Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-78-AC2, 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

ANGEOD

Interactive comment

Interactive comment on "Microbarom radiation and propagation model assessment using infrasound recordings: a vespagram-based approach" by Ekaterina Vorobeva et al.

Ekaterina Vorobeva et al.

ekaterina.vorobeva@ntnu.no

Received and published: 16 February 2021

Dear Referee 2, Thank you very much for your constructive review of the submission. We have made edits to the manuscript according to your comments and suggestions. Below, you can find our point-by-point reply to your report.

Specific comments: 1) Consider revising the title of your manuscript a little (see general comment). Thank you for the suggestion. The manuscript title has been changed to "Benchmarking microbarom radiation and propagation model against infrasound recordings: a vespagram-based approach".

Printer-friendly version

- 2) I. 16: Why do microbaroms return to the ground after penetrating the middle atmosphere (hence their potential to probe the middle atmosphere dynamics)? Briefly explain the underlying physical process. The explanation of the infrasound waves refraction in the middle atmosphere has been added to Sect. 1.
- 3) I. 42: how did you determine the fixed apparent velocity of 350 m/s from observations (using other processing techniques?) or propagation modeling (average?), or is this based on previous studies (references available? obviously yes, but these are not cited before line 87/88). For the discussion of the results (e.g., line 205): using this fixed value, what is the corresponding standard deviation of observations at IS37 (e.g., using PMCC)? Based on this, can you roughly quantify the number of other arrivals (especially in the summer) that potentially cause discrepancies? This is a good point. An explanation of the choice of the fixed apparent velocity value has been added to Sect. 1. We find the comparison with the PMCC method to be beyond the scope of this article. Hence, all interpretations and explanations are based on discrepancies between the microbarom model outputs and vespagrams.
- 4) I. 75 and Fig. 1a: you could add the ARCES array to the map as this is mentioned in the text as the initially planned site for IS37; however, I am wondering if the first part of the sentence ("was initially planned ... in Karasjok") is worth to be mentioned at all. This fact is not relevant to your study but raises the question of why it was less favorable. Therefore I recommend shortening the paragraph accordingly. Thank you for the suggestion. The sentence in I.75 has been changed following your comment.
- 5) I. 125/126: it is not necessary to repeat all references, the choice of 350 m/s was justified before; I suggest removing the second part of the sentence (beginning with "which is within . . . "). The sentence has been corrected according to the suggestion.
- 6) I. 136: Landès et al. (2014) studied the global patterns of microbaroms and only discuss the potential limitations due to the lack of coastal reflections while citing Hillers et al. (2012), among others. Therefore citing that study in the way it is done here

ANGEOD

Interactive comment

Printer-friendly version

is a bit misleading. My suggestion is to modify this and add another sentence, for example: "Studies on microseisms (e.g., Hillers et al., 2012) have demonstrated the limitations of a model that does not account for coastal reflection. These limitations have been accordingly raised in the context of microbaroms (Landès et al., 2014)." Thank you for the comment. The paragraph has now been modified following your suggestion.

- 7) I. 153/154: which of the ECMWF models in particular? If not the ERA5 reanalysis, did you interpolate the temperature and wind fields in time? The ECMWF high Resolution (HRES) model has been used. The temporal resolution of this model is 6 hours which is twice WWIII time step. Therefore, to avoid possible discrepancy caused by interpolation in time, the assumption of the constant wind and temperature fields over 6 hours was made. Sect. 2.2 has been updated to clarify questions related to the ECMWF model used.
- 8) I. 163: remove the parenthesis (private communication with ...), M. De Carlo is coauthor of this study. Instead, how would the results differ if you accounted for only 3000 km? (Is it essential to account for 5000 km for providing a more realistic spectrum at IS37?) The choice of the maximum distance from the station depends on the location of the station and the main sources, as well as on how realistic spectrum is needed for a specific task. The recent study by De Carlo et al (2021) demonstrated a comparison of global microbarom patterns between the PMCC and the microbarom model by De Calo et al. (2020a) used in this study. The calculations have been performed using the maximum distance of 5000 km obtained from averaging over 45 IMS stations and providing more realistic spectra. The analysis reveal a good agreement between the PMCC and the model with the 5000 km cut off distance. Based on results of the aforementioned studies, we use the model configuration that provides the best estimate of microbarom spectra. Sect. 2.2 has been updated to clarify questions related to the choice of the maximum distance.
- 9) Section 3.1: Here you present a lot of information (3 figures within more than 24

ANGEOD

Interactive comment

Printer-friendly version

panels!) within the first paragraph, without much explanation. You could help the reader by focusing on Figs. 2 and 3 first. Also, I suggest that you already define Eq. 3 in Section 2; then all panels can be understood at the first occurrence of a figure in Section 3. Thank you for the suggestion. Changes in Sect. 2 and Sect. 3.1 have been made according to your recommendation.

- 10) According to Section 2.1 step 5, the vespa output should be power (Pa²), whereas in Figs. 2 and 3 the colorbar unit is Pascal (amplitude) again, correct? (also, place the units/labels to the right of the colorbars amplitude in Pa). This is correct, the vespa output is power (Pa2). We have used Pascal unit in Figs. 2 and 3 hoping that this will help the reader to get an intuitive sense of the pressure amplitude. The corresponding explanation has now been added into Sect. 3.1 as well as in Fig. 2 caption. The units/labels in Figs. 2 and 3 has been moved to the right of the colorbars.
- 11) Fig. 2b-d: in the summer, infrasound amplitudes at IS37 seem to be not relevant, whereas for the comparison (Fig. 2h) and through normalization (e-i) they certainly are (e.g., lower SI). Would a logarithmic color scale be useful in b)-d)? What is the impact of the detection threshold (noise level) of the station, especially for the summer season comparison - could this explain parts of the discrepancy between model and vespa in Fig. 2a? In summer, infrasound amplitudes at IS37 are indeed lower than in winter. However, we believe they are still relevant. The normalization at every time step facilitates interpreting and comparing the directional spectra between data and model (Figs. 2 and 3 e - j (g now)). The main parameter influencing SI is the difference between the model's and vespagram's directional spectra. In winter, when atmospheric conditions are favorable for the stratospheric ducting from the west to the station, the assumption of a horizontally homogeneous atmosphere in the model doesn't affect the results as much as in summer, and the model and vespagrams are in a better agreement. However, in the summer or during SSW events, this assumption is not so valid and the effect of winds along the propagation path needs to be considered to a greater extent. This results in a large difference in directional spectra and, as a result, in lower

ANGEOD

Interactive comment

Printer-friendly version

SI values. A corresponding explanation has been added to Sect. 3.1. See also point 14) for more details. We cannot directly account for the station detection level since we are calculating the power for different directions using a sliding time window – without applying trigger-based event detection approaches. However, after the vespa processing is done, we apply a quality check threshold based on the vespagram spectrum properties. At the time when vespa processing predicts a directional spectrum with the power (almost) equal in all directions, data are ignored. This is especially pronounced for the 0.1 - 0.2 Hz band during summer (see Fig. 2 g). Changes in Fig. 2 has now been made in order to highlight the lack of data in the summertime.

12) Fig. 2j: One can recognize spots of maximum normalized power from south-easterly directions in the summer (not represented by the model). What could be their origin? There are probably not many potential sources in that direction (especially not for low frequencies). You are right, there are not so many potential sources in SE direction that would provide so low frequency microbaroms. This could be microbaroms generated in the Indian ocean. The microbarom model's map for June 2016 supports this hypothesis (see the supplement attached). The stratospheric summertime westward wind could guide the infrasound waves towards the IS37 station. The distance between the station under consideration and the Indian ocean is much larger than 5000 km (around 7000 – 8000 km) which is the model's cut off limit. Therefore, these arrivals are not presented by the model. The corresponding explanation has been added to the discussion of Fig. 2.

13) Fig. 3d and particularly 3j: The vespagrams exhibit some horizontal lines (e.g., E and NW). Could these be artifacts of the vespa/beamforming processing? Indeed, sidelobes in the steered response can appear as an inherent effect of array geometry. Still, it is maybe not so straightforward to find the source of those lines. Additional power peaks that arise in the vespa processing represent side lobes appearing when extracting power values along the fixed apparent velocity circle (Fig. 1b). As can be seen from Fig. 1b, for lower frequencies we have less side lobes. Since Fig. 3

ANGEOD

Interactive comment

Printer-friendly version

considers the 0.5-0.6 Hz band, the number of side lobes is higher, but their amplitude is several dB lower than the main lobe. More importantly, for any side lobes related effect, the position of the "lines" would change over time, staying approximately at the same angular distance from the dominant signal direction. Therefore, we lean towards not believing this is a result of the vespa processing and assume that those lines could present some stable local background sources of infrasound with frequencies within the microbarom range.

14) I. 180 and Fig. 4: the median differences in direction of max. power are about 0-2 degree lower (by eye inspection) when using the smoothed model; the trend favoring the smoothed model is clearer recognized in the uncertainty ranges. However, if these uncertainties also correspond to the difference at the maximum power only, these are relatively large (not only at low frequency but also at the highest frequency band). How would you explain this? Thank you for this question. Both medians and uncertainty ranges in Fig. 4 are estimated based on the back-azimuth difference at the maximum power only. Thanks to your request, we have checked the calculation procedure and found an error in the calculation for the lowest frequency band. The calculation results for the remaining frequency bands remain unchanged. An updated version of Fig. 4 can be found in the manuscript. Uncertainty values falling between 25 and 75 percentiles are an objective assessment of the discrepancy between the model and vespagrams. These values originate from the wintertime when atmospheric conditions are favorable for stratospheric ducting from the West. In summer, atmospheric conditions are not so stable and there are several factors that can cause discrepancies as we mention in I. 200 – 210. The vespagram-based approach, in turn, is very sensitive to atmospheric changes opposite to the model which uses only atmospheric conditions at the station to access the possibility of a wave front arrival. Therefore, summer arrivals predicted by the model look more stable than those predicted by vespagrams (see Fig. 3). The difference between the direction of max in the summertime can reach up to tens of degrees, for example when the model predicts arrivals from the Barents Sea and the vespagram predicts arrivals from the North Atlantic (Fig. 3 around day 210 in

ANGEOD

Interactive comment

Printer-friendly version

2016). This also causes a fall of the similarity index. A corresponding explanation has been added to Sect. 3.1.

- 15) Eq. 3: Please check if the equation is correctly noted. According to my understanding, the right-hand side is the definition of MSE(t). In this case, the equation should be modified to SI=1-MSE=1-(1/N)... or SI=1-MSE with MSE=(1/N)... Thank you for the comment, the typo in the right side of (3) has been corrected. Now (3) is as follows: SI = 1 MSE = 1 (1/N) ïAŞ (P_model P_vespa)^2.
- 16) Eq. 3 / Figs. 2&3 / model output: The vespa analysis is done at a time step of 30min (1h time window), but the time step of the p2l data is 3h; do you interpolate the microbarom model output to 30min while smoothing or integrate the vespa over 3h? Do the time series in Figs. 2a and 3a (and b-g) differ in temporal resolution? What is the temporal resolution of the similarity index? Please briefly clarify in the manuscript. Thank you for this question. In this study, in order to avoid the model output's interpolation in time, the vespa processing output has been sub-sampled to match the three hourly microbarom model grid. Further, all results are presented with the time resolution of 3 h. The corresponding description has been added to Sect. 2.3.
- 17) I. 193-194: consider rephrasing this sentence towards SI instead of MSE; also, once SI has been defined in Section 2 (see comment 9), use SI for the axis labels in Figs. 2, 3, and 5, rather than 1-MSE. Corresponding corrections have been made in Figs. 2, 3, 5 as well as in Sect. 2.3.
- 18) I. 200: An SI of 0.5 corresponds to an MSE of 0.5, but the absolute difference between vespa and model must be even larger (and thus quite large!), due to the squared nature. In other words: For normalized distributions (within [0,1]), the MSE heavily weights small discrepancies instead of significant outliers, as opposed to when the absolute values exceed 1. Have you already contemplated using the mean absolute error instead? The calculation of SI based on normalized distributions is justified by the significant effect of smoothing procedure on modelled amplitudes. Comparison

ANGEOD

Interactive comment

Printer-friendly version

of the unsmoothed model with the vespa calculation results is not used, because the model does not account for the frequency-dependent resolution of the infrasonic array. The mean square error calculation is a widely used approach that allows a comparison between two statistical models. Therefore, MSE can represent the difference between the actual observations and the observation values predicted by the model. Following your advice, we have now explored using the mean absolute error (MAE) instead. The main conclusion from that experiment is that using the MAE doesn't significantly change the results or conclusions based on them. For this reason, the SI calculation procedure has not been changed in our manuscript.

- 19) Fig. 5: how are the data within a 3-day interval handled (mean/median, discrete)? The data in Fig. 5 are presented as a discrete set with 3-day step, namely, day 0 00 hours, day 3 00 hours etc. The median is presented in the last panel only. The corresponding explanation has been added to the manuscript.
- 20) I. 239/240: "usually appears earlier" (3-24 hours) this applies only to 2017 (and 2016), doesn't it? This applies to all years under consideration depending on the frequency band used. Fig. 6 presents the results for 0.3-0.4 Hz band where, as you correctly mention, this applies to 2016 and 2017. The corresponding explanation has been added to Sect. 3.2.
- 21) I. 250: "resulting *in* model-vespagram discrepancies" Can you quantify these discrepancies caused by ECMWF wind along the infrasound path? These discrepancies have been already quantified in I. 238. L. 250 has been changed to "resulting in the above-mentioned model-vespagram discrepancies".
- 22) I. 252/253: Do vespagrams perform better than other methods such as PMCC in the context of SSW events? I am aware that this is not your point here. Nevertheless, in other sections, you correctly highlight the advantage of the vespa approach (all directions simultaneously), whereas in Fig. 6 you compare the back-azimuths of the dominant signals only which are likely similar to the output of PMCC. As mentioned

ANGEOD

Interactive comment

Printer-friendly version

in the initial part of Sect. 3.2, studying the behavior of SSW events is not the main objective of the study. The main point of this section is rather to examine the ability of the vespagrams to detect extreme atmospheric events and see if there are significant discrepancies with the model. We considered changes in the back-azimuths of the dominant signals only in Fig. 6 because this is one of the infrasound signatures of SSW events. Moreover, such approach is one of the few ways to present vespagram and model output in the same plot. It is impossible to present two colorbar plots in one. However, trying to follow your advice, updates have been made in Fig. 6. The figure now presents the microbarom azimuthal distribution at IS37 estimated by vespa and normalized per time step, as well as the back-azimuths of the dominant signals predicted by the model (red dots). Comparison of the vespagrams and the PMCC is not within the scope of the current study but could serve as an idea for future studies. The model by De Carlo et al. (2020a) has already been compared with the output of PMCC for multiple stations including IS37 (De Carlo et al., 2021).

Technical corrections: - De Carlo et al. (2020) reference: this is not unique, there are two entries in the list matching this citation! Add a/b letters. Thank you for spotting this. We have made the associated corrections.

- I. 8: revealed -> reveals Corrected.
- I. 9 add "events": sudden stratospheric warming [events]. Corrected.
- I. 16 remove "back" (return or turn back are both appropriate, but return back looks like a tautology) Corrected.
- I. 69 Blanc et al. (2018) was referenced in the sentence before, could be saved here The reference has been removed from I. 69.
- Fig. 1b Sx/Sy = slowness components (I suggest you add this information to the caption, it is not defined in the text) A definition of Sx/Sy has now been added to the caption of Fig. 1.

ANGEOD

Interactive comment

Printer-friendly version

- I. 108: of the incoming signal Corrected.
- I. 111 remove "a" (or add a noun such as "approach" after "applied") The article "a" has been removed.
- I. 124: to the square root Changed according to the suggestion.
- I. 134 the WW3 reference is missing in the bibliography The reference has been added to the bibliography.
- I. 136: [...] as described by Ardhuin et al. (2011). Corrected.
- I. 153: assess -> determine ("assess" is also used in the next sentence) Changed.
- I. 154: Forecasting -> Forecasts Corrected.
- I. 167: resolution of array -> array resolution Corrected.
- I. 174/175 rephrasing suggestion: Figures 2a and 3a show the maximum amplitude per time step over one year, i.e. the dominant signals in the azimuthal spectra. This sentence has been rephrasing according to your suggestion.
- I. 178: accompanied with -> accompanied by [the] (or: combined with the) The phrase "accompanied with" has been replaced with "accompanied by the" following the suggestion.
- I. 179 "applying" is redundant The word "applying" has been removed from the sentence.
- Fig. 2/3 j) should be g) in order to avoid confusion when reading the caption (e.g., e-j) Thank you. The index j) in Figs. 2 3 have been changed to g).
- Fig. 2 caption I assume that panels 2-4, 6, and 7 are b-d, f, and j(g), correct? This is correct. The numbers in the caption have now been replaced with the letters to avoid confusion.
- Fig. 2 caption: similarity score -> similarity index (Eq. 3) This caption has now been C10

ANGEOD

Interactive comment

Printer-friendly version

corrected.

- Fig. 2 caption: the colormap reference is also given in the acknowledgments of the manuscript; consider removing it from the caption to focus on the essentials. This reference was initially only mentioned in the acknowledgements. However, during the preprocessing of the manuscript by the journal, the editorial support team kindly asked us to add the image credit to the corresponding figure caption(s). Hence, although we would prefer to follow your advice, we opt to stay with what was requested by the editorial. Still, in order to avoid repetition, we have now removed this reference from the acknowledgments.
- I. 188/189 why do you use negative back-azimuths instead of 266° (265°), 239° (245°), and 26° (34°), respectively? Please also add the degree symbol (unit). The negative values of the back-azimuth have been used in order to keep 0° (or the North) in the middle of (-180°, 180°) interval. However, following your advice, we have changed negative values to positive and have added the degree symbol.
- Fig. 4 please add a unit to the y label ($^{\circ}$); the figure size could be smaller in the final version (width of one column) Thank you for the recommendation. The unit ($^{\circ}$) has been added to the y label in Fig. 4. The figure size will be changed by the editorial office later.
- I. 202: in the Arctic Corrected.
- I. 212: promising Corrected.
- I. 213: the analysis Corrected.
- Fig. 5 caption: Multi-year comparison between vespagrams and smoothed modelled microbarom soundscapes at the IS37 station. The caption has been changed according to the suggestion.
- Fig. 5: could you include the legend of the last panel *inside* this panel? Consider using different colors for this panel. Fig. 5 has been updated following your suggestion.

ANGEOD

Interactive comment

Printer-friendly version

- I. 235: [...] until late March or early April, which corresponds [...] Corrected according to the suggestion.
- Fig. 6 caption: days -> onset days Changed.
- I. 243: [...] addressed by Diamantakis (2014) and Smets et al. (2016). Corrected.
- I. 249: [...] demonstrated by Evers and Siegmund (2009) and Smets and Evers (2014) that [...] Corrected.
- I. 270/271 rephrase this sentence The sentence has been rephrased.
- General technical remark: no space between number and % as well as $^{\circ}N$, $^{\circ}E$, ... We consulted the journal guidelines at https://www.annalesgeophysicae.net/submission.html#manuscriptcomposition), and found that manuscripts shall include a space between number and % as well as between $^{\circ}$ and N. Looking at the final typeset version of other ANGEO papers, it looks like these have a reduced-width blank between number and symbol so this will hopefully come out visually pleasing also in our final product.
- General grammatical remark: I think you should add articles to a number of nouns. Thanks for this advice. The grammar has been double-checked.

Thank you for taking the time to review our submission, we believe that your advices have helped to clarify the manuscript.

Your sincerely, Ekaterina Vorobeva, on behalf of all authors

References

De Carlo, M., Ardhuin, F., and Le Pichon, A.: Atmospheric infrasound generation by ocean waves in finite depth: unified theory and application to radiation patterns, Geophysical Journal International, 221, 569–585, https://doi.org/10.1093/gji/ggaa015, 2020a

ANGEOD

Interactive comment

Printer-friendly version

De Carlo, M., Hupe, P., Le Pichon, A., Ceranna, L., and Ardhuin, F.: Global Microbarom Patterns: a First Confirmation of the Theory for Source and Propagation, Geophysical Research Letters, 48, e2020GL090 163, https://doi.org/10.1029/2020GL090163, 2021

Please also note the supplement to this comment: https://angeo.copernicus.org/preprints/angeo-2020-78/angeo-2020-78-AC2-supplement.pdf

Interactive comment on Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-78, 2020.

ANGEOD

Interactive comment

Printer-friendly version

