interference filter as the etalon. Following Lopez-
 222 Gonzalez et al. (2007), we use an interference filter with the centre at 836.813 nm and a
 223 bandwidth of 0.182 nm. This corresponds to the spectral region of the ~~$\text{OH}^*(6-2)$~~
 224 $\text{OH}^*_{v=6} \rightarrow \text{OH}^*_{v=2}$ band. In order to infer the temperature, the calculated spectra for different
 225 vibro-rotational transitions are compared with those from observations. The SATI operates at
 226 a sixty-second exposure that provides corresponding time resolution. The method of
 227 temperature retrieval is well-described by Lopez-Gonzalez et al. (2004). The observations of
 228 temperature were validated using satellite SABER measurements (Lopez-Gonzalez et al.,
 229 2007; Pertsev et al., 2013). Additional details about this instrument are presented in many
 230 papers (Wies et al., 1997; Aushev et al., 2000; Lopez-Gonzalez et al., 2004, 2005, 2007,
 231 2009). **The analysis presented in this paper uses data averaged over the years 2010-2017.**
 232

233 2.2. Model and numerical experiment

234
 235 The model of excited hydroxyl (MEH) calculates the OH^* number densities at each
 236 vibrational level v as the production divided by losses (excited hydroxyl is assumed in the
 237 photochemical equilibrium), which include the chemical sources as well as collisional and
 238 emissive removal:

$$239 [OH_v] = \frac{\left(\zeta_v a_1 [O_3] [H] + \psi_v a_2 [O] [HO_2] + \sum_{v'=v+1}^9 B_{v'v} [O_2] [OH_{v'}] + c_{v+1} [N_2] [OH_{v+1}] + \sum_{v'=v+1}^9 D_{v'v} [O] [OH_{v'}] + \sum_{v'=v+1}^9 E_{v'v} [OH_{v'}] \right)}{\left(a_3(v) [O] + \sum_{v''=0}^{v-1} D_{vv''} [O] + c_v [N_2] + \sum_{v''=0}^{v-1} B_{vv''} [O_2] + \sum_{v''=0}^{v-1} E_{vv''} \right)}, \quad (v < v'), \quad (v'' < v). \quad (1)$$

240 The first term in the numerator of (1) is the reaction $O_3 + H \rightarrow OH_v + O$, where a_1 is the
241 reaction rate, and ζ_v represents the branching ratios (Adler-Golden, 1997). The second term is
242 the $O + HO_2 \rightarrow OH_v + O_2$ reaction, where a_2 and ψ_v are the reaction rate and nascent
243 distribution, respectively (Kaye (1988) after Takahashi and Batista (1981)). The other three
244 summands represent the populations resulting from collisional relaxation from higher v -
245 levels, where B , C , and D are the collisional deactivation coefficients for O_2 (Adler-Golden,
246 1997), N_2 (Makhlof et al., 1995), and O (Caridade et al., 2013), respectively. The last
247 summand is the multi-quantum population by spontaneous emissions, where $E_{v',v}$ is the
248 spontaneous emission coefficient (Xu et al., 2012). The losses occur, additionally, through the
249 chemical removal of the excited hydroxyl by atomic oxygen, where $a_3(v)$ is the vibrationally
250 dependent reaction rate (Varandas, 2004). The calculations in Eq. (1) are incorporated into the
251 chemistry-transport model (CTM). We calculates volume emission for transition
252 $OH^*_{v=6} \rightarrow OH^*_{v=2}$ as the product of the Einstein coefficient for given transition by
253 concentration of excited hydroxyl at corresponding vibrational number, i.e. $V_{62} = E_{62}[OH^*_6]$.
254 All reactions used in Eq. (1) and in appendix, together with corresponding reaction rates,
255 branching ratios, quenching rates and spontaneous emission coefficients, besides those for
256 multi-quantum processes, are collected in Table 1.

257 Here, we enumerate only the main features of the CTM as one can find extended descriptions
258 in manyworks (Sonnemann and Grygalashvly, 2020; Grygalashvly et al., 2014; and
259 references therein). The CTM consists of four blocks: chemical, transport, radiative, and
260 diffusive. The chemical block accounts for 19 constituents, and 63 photo-dissociations and
261 chemical reactions (Burkholder et al., 2015). The chemical code utilises a family approach
262 with the odd-oxygen ($O(^1D)$, O , O_3), odd-hydrogen (H , OH , HO_2 , H_2O_2), and odd-nitrogen
263 ($N(^2D)$, $N(^4S)$, NO , NO_2) families (Shimazaki, 1985). In the radiative part, the dissociation
264 rates are taken from a pre-calculated table depending on zenith angle and altitude (Kremp et
265 al., 1999). The transport block calculates advections in three directions following Walcek

266 (2000). The diffusive part accounts for only vertical molecular plus turbulent diffusion
267 (Morton and Mayers, 1994). This model has been validated against observations of ozone,
268 which plays a role in the formation of OH* (e.g., Hartogh et al., 2011; Sonnemann et al.,
269 2007; and references therein) and water vapour, which is the principal source of odd-
270 hydrogens and, particularly, of atomic hydrogen (e.g., Hartogh et al., 2010; Sonnemann et al.,
271 2008; and references therein). Our current analysis used the run for year 2009 (the choice of
272 this year does not affect our conclusions because calculations for other years show similar
273 semi-annual variations), which was published and described in a number of works
274 (Grygalashvily et al., 2014, section 4; Sonnemann et al., 2015). This run is based on the
275 dynamics and temperature of LIMA (Leibniz Institute Middle Atmosphere) model for the so-
276 called “realistic case”, in which carbon dioxide, ozone, and Lyman- α flux are taken from
277 observations, and the horizontal winds and temperature of ECMWF (European Centre for
278 Medium-Range Weather Forecasts) are assimilated below \sim 35 km (Berger, 2008; Lübken et
279 al., 2009, 2013).

280 Here we assume that the structures in the longitudinal direction are equivalent to local time
281 (LT) behaviour, with 24 LT related to midnight at 0° longitude. The LTs of successive
282 longitudes are used to analyse our calculations. Hence, in the following figures related to the
283 model results, longitude is used as the so-called ‘pseudo time’. The night-time averaged
284 values account for the period from 21:45 LT to 2:15 LT. For the purposes of our discussion,
285 we use ‘pressure-altitude’ (or other words ‘pseudo-altitude’) $Z^* = -H \ln(P/P_0)$, where P
286 represents pressure: $P_0 = 1013 \text{ mbar}$ is the surface pressure, and $H = 7 \text{ km}$ is the scale
287 height.

288

289 **3. Results and discussion**

290

291 Figure 1a illustrates the nightly mean monthly averaged values of the observed annual
292 variability of intensity at 43° N (red line) and the modelled annual variability of volume
293 emission at the peak of the OH* layer at 43.75° N (black line), both for transition
294 $\text{OH}^*_{v=6} \rightarrow \text{OH}^*_{v=2}$. The error bar shows monthly standard deviation, because we display
295 monthly mean values and standard deviations commonly exceed the errors of measurements.
296 By the observations as well as by modelling, we can clearly see semi-annual variations of
297 emissions with peaks in winter and summer. Note, that the observed intensity is directly
298 proportional to the vertical integral of the volume emissions; hence, they reveal similar
299 variations and dependencies on surrounding conditions near the peak of the excited hydroxyl
300 layer.

301 Grygalashvyly et al. (2014), Sonnemann et al. (2015), and Grygalashvyly (2015) have derived
302 and confirmed through modelling that the concentration of excited hydroxyl (hence, volume
303 emission and intensity) at peak is directly proportional to the product of the surrounding
304 pressure (hence, it depends on altitude), atomic oxygen number density, and the negative
305 power of temperature (Eq. A2 in the Appendix). Thus, in order to infer the reasons for this
306 semi-annual variation, one should consider three drivers of OH* variability: temperature,
307 atomic oxygen concentration, and height of the layer.

308 Figure 1b shows the monthly mean nightly averaged values of the observed annual variability
309 of temperature at 43° N (red line) and the modelled annual variability of temperature at the
310 $\text{OH}^*_{v=6}$ peak at 43.75° N (black line). Both the observations and the modelling show minima
311 in summer and maxima in winter. Hence, the temperature decline can be one of the reasons
312 for the summer intensity (and volume emission) peak.

313 Figures 1c and 1d depict modelled monthly mean nightly averaged values of atomic oxygen at
314 $\text{OH}^*_{v=6}$ peak and the height of the excited hydroxyl peak, respectively, at 43.75° N. The
315 modelling shows the peaks of atomic oxygen concentration in July and December–January,
316 with the largest values in winter. The variation of height through the year occurs from ~90 km

317 to 94 km. This is an essential variability and provides input to the variability of the
318 concentration of the surrounding air.

319 In order to study the morphology of this semi-annual variation and assess the impacts of
320 temperature, atomic oxygen concentration, and height (concentration of air) variability, we
321 calculate one-month sliding averaged values based on the model results. Figure 2 illustrates
322 the modelled annual variability at the $OH_{v=6}^*$ peak: a) volume emission ($OH_{v=6}^* \rightarrow OH_{v=2}^*$), b)
323 temperature, c) atomic oxygen concentration, and d) height **of the peak**.

324 The summer maximum of volume emission (Fig. 2a) shows the strongest values in July and is
325 extended from $\sim 30^\circ$ N to $\sim 50^\circ$ N. The summer maximum is stronger than that in winter. The
326 winter maximum has its strongest values in January and a positive gradient into the winter
327 pole direction; at latitudes 30° – 50° N, it represents the **rest part** of the annual variation at high
328 latitudes that occurs because of the annual variation in general mean circulation and fluxes of
329 atomic oxygen which correspond to this variability (Liu et al., 2008; Marsh et al., 2006).

330 Similar behaviour of the emissions for transition $OH_{v=8}^* \rightarrow OH_{v=3}^*$ was captured by WINDII
331 (Wind Imaging Interferometer) and modelled by Thermosphere-Ionosphere-Mesosphere
332 Electrodynamics General Circulation Model at 84–88 km (Liu et al., 2008, Fig. 5 and 6).

333 The temperature (Fig. 2b) shows a clear annual variation from the middle to the high
334 latitudes, with a minimum ~ 150 K at middle latitudes in July. The summer minimum at the
335 middle latitudes is **an the echo of those the one** at high latitudes. The atomic oxygen
336 concentrations (Fig. 2c) reveal the annual cycle. The concentrations have a maximum in
337 winter and a minimum in summer at high and middle latitudes, as has already been observed
338 (Smith et al., 2010). However, in the region from $\sim 30^\circ$ to $\sim 50^\circ$ N in summer, atomic oxygen
339 concentrations show one additional peak in June–July. Formation of this summer peak can be
340 explained by the transformed Eulerian mean (TEM) circulation (Limpasuvan et al., 2012, Fig.
341 7; Limpasuvan et al., 2016, Fig. 5), which brings into the summer hemisphere the air reached
342 by atomic oxygen from the region of its production at high latitudes above 100 km to ~ 90 km

343 at $\sim 30^\circ\text{--}50^\circ$ N. The peak altitude of the $OH_{\nu=6}^*$ (Fig. 2d) shows complex annual variability.

344 There is a secondary maximum OH* peak at $\sim 30^\circ\text{--}50^\circ$ N in summer.

345 In order to assess the input into annual variability from different sources, we calculate relative

346 to annual averaged variations of volume emissions due to atomic oxygen, temperature, and air

347 density (Eq. A6):

$$348 \quad RD'_O = 100\% \cdot \frac{V'_O}{\bar{V}} = 100\% \cdot \frac{[O]'}{[\bar{O}]},$$
$$RD'_T = 100\% \cdot \frac{V'_T}{\bar{V}} = 100\% \cdot -2.4 \frac{T'}{\bar{T}},$$
$$RD'_M = 100\% \cdot \frac{V'_M}{\bar{V}} = 100\% \cdot \frac{[M]'}{[\bar{M}]}, \quad (2)$$

349 where overbar denotes annually averaged values and prime denotes difference of actual
350 (modeled or observed) values from annually averaged (in our case this is difference between
351 nightly mean one month sliding averaged values (Fig. 2) and nightly mean annually averaged
352 values). The derivation of these parameters is presented in the appendix. A similar approach
353 can be useful for analysing emission variations due to GWs, PWs, and tides.

354 Figure 3a shows relative variations of emissions due to impacts of atomic oxygen (black line),
355 temperature (red line), and air density (green line) at 43.75° N. The strongest emission
356 variation occurs because of changes in atomic oxygen concentration: the amplitude of its
357 relative deviation amounts to $\sim 50\%$. The amplitudes of relative deviations of emissions due to
358 temperature and air density amount to $\sim 15\%$ and $\sim 20\%$, respectively. The atomic oxygen
359 variation gives the most essential input into the winter maximum of emission (black line).
360 Because of the downward transport of atomic oxygen in winter, the volume emission rises by
361 $\sim 50\%$ of annual average averaged annually. The summer maximum is determined by the
362 superposition of all three factors. After the spring reduction of emissions due to the decline of
363 atomic oxygen concentration ($\sim 40\%$ of annual averaged values), the emissions rise again to
364 approximately the annual average values in June–July. This is synchronised with the growth
365 of volume emissions by $\sim 20\%$ over the annual average values due to summer temperature

366 declines (red line) and with the growth of volume emissions by ~15% over the annual average
367 due to the decline of peak altitude in April–September and the corresponding rise of air
368 density (green line).

369 Figure 3b illustrates relative variations of emissions due to second momenta (Eq. A7 in the
370 Appendix). The second momenta do not provide essential input to annual variation. The
371 strongest among them, $\frac{[O]'}{[O]\bar{M}} M'$ (blue line), gives emission variability with an amplitude ~6% of
372 annual averaged values.

373 In the context of our short paper, the ultimate question regarding the role of tides and GWs on
374 semi-annual variations of OH* emissions at middle latitudes has not been answered.
375 Undoubtedly, the simultaneous analysis of observations of excited hydroxyl emissions from
376 several stations is desirable to explore this question.

377

378 **4. Summary and conclusions**

379

380 Based on observations and numerical simulation, we confirmed the existence of a
381 semi-annual cycle of excited hydroxyl emission at middle latitudes with maxima in summer
382 (June–July) and winter (December–January). The annual variation in general mean circulation
383 and atomic oxygen concentration corresponding to the excited hydroxyl emission cycle was
384 found to be the leading cause of the winter maximum of this cycle, whereas the summer
385 maximum represents the superposition of three different processes: atomic oxygen meridional
386 transport due to residual circulation from the summer pole to the equator; temperature decline,
387 which represents the rest of the mesopause cooling at summer high latitudes; and air
388 concentration growth at the peak of the excited hydroxyl emission layer due to hydroxyl layer
389 descent at middle latitudes in April–September.

390

391 **Appendix.**

392

393 To obtain the derivation of Eq. (2), we start with a simplified equation for excited hydroxyl
394 concentration. Taking into account that the ozone is in photochemical equilibrium in the
395 vicinity of the $[OH_v]$ layer and above during night-time (Kulikov et al., 2018; Belikovich et
396 al., 2018; Kulikov et al., 2019); utilising the equation for ozone balance during night-time
397 ($a_5[O_3][O] + a_1[H][O_3] = a_4[O][O_2][M]$), where a_4 and a_5 are the coefficients for the
398 corresponding reactions; omitting the reaction of atomic oxygen with ozone as relatively slow
399 (Smith et al., 2008); substituting the reduced ozone balance equation for the excited hydroxyl
400 balance equation (first term in the numerator of Eq. (1)); assuming that the most effective
401 production of excited hydroxyl occurs due to the reaction of ozone with atomic hydrogen and
402 that the most effective losses are due to quenching with molecular oxygen; we obtain from
403 Eq. (1) a simplified expression in which excited hydroxyl concentration is represented in
404 terms of atomic oxygen concentration, temperature (in a_4), and concentration of the
405 surrounding air:

406 $[OH_v] \approx \mu_v a_4 [O][M].$ (A1)

407 Here $\mu_v = \frac{\varsigma_v + \sum_{v'=v+1}^{v'=9} \mu_{v'} B_{v'v}}{\sum_{v''=0}^{v''=v-1} B_{vv''}}$, ($\varsigma_{v>9} = 0$) are the coefficients representing the arithmetic
408 combination of branching ratios ς_v and quenching coefficients $B_{v'v}$. More comprehensive
409 derivations of (A1) can be found in a number of papers (Grygalashvily et al., 2014;
410 Grygalashvily, 2015; Grygalashvily and Sonnemann, 2020). Although ~~this is too simplified~~
411 ~~to be used for precise~~ the accuracy of (A1) estimate is insufficient for model calculations, it is
412 useful for obtaining information about impacts and for assessing variabilities.
413 By multiplying (A1) by the Einstein-coefficient $E_{vv''}$ for given a transition, writing the
414 reaction rate explicitly $a_4 = 6 \cdot 10^{-34} (300/T)^{2.4}$ (Burkholder et al., 2015), and collecting all

415 constants in $\chi_{vv''}$, we obtain an expression for volume emission in terms of atomic oxygen
 416 concentration, temperature, and air number density:

417
$$V \approx \chi_{vv''} T^{-2.4} [O][M], \quad (A2)$$

418 where $\chi_{vv''} = \mu_v E_{vv''} \cdot 6 \cdot 10^{-34} \cdot 300^{2.4}$.

419 Next, we apply Reynolds decomposition by averaged and variable part to the temperature,
 420 atomic oxygen concentration, and concentration of air in (A2):

421
$$V \approx \chi_{vv''} (\bar{T} + T')^{-2.4} (\overline{[O]} + [O]') (\overline{[M]} + [M']), \quad (A3)$$

422 where \bar{T} , $\overline{[O]}$, $\overline{[M]}$ are average parts, and T' , $[O]'$, $[M]'$ are the corresponding varying parts.

423 After decomposing the term with temperature in the Taylor expansion and cross-multiplying
 424 all terms of (A3), we obtain:

425
$$V \approx \chi_{vv''} \bar{T}^{-2.4} \overline{[O]} \cdot \overline{[M]} + \chi_{vv''} \bar{T}^{-2.4} \overline{[O]} [M]' + \chi_{vv''} \bar{T}^{-2.4} [O]' \overline{[M]} - 2.4 \chi_{vv''} T' \bar{T}^{-3.4} \overline{[O]} \cdot$$

 426
$$\overline{[M]} + \chi_{vv''} \bar{T}^{-2.4} [O]' [M]' - 2.4 \chi_{vv''} T' \bar{T}^{-3.4} \overline{[O]} [M]' - 2.4 \chi_{vv''} T' \bar{T}^{-3.4} [O]' \overline{[M]} -$$

 427
$$2.4 \chi_{vv''} T' \bar{T}^{-3.4} [O]' [M]'. \quad (A4)$$

428 The volume emission for a given transition can be represented as follows:

429
$$V \approx \bar{V} + V'_M + V'_O + V'_T + V''_{OM} + V''_{TM} + V''_{TO} + \text{higher momenta}, \quad (A5)$$

430 where, $\bar{V} = \chi_{vv''} \bar{T}^{-2.4} \overline{[O]} \cdot \overline{[M]}$, $V'_M = \chi_{vv''} \bar{T}^{-2.4} \overline{[O]} [M]'$, $V'_O = \chi_{vv''} \bar{T}^{-2.4} [O]' \overline{[M]}$, $V'_T =$
 431
$$-2.4 \chi_{vv''} T' \bar{T}^{-3.4} \overline{[O]} \cdot \overline{[M]}$$
, $V''_{OM} = \chi_{vv''} \bar{T}^{-2.4} [O]' [M]'$, $V''_{TM} =$
 432
$$-2.4 \chi_{vv''} T' \bar{T}^{-3.4} \overline{[O]} [M]', V''_{TO} = -2.4 \chi_{vv''} T' \bar{T}^{-3.4} [O]' \overline{[M]}$$
.

433 Hence, relative deviations (RD) of emissions due to variations in atomic oxygen, temperature,
 434 and concentration of air are:

$$RD'_O = 100\% \cdot \frac{V'_O}{\bar{V}} = 100\% \cdot \frac{[O]'}{\overline{[O]}},$$

435
$$RD'_T = 100\% \cdot \frac{V'_T}{\bar{V}} = 100\% \cdot -2.4 \frac{T'}{\bar{T}}, \quad (A6)$$

$$RD'_M = 100\% \cdot \frac{V'_M}{\bar{V}} = 100\% \cdot \frac{[M]'}{\overline{[M]}}.$$

436 The relative deviations (RD) of emissions due to second momenta are

$$\begin{aligned}
 437 \quad RD''_{OM} &= 100\% \cdot \frac{V''_{OM}}{\bar{V}} = 100\% \cdot \frac{[O]'[M]'}{[O][M]}, \\
 RD''_{TM} &= 100\% \cdot \frac{V''_{TM}}{\bar{V}} = 100\% \cdot -2.4 \frac{T'[M]'}{\bar{T}[M]}, \\
 RD''_{TO} &= 100\% \cdot \frac{V''_{TO}}{\bar{V}} = 100\% \cdot -2.4 \frac{T'[O]'}{\bar{T}[O]}.
 \end{aligned} \tag{A7}$$

438

439 **Data availability.** The data utilized in this manuscript can be downloaded from
 440 <http://ra.rshu.ru/files/Grygalashvly et al ANGEO 2020>.

441 **Author contributions.** All authors contributed equally to this paper.

442 **Competing interests.** The authors declare that they have no conflict of interest.

443 **Acknowledgements.** This work was supported by the Russian Science Foundation (grant
 444 #20-77-10006). Some data processing have been done under the state task of the Ministry of
 445 science and higher education of the Russian Federation (project FSZU-2020-0009)".

446 The authors are thankful to topical editor Petr Pisoft for help in evaluating this paper and to
 447 two anonymous referees for their constructive comments and improvements to the paper.

448

449 **References**

450

451 Abreu, V. J., and Yee, J. H.: Diurnal and seasonal variation of the nighttime OH (8-3)
 452 emission at low latitudes, *J. Geophys. Res.*, 94(A9), 11949-11957, doi:10.1029/89JA00619,
 453 1989.

454

455 Adler-Golden, S.: Kinetic parameters for OH nightglow modeling consistent with recent
 456 laboratory measurements, *J. Geophys. Res.*, 102(A9), 19969–19976, doi:10.1029/97JA01622,
 457 1997.

458

459 Aushev, V. M., Pogoreltsev, A. I., Vodyannikov, V. V., Wiens, R. H., and Shepherd, G. G.:
460 Results of the airglow and temperature observations by MORTI at the Almaty site (43.05 N,
461 76.97 E), *Phys. Chem. Earth*, 25(5–6), 409–415, doi:10.1016/S1464-1909(00)00035-6, 2000.
462

463 Belikovich, M. V., Kulikov, M. Yu., Grygalashvyly, M., Sonnemann, G. R., Ermakova, T. S.,
464 Nechaev, A. A., and Feigin, A. M.: Ozone chemical equilibrium in the extended mesopause
465 under the nighttime conditions. *Adv. Space Res.*, 61, 426-432, doi:10.1016/j.asr.2017.10.010,
466 2018.

467

468 Belikovich, M. V., Kulikov, M. Yu., Nechaev, A. A., Feigin, A. M.: Evaluation of the
469 Atmospheric Minor Species Measurements: a Priori Statistical Constraints Based on
470 Photochemical Modeling, *Radiophys. Quantum Electron.*, 61, 574-588, doi:10.1007/s11141-
471 019-09918-5, 2018.

472

473 Berger, U.: Modeling of the middle atmosphere dynamics with LIMA, *J. Atmos. Terr. Phys.*,
474 70, 1170–1200, doi:10.1016/j.jastp.2008.02.004, 2008.

475

476 Bittner, M., Offermann, D., Graef, H.-H., Donner, M., and Hamilton, K.: An 18 year time
477 series of OH rotational temperatures and middle atmosphere decadal variations, *J. Atmos. Sol.*
478 *Terr. Phys.*, 64, 1147-1166, doi:10.1016/S1364-6826(02)00065-2, 2002.

479

480 Buriti, R. A., Takahashi, H., Lima, L. M., and Medeiros, A. F.: Equatorial planetary waves in
481 the mesosphere observed by airglow periodic oscillations, *Adv. Space Res.*, 35, 2031–2036,
482 doi:10.1016/j.asr.2005.07.012, 2005.

483

484 Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M.
485 J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical
486 Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet
487 Propulsion Laboratory, Pasadena, <http://jpldataeval.jpl.nasa.gov>, 2015.

488

489 Caridade, P. J. S. B., Horta, J.-Z. J., and Varandas, A. J. C.: Implications of the O + OH
490 reaction in hydroxyl nightglow modeling, *Atmos. Chem. Phys.*, 13, 1-13, doi:10.5194/acp-13-
491 1-2013, 2013.

492

493 Dalin, P., Perminov, V., Pertsev, N., and Romejko, V.: Updated long-term trends in
494 mesopause temperature, airglow emissions, and noctilucent clouds, *J. Geophys. Res. Atmos.*,
495 125, e2019JD030814, doi:10.1029/2019JD030814, 2020.

496

497 Damiani, A., Storini, M., Santee, M. L., and Wang, S.: Variability of the nighttime OH layer
498 and mesospheric ozone at high latitudes during northern winter: influence of meteorology,
499 *Atmos. Chem. Phys.*, 10, 10291-10303, doi:10.5194/acp-10-10291-2010, 2010.

500

501 Gao, H., Xu, J., and Wu, Q.: Seasonal and QBO variations in the OH nightglow emission
502 observed by TIMED/SABER, *J. Geophys. Res.*, 115, A06313, doi:10.1029/2009JA014641,
503 2010.

504

505 Gao, H., Xu, J., Ward, W., and Smith, A. K.: Temporal evolution of nightglow emission
506 responses to SSW events observed by TIMED/SABER, *J. Geophys. Res.*, 116, D19110,
507 doi:10.1029/2011JD015936, 2011.

508

509 Garcia, R. R., and Solomon, S.: The effect of breaking gravity waves on the dynamics and
510 chemical composition of the mesosphere and lower thermosphere, *J. Geophys. Res.*, 90(D2),
511 3850–3868, doi:10.1029/JD090iD02p03850, 1985.

512

513 Good, R. E.: Determination of atomic oxygen density from rocket borne measurements of
514 hydroxyl airglow, *Planet. Space Sci.*, 24, 389–395, doi:10.1016/0032-0633(76)90052-0, 1976.

515

516 Grygalashvily, M., Sonnemann, G. R., Lübken, F.-J., Hartogh, P., and Berger, U.: Hydroxyl
517 layer: Mean state and trends at midlatitudes, *J. Geophys. Res.*, 119, 12391–12419,
518 doi:10.1002/2014JD022094, 2014.

519

520 Grygalashvily, M.: Several notes on the OH*-layer, *Ann. Geophys.*, 33, 923-930,
521 doi:10.5194/angeo-33-923-2015, 2015.

522

523 Grygalashvily, M., and Sonnemann, G. R.: Note on Consistency between Kalogerakis-
524 Sharma Mechanism (KSM) and Two-Step Mechanism of Atmospheric Band Emission, *Earth*
525 *Planets Space*, 72(187), doi:10.1186/s40623-020-01321-z, 2020.

526

527 Hartogh, P., Sonnemann, G. R., Grygalashvily, M., Li, S., Berger, U., and Lübken, F.-J.:
528 Water vapor measurements at ALOMAR over a solar cycle compared with model calculations
529 by LIMA, *J. Geophys. Res.*, 114, doi:10.1029/2009JD012364, 2010.

530

531 Hartogh, P., Jarchow, C., Sonnemann, G. R., and Grygalashvily, M.: Ozone distribution in
532 the middle latitude mesosphere as derived from microwave measurements at Lindau (51.66°
533 N, 10.13° E), *J. Geophys. Res.*, 116, D04305, doi:10.1029/2010JD014393, 2011.

534

535 Holmen, S. E., Dyrland, M. E., and Sigernes, F.: Long-term trends and the effect of solar
536 cycle variations on mesospheric winter temperatures over Longyearbyen, Svalbard (78°N), J.
537 Geophys. Res. Atmos., 119, 6596–6608, doi:10.1002/2013JD021195, 2014.

538

539 Kalicinsky, C., Knieling, P., Koppmann, R., Offermann, D., Steinbrecht, W., and Wintel, J.:
540 Long-term dynamics of OH* temperatures over central Europe: trends and solar correlations,
541 Atmos. Chem. Phys., 16, 15033-15047, doi:10.5194/acp-16-15033-2016, 2016.

542

543 Kaye, J. A.: On the possible role of the reaction $O + HO_2 \rightarrow OH + O_2$ in OH airglow, J.
544 Geophys. Res., 93, 285–288, doi:10.1029/JA093iA01p00285, 1988.

545

546 Kremp, Ch., Berger, U., Hoffmann, P., Keuer, D., and Sonnemann, G. R.: Seasonal variation
547 of middle latitude wind fields of the mesopause region -a comparison between observation
548 and model calculation, Geophys. Res. Lett., 26, 1279-1282, doi:10.1029/1999GL900218,
549 1999.

550

551 Kulikov, M. Y., Feigin, A. M., and Sonnemann, G. R.: Retrieval of water vapor profile in the
552 mesosphere from satellite ozone and hydroxyl measurements by the basic dynamic model of
553 mesospheric photochemical system, Atmos. Chem. Phys., 9, 8199–8210, doi:10.5194/acp-9-
554 8199-2009, 2009.

555

556 Kulikov, M. Yu., Belikovich, M. V., Grygalashvily, M., Sonnemann, G. R., Ermakova, T. S.,
557 Nechaev, A. A., and Feigin, A. M.: Nighttime ozone chemical equilibrium in the mesopause
558 region, J. Geophys. Res., 123, 3228-3242, doi:10.1002/2017JD026717, 2018.

559

560 Kulikov, M. Yu., Belikovich, M. V., Ermakova, T. S., Nechaev, A. A., and Feigin, A. M.:
561 Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO₂, and
562 O₃ under a photochemical equilibrium assumption – a statistical approach, *Atmos. Chem.*
563 *Phys.*, 18, 7453–7471, doi:10.5194/acp-18-7453-2018, 2018.

564

565 Kulikov, M. Yu., Nechaev, A. A. , Belikovich, M. V., Vorobeva, E. V., Grygalashvily, M.,
566 Sonnemann, G. R., and Feigin, A. M.: Boundary of Nighttime Ozone Chemical Equilibrium
567 in the Mesopause Region from SABER Data: Implications for Derivation of Atomic Oxygen
568 and Atomic Hydrogen, *Geophys. Res. Lett.*, 46, 997-1004, doi:10.1029/2018GL080364,
569 2019.

570

571 Le Texier, H., Solomon, S., and Garcia, R. R.: Seasonal variability of the OH Meinel bands,
572 *Planet. Space Sci.*, 35(8), 977-989, doi:10.1016/0032-0633(87)90002-X, 1987.

573

574 Limpasuvan, V., Richter, J. H., Orsolini, Y. J., Stordal, F., and Kvissel, O.-K.: The roles of
575 planetary and gravity waves during a major stratospheric sudden warming as characterized by
576 WACCM, *J. Atmos. Sol. Terr. Phys.*, 78–79, 84–98, doi:10.1016/j.jastp.2011.03.004, 2012.

577

578 Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A. K.: On the
579 composite response of the MLT to major sudden stratospheric warming events with elevated
580 stratopause, *J. Geophys. Res. Atmos.*, 121, 4518–4537, doi:10.1002/2015JD024401, 2016.

581

582 Liu, G., and Shepherd, G. G.: An empirical model for the altitude of the OH nightglow
583 emission, *Geophys. Res. Lett.*, 33, L09805, doi:10.1029/2005GL025297, 2006.

584

585 Liu, G., Shepherd, G. G., and Roble, R. G.: Seasonal variations of the nighttime O(¹S) and
586 OH airglow emission rates at mid-to-high latitudes in the context of the large-scale
587 circulation, *J. Geophys. Res.*, 113, A06302, doi:10.1029/2007JA012854, 2008.

588

589 Lopez-Gonzalez, M. J., Rodriguez, E., Wiens, R. H., Shepherd, G. G., Sargoytchev, S.,
590 Brown, S., Shepherd, M. G., Aushev, V. M., Lopez-Moreno, J. J., Rodrigo, R., and Cho, Y.-
591 M.: Seasonal variations of O₂ atmospheric and OH(6–2) airglow and temperature at mid-
592 latitudes from SATI observations, *Ann. Geophys.*, 22, 819–828, doi:10.5194/angeo-22-819-
593 2004, 2004.

594

595 Lopez-Gonzalez, M. J., Rodriguez, E., Shepherd, G. G., Sargoytchev, S., Shepherd, M. G.,
596 Aushev, V. M., Brown, S., Garcia-Comas, M., and Wiens, R. H.: Tidal variations of O₂
597 Atmospheric and OH(6-2) airglow and temperature at mid-latitudes from SATI observations,
598 *Ann. Geophys.*, 23, 3579–3590, doi:10.5194/angeo-23-3579-2005, 2005.

599

600 Lopez-Gonzalez, M. J., Garcia-Comas, M., Rodriguez, E., Lopez-Puertas, M., Shepherd, M.
601 G., Shepherd, G. G., Sargoytchev, S., Aushev, V. M., Smith, S. M., Mlynczak, M. G.,
602 Russell, J. M., Brown, S., Cho, Y.-M., and Wiens, R. H.: Ground-based mesospheric
603 temperatures at mid-latitude derived from O₂ and OH (6-2) airglow SATI data: Comparison
604 with SABER measurements, *J. Atmos. Solar-Terr. Phys.*, 69, 2379–2390.
605 doi:10.1016/j.jastp.2007.07.004, 2007.

606

607 Lopez-Gonzalez, M. J., Rodríguez, E., Garcia-Comas, M., Costa, V., Shepherd, M. G.,
608 Shepherd, G. G., Aushev, V. M., and Sargoytchev, S.: Climatology of planetary wave type
609 oscillations with periods of 2–20 days derived from O₂ atmospheric and OH(6-2) airglow

610 observations at mid-latitude with SATI, Ann.Geophys., 27, 3645–3662, doi:10.5194/angeo-
611 27-3645-2009, 2009.

612

613 Lübken, F.-J., Berger, U., and Baumgarten, G.: Stratospheric and solar cycle effects on long-
614 term variability of mesospheric ice clouds, J. Geophys. Res., 114, D00106,
615 doi:10.1029/2009JD012377, 2009.

616

617 Lübken, F.-J., Berger, U., and Baumgarten, G.: Temperature trends in the midlatitude summer
618 mesosphere, J. Geophys. Res., 118, 13347-13360, doi:10.1002/2013JD020576, 2013.

619

620 Makhlof, U. B., Picard, R. H., and Winick, J. R.: Photochemical-dynamical modeling of the
621 measured response of airglow to gravity waves. 1. Basic model for OH airglow, J. Geophys.
622 Res., 100, 11289–11311, doi:10.1029/94JD03327, 1995.

623

624 Marsh, D. R., Smith, A. K., Mlynczak, M. G., and Russell III, J. M.: SABER observations of
625 the OH Meinel airglow variability near the mesopause, J. Geophys. Res., 111, A10S05,
626 doi:10.1029/2005JA011451, 2006.

627

628 Mlynczak, M. G., Hunt, L. A., Mast, J. C., Marshall, B. T., Russell III, J. M., Smith, A. K.,
629 Siskind, D. E., Yee, J.-H., Mertens, C. J., Martin-Torres, F. J., Thompson, R. E., Drob, D. P.,
630 and Gordley, L. L.: Atomic oxygen in the mesosphere and lower thermosphere derived from
631 SABER: Algorithm theoretical basis and measurement uncertainty, J. Geophys. Res. Atmos.,
632 118, 5724–5735, doi:10.1002/jgrd.50401, 2013a.

633

634 Mlynczak, M. G., Hunt, L. A., Mertens, C. J., Marshall, B. T., Russell III, J. M., Lopez-
635 Puertas, M., Smith, A. K., Siskind, D. E., Mast, J. C., Thompson, R. E., and Gordley, L. L.:

636 Radiative and energetic constraints on the global annual mean atomic oxygen concentration in
637 the mesopause region, *J. Geophys. Res. Atmos.*, 118, 5796–5802, doi:10.1002/jgrd.50400,
638 2013b.

639

640 Mlynczak, M. G., Hunt, L. A., Marshall, B. T., Mertens, C. J., Marsh, D. R., Smith, A. K.,
641 Russell, J. M., Siskind, D. E., and Gordley, L. L.: Atomic hydrogen in the mesopause region
642 derived from SABER: Algorithm theoretical basis, measurement uncertainty, and results, *J.*
643 *Geophys. Res.*, 119, 3516–3526, doi:10.1002/2013JD021263, 2014.

644

645 Morton, K. W., and D. F. Mayers, D. F.: *Numerical Solution of Partial Differential Equations*,
646 Cambridge University Press, 1994.

647

648 Pertsev N. N., Andreyev A. B., Merzlyakov E. G., and Perminov V. I.: Mesosphere-
649 thermosphere manifestations of strato-spheric warmings: joint use of satellite and ground-
650 based measurements, *Current Problems in Remote Sensing of the Earth from Space*, 10(1),
651 93–100, <http://jr.rse.cosmos.ru/article.aspx?id=1154&lang=eng>, 2013.

652

653 Popov, A. A., Gavrilov, N. M., Andreev, A. B., and Pogoreltsev, A. I.: Interannual dynamics
654 in intensity of mesoscale hydroxyl nightglow variations over Almaty, *Solar-Terr. Phys.*, 4(2),
655 63–68, doi:10.12737/stp-42201810, 2018.

656

657 Popov, A. A., Gavrilov, N. M., Perminov, V. I., Pertsev, N. N., and Medvedeva, I. V.: Multi-
658 year observations of mesoscale variances of hydroxyl nightglow near the mesopause at Tory
659 and Zvenigorod, *J. Atmos. Solar-Terr. Phys.*, 205, 1-8, doi:10.1016/j.jastp.2020.105311,
660 2020.

661

662 Reid, I. M., Spargo, A. J., and Woithe, J. M.: Seasonal variations of the nighttime O(¹S) and
663 OH (8-3) airglow intensity at Adelaide, Australia, *J. Geophys. Res. Atmos.*, 119, 6991–7013,
664 doi:10.1002/2013JD020906, 2014.

665

666 Reid, I. M., Spargo, A. J., Woithe, J. M., Klekociuk, A. R., Younger, J. P., and G. G. Sivjee,
667 G. G.: Seasonal MLT-region nightglow intensities, temperatures, and emission heights at a
668 Southern Hemisphere midlatitude site, *Ann. Geophys.*, 35, 567-582, doi:10.5194/angeo-35-
669 567-2017, 2017.

670

671 Reisin, E., Scheer, J., Dyrland, M. E., Sigernes, F., Deehr, C. S., Schmidt, C., Höppner, K.,
672 Bittner, M., Ammosov, P. P., Gavrilyeva, G. A., Stegman, J., Perminov, V. I., Semenov, A. I.,
673 Knlieling, P., Koomann, R., Shiokawa, K., Lowe, R. P., Lopez-Gonzalez, M. J., Rodriguez,
674 E., Zhao, Y., Taylor, M. J., Buriti, R. A., Espy, P. E., French, W. J., Eichmann, K.-U.,
675 Burrows, J. P., and von Savigny, C.: Traveling planetary wave activity from mesopause
676 region airglow temperatures determined by the Network for the Detection of Mesospheric
677 Change (NDMC), *J. Atmos. Sol.-Terr. Phys.*, 119, 71–82, doi:10.1016/j.jastp.2014.07.002,
678 2014.

679

680 Russell, J. P., Ward, W. E., Lowe, R. P., Roble, R. G., Shepherd, G. G., and B. Solheim, B.:
681 Atomic oxygen profiles (80 to 115 km) derived from Wind Imaging Interferometer/Upper
682 Atmospheric Research Satellite measurements of the hydroxyl and greenline airglow: Local
683 time–latitude dependence, *J. Geophys. Res.*, 110, D15305, doi:10.1029/2004JD005570, 2005.

684

685 Shepherd, G. G., Thuillier, G., Cho, Y.-M., Duboin, M.-L., Evans, W. F. J., Gault, W. A.,
686 Hersom, C., Kendall, D. J. W., Lathuillère, C., Lowe, R. P., McDade, I. C., Rochon, Y. J.,
687 Shepherd, M. G., Solheim, B. H., Wang, D.-Y., and Ward, W. E.: The Wind Imaging

688 Interferometer (WINDII) on the Upper Atmosphere Research Satellite: A 20 year perspective,
689 Rev. Geophys., 50, RG2007, doi:10.1029/2012RG000390, 2012.

690

691 Shepherd, M. G., Cho, Y.-M., Shepherd, G. G., Ward, W., and Drummond, J. R.:
692 Mesospheric temperature and atomic oxygen response during the January 2009 major
693 stratospheric warming, J. Geophys. Res., 115, A07318, doi:10.1029/2009JA015172, 2010.

694

695 Shimazaki, T.: Minor constituents in the middle atmosphere, D. Reidel Publishing Company,
696 Dordrecht, Holland, 1985.

697

698 Smith, A. K., Marsh, D. R., Russell III, J. M., Mlynczak, M. G., Martin-Torres, F. J., and
699 Kyrölä, E.: Satellite observations of high nighttime ozone at the equatorial mesopause, J.
700 Geophys. Res., 113, D17312, doi:10.1029/2008JD010066, 2008.

701

702 Smith, A. K., Lopez-Puertas, M., Garcia-Comas, M., and Tukiainen, S.: SABER observations
703 of mesospheric ozone during NH late winter 2002-2009, Geophys. Res. Lett., 36, L23804,
704 doi:10.1029/2009GL040942, 2009.

705

706 Smith, A. K., Marsh, D. R., Mlynczak, M. G., and Mast, J. C.: Temporal variation of atomic
707 oxygen in the upper mesosphere from SABER, J. Geophys. Res., 115, D18309,
708 doi:10.1029/2009JD013434, 2010.

709

710 Sonnemann, G. R., Hartogh, P., Jarchow., C., Grygalashvyly, M., and Berger, U.: On the
711 winter anomaly of the night-to-day ratio of ozone in the middle to upper mesosphere in
712 middle to high latitudes, Adv. Space Res., 40, 846-854, doi:10.1016/j.asr.2007.01.039, 2007.

713

714 Sonnemann, G. R., Hartogh, P., Grygalashvly, M., Li, S., and Berger, U.: The quasi 5-day
715 signal in the mesospheric water vapor concentration in high latitudes in 2003 - a comparison
716 between observations at ALOMAR and calculations, *J. Geophys. Res.*, 113, D04101,
717 doi:10.1029/2007JD008875, 2008.

718

719 Sonnemann, G. R., Hartogh, P., Berger, U., and Grygalashvly, M.: Hydroxyl layer: trend of
720 number density and intra-annual variability, *Ann. Geophys.*, 33, 749–767, doi:10.5194/angeo-
721 33-749-2015, 2015.

722

723 Sonnemann G., and Grygalashvly, M.: The slow-down effect in the nighttime mesospheric
724 chemistry of hydrogen radicals, *Adv. Space Res.*, 65, 2800-2807,
725 doi:10.1016/j.asr.2020.03.025, 2020.

726

727 Takahashi, H., and Batista, P. P.: Simultaneous measurements of OH (9,4), (8,3), (7,2), 6,2),
728 and (5,1) bands in the airglow, *J. Geophys. Res.*, 86, 5632–5642,
729 doi:10.1029/JA086iA07p05632, 1981.

730

731 Takahashi, H., Clemesha, B. R., and Batista, P. P.: Predominant semi-annual oscillation of the
732 upper mesospheric airglow intensities and temperatures in the equatorial region, *J. Atmos.*
733 *Terr. Phys.*, 57(4), 407-414, doi:10.1016/0021-9169(94)E0006-9, 1995.

734

735 Takahashi, H., Batista, P. P., Buriti, R. A, Gobbi, D., Nakamura, T., Tsuda, T., and Fukao, S.:
736 Response of the airglow OH emission, temperature and mesopause wind to the atmospheric
737 wave propagation over Shigaraki, Japan, *Earth Planets Space*, 51, 863–875,
738 doi:10.1186/BF03353245, 1999.

739

740 Taylor, M. J., Espy, P. J., Baker, D. J., Sica, R. J., Neal, P. C., and Pendleton, Jr. W. R.:
741 Simultaneous intensity, temperature and imaging measurements of short period wave
742 structure in the OH nightglow emission, *Planet. Space Sci.*, 39, 1171–1188,
743 doi:10.1016/0032-0633(91)90169-B, 1991.

744

745 Varandas, A. J. C.: Reactive and non-reactive vibrational quenching in O + OH collisions,
746 *Chem. Phys. Lett.*, 396, 182–190, doi:10.1016/j.cplett.2004.08.023, 2004.

747

748 Wachter, P., Schmidt, C., Wüst, S., and Bittner, M.: Spatial gravity wave characteristics
749 obtained from multiple OH(3-1) airglow temperature time series, *J. Atmos. Sol. Terr. Phys.*,
750 135, 192-201, doi:10.1016/j.jastp.2015.11.008, 2015.

751

752 Walcek, C. J.: Minor flux adjustment near mixing ratio extremes for simplified yet highly
753 accurate monotonic calculation of tracer advection, *J. Geophys. Res.*, 105, 9335-9348,
754 doi:10.1029/1999JD901142, 2000.

755

756 Wiens, R. H., Moise, A., Brown, S., Sargoytchev, S., Peterson, R. N., Shepherd, G. G.,
757 Lopez-Gonzalez, M. J., Lopez-Moreno J. J., and Rodrigo R.: SATI: A spectral airglow
758 temperature imager, *Adv. Space Res.* 1997, 19, 677–680, doi:10.1016/S0273-
759 1177(97)00162-2, 1997.

760

761 Xu, J., Smith, A. K., Jiang, G., Gao, H., Wei, Y., Mlynczak, M. G., and Russell III, J. M.:
762 Strong longitudinal variations in the OH nightglow, *Geophys. Res. Lett.*, 37, L21801,
763 doi:10.1029/2010GL043972, 2010.

764

765 Xu, J., Gao, H., Smith, A. K., and Zhu, Y.: Using TIMED/SABER nightglow observations to
766 investigate hydroxyl emission mechanisms in the mesopause region, *J. Geophys. Res.*, 117,
767 D02301, doi:10.1029/2011JD016342, 2012.

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789 **Table 1.** List of reactions with corresponding reaction rates (for three-body reactions [cm⁶
790 molecule⁻² s⁻¹] and for two-body reactions [cm³ molecule⁻¹ s⁻¹]), branching ratios, quenching
791 coefficients, and spontaneous emission coefficients (s⁻¹) used in the paper.

	Reaction	Coefficient/branching ratios	Reference
1	$H + O_3 \xrightarrow{\zeta_v a_1} OH_{v=5,\dots,9} + O_2$	$a_1 = 1.4 \cdot 10^{-10} \exp\left(\frac{-470}{T}\right)$ $\zeta_{v=9,\dots,5} = 0.47, 0.34, 0.15, 0.03, 0.01$	Burkholder et al. (2015), Adler-Golden (1997)
2	$O + HO_2 \xrightarrow{\psi_v a_2} OH_{v=5,\dots,9} + O_2$	$a_2 = 3.0 \cdot 10^{-11} \exp\left(\frac{200}{T}\right)$ $\psi_{v=3,\dots,1} = 0.1, 0.13, 0.34$	Burkholder et al. (2015), Kaye (1988), Takahashi and Batista (1981)
3	$O + OH_{v=1,\dots,9} \rightarrow O_2 + H$	$a_3(v = 9, \dots, 5) = (5.07, 4.52, 3.87, 3.93, 3.22, 3.68, 3.05, 3.19, 3.42) \cdot 10^{-11}$	Varandas (2004), Caridade et al. (2013)
4	$O + O_2 + M \rightarrow O_3 + M$	$a_4 = 6 \cdot 10^{-34} (300/T)^{2.4}$	Burkholder et al. (2015)
5	$O + O_3 \rightarrow 2O_2$	$a_5 = 8 \cdot 10^{-12} \exp\left(\frac{-2060}{T}\right)$	Burkholder et al. (2015)
6	$OH_v + O_2, O, N_2 \rightarrow OH_{v' < v} + O_2, O, N_2$	$B_{vv'}, D_{vv'}, C_{vv'}$	Adler-Golden (1997), Caridade et al. (2013), Makhlof et al. (1995)
7	$OH_v \rightarrow OH_{v' < v} + hv$	$E_{vv'}$	Xu et al. (2012)

792

793

794

795

796

797

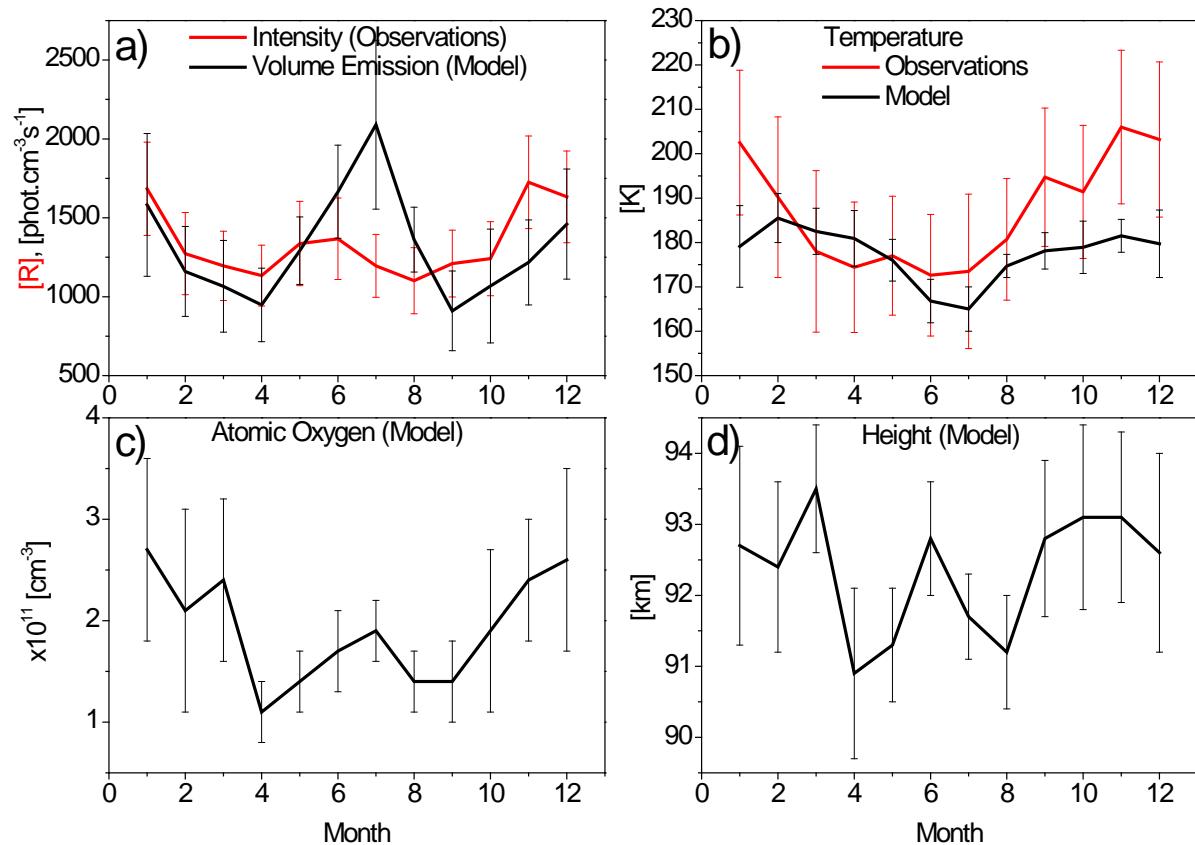
798

799

800

801

802


803

804

805

806 **Figures**

807 Figure 1. Observed at 43° N (black red line) and modelled at 43.75° N (red black line), annual
 808 variability of intensity and volume emission (a), temperature (b), atomic oxygen
 809 concentration (c), and height at the peak of the $\text{OH}^*_{v=6}$ layer.

810

811

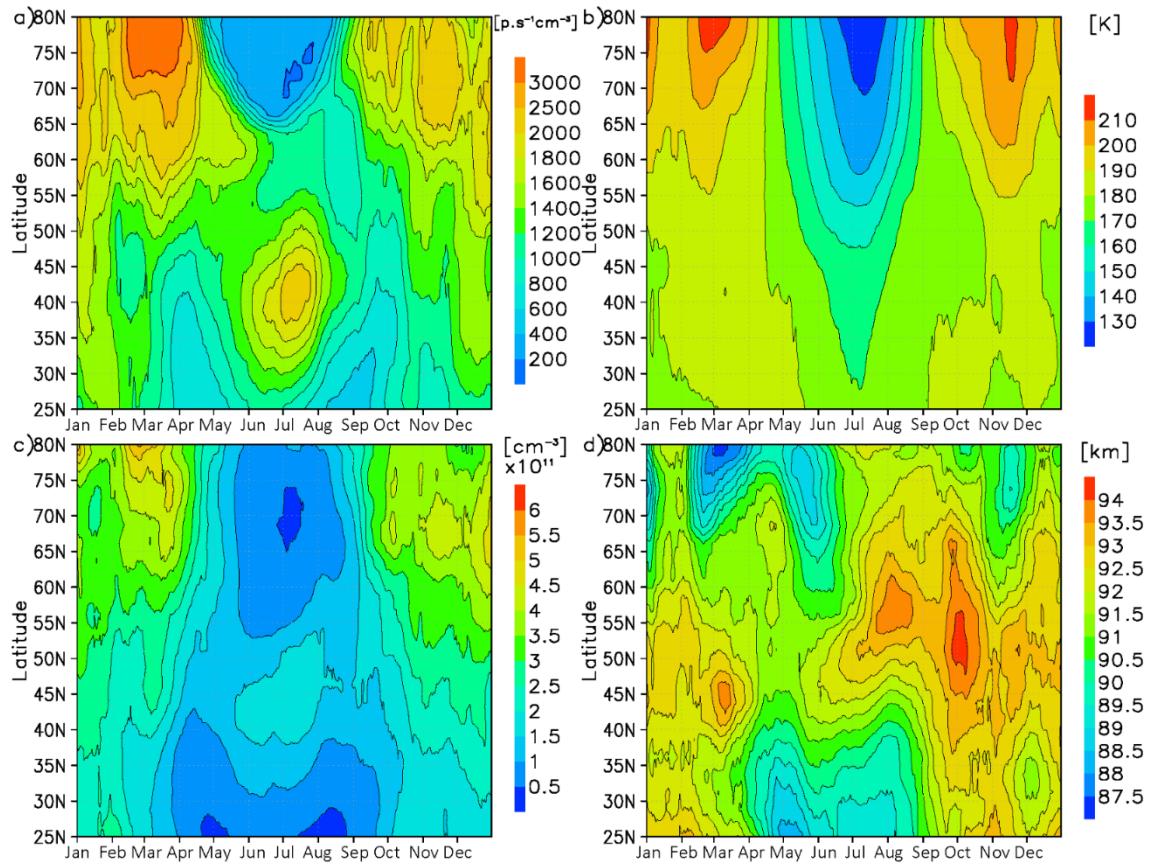
812

813

814

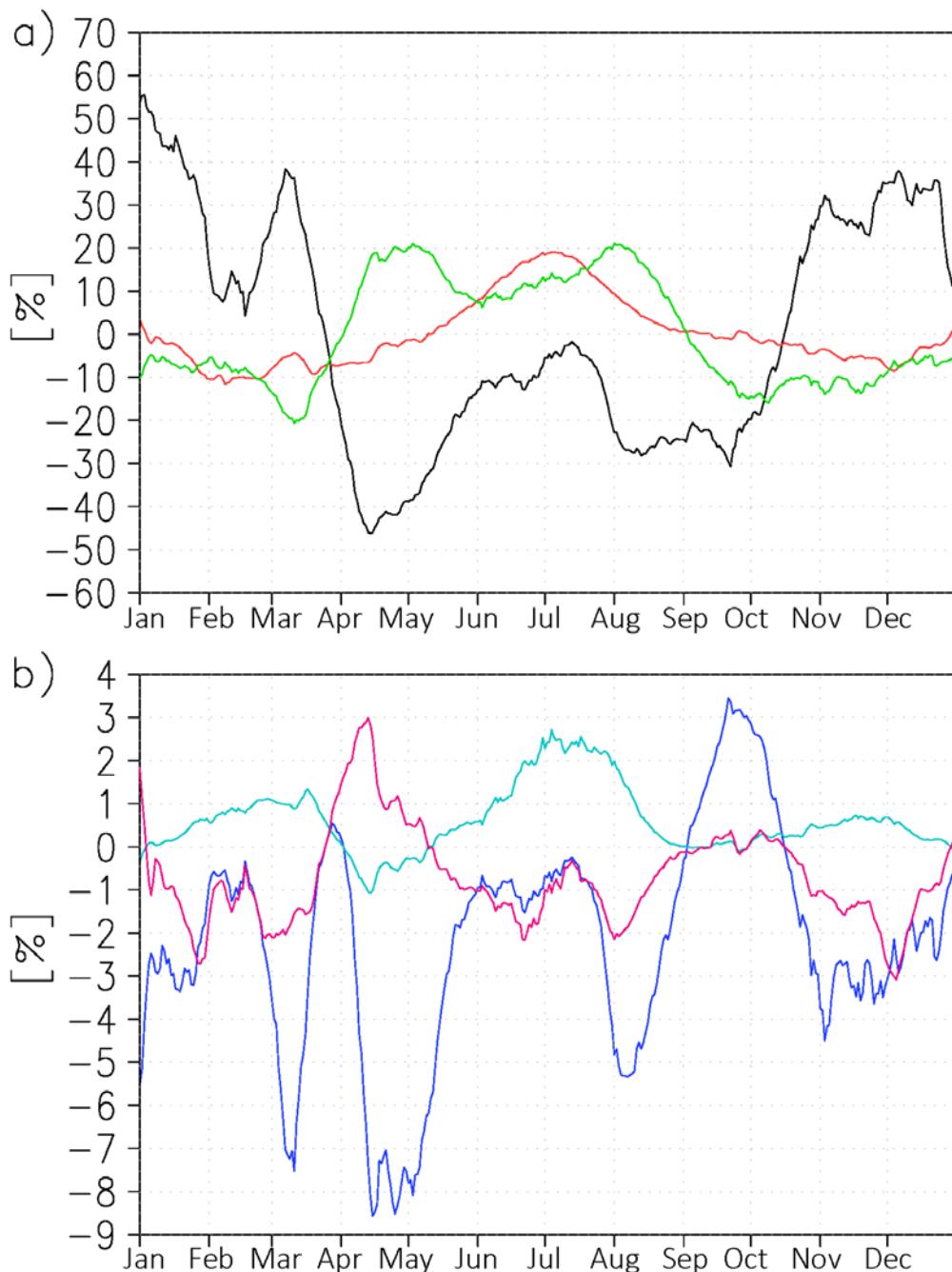
815

816


817

818

819


820

821 Figure 2. Nightly mean one-month sliding average volume emission (a), temperature (b),
822 atomic oxygen at peak of $\text{OH}^*_{v=6}$ (c), and height of peak of $\text{OH}^*_{v=6}$.

823
824
825
826
827
828
829
830
831
832

833 Figure 3. a) relative to annual averaged variations of volume emission (Eq. 2) due to atomic
 834 oxygen (black line), temperature (red line), and height (green line) at 43.75° N, b) relative
 835 variations of volume emissions due to second momentum $\frac{[O]M'}{[O]M}$ (blue line), $\frac{T'M'}{TM}$ (cyan line),
 836 and $\frac{[O]T'}{[O]T}$ (magenta line) at 43.75° N.

837