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Dear Igor Chunchuzov, 

Thank you very much for your constructive review of the submission. We have made edits to 

the manuscript according to your comments and suggestions. Below, you can find our point-

by-point reply to your report. 

 

Specific comments: 

1) The microbarom model used is based on microbarom generation model that predicts the 

spatial distribution of the acoustic sources over the ocean surface, and on the atmospheric 

model that allows one to calculate the microbarom propagation from the microbarom sources 

to the receivers. Each of these models has its own drawbacks, which introduce errors in the 

prediction of the parameters of microbaroms at distances of thousands of kilometers from their 

sources. One of the drawbacks of the propagation model, which the authors themselves pointed 

out, is the approximation of a horizontally homogeneous atmosphere. The presence in the real 

atmosphere of the horizontal inhomogeneities in the wind velocity and temperature 

significantly affects the azimuth of arrival of the signal at the reception point and the prediction 

of the source back-azimuth. 

Indeed, the approximation of a horizontally homogeneous atmosphere has been made in the 

model. As you mention, we point this out in the manuscript, especially in the discussion section 

where we suggest different way to improve the results of simulations.  

To make the limitations of this approximation clearer to the reader, changes in Sect. 4 have 

been made. 

 

2) Another disadvantage of the propagation model used is that the wind velocity and 

temperature profiles derived from the European Center for Medium range Weather 

Forecasting (ECMWF) do not have sufficient vertical resolution to account for the effect of 

small-scale atmospheric irregularities on microbarom scattering and, as a result, on amplitude 

attenuation with increasing distance from a source for different directions of propagation. 

This is a very good point. The ECMWF temperature and wind profiles indeed do not resolve 

small-scale irregularities in the atmosphere. And so far, resolving small-scale structures in 

atmospheric models, reanalysis and forecasting systems remains a topic for active research. On 



the contrary, the development and study of methods improving the resolution of atmospheric 

model’s wind and temperature profiles using infrasonic observations are highly pertinent today 

(e.g. Chunchuzov et al., 2015; Amezcua et al., 2020; Rodriguez et al., 2020). 

However, the disadvantage you mention is relevant only if methods requiring atmospheric wind 

and temperature profiles as an input are used (such as the full waveform propagation modelling 

or 2D (3D) ray tracing). The semi-empirical attenuation law used in this study accounts for the 

Veff = V_50km/V_ground ratio, presenting atmospheric conditions above the station which 

are crucial for detecting the signal. Therefore, wind and temperature values at one specific level 

are used, and vertical resolution of the ECMWF is not significant.  

To make the limitations of the infrasound propagation modelling clearer, we have mentioned 

them in Sect. 4.  

 

3) When describing microbarom generation model the authors refer to the state-of-the-art 

microbarom radiation theory (De Carlo et al., 2020), which “…allows prediction of the 

location and intensity of the microbarom sources when applied to the Hasselmann integral.” 

It would be important to note briefly in the paper of how are the frequency spectra of counter 

propagating waves derived in the wave model to calculate the Hasselmann integral, because 

the latter defines the distribution of the intensity of acoustic sources over ocean surface. 

Thank you for the valuable suggestion. More detailed description of the wave model used has 

been added into Section 2.2. 

 

4) The parameters of microbaroms vs time were obtained for the fixed apparent velocity of 350 

m/s, which corresponds to the arrivals of the signals from the stratospheric altitudes. Are there 

in the detected signal the microbarom reflections from the lower thermosphere with another 

apparent velocity? 

In our study calculations were performed for the fixed apparent velocity of 350 m/s, as you 

correctly note. To see if there are signals arriving from higher altitudes, for example from the 

lower thermosphere, the calculations need to be done for higher values of the apparent velocity 

(Lonzaga, 2015). These calculations are outside of the scope of the current research. However, 

Näsholm et al. (2020) demonstrated that mesospheric - lower thermospheric (MLT) arrivals 

originating from Iceland / Greenland hot-spot can be detected at IS37 in summer, but only if 

signal processing removes stratospheric arrivals from other directions such as Pacific / Barents 

Sea. 

 

5) The amplitude obtained from the model in Fig.2a (red) in the time interval 200-201 DOY 

is two orders lower than the amplitude obtained by vespa processing. Could you explain the 

cause of such discrepancy? 

There could be various reasons explaining the discrepancy in Fig. 2a, e.g. an error in the 

wave model or in atmospheric winds causing an overestimation of the attenuation using the 

semi-empirical law. From Fig. 2f we can see that the modelled dominant direction is shifted a 

little bit towards the north when the discrepancy occurs, while there is no evident shift in Fig. 



2j(g) for the vespagram. Therefore, that could indeed be a wind issue, and we are looking at 

signals originating from different sources. 

The corresponding explanation has been added to Sect. 3.1. 

 

6) Fig. 2f and Fig. 2j: Are the amplitudes (model and vespagram) in these Fig. s normalized 

by the maximum amplitude? 

Yes, Fig. 2 (e, f, j) and Fig. 3 (e, f, j) present amplitudes normalized by the maximum amplitude 

at each time step. We have now clarified this in Sect. 3.1 and in the caption of Fig. 2.  

 

7) The last expression in the right side of (3) defines rather a mean squared error (MSE), than 

a similarity index (SI), since this expression becomes zero (not 1) in case of full match between 

model and infrasound vespagram. 

Thank you for the comment, the typo in the right side of (3) has been corrected. Now (3) is as 

follows: SI = 1 – MSE = 1 – (1/N)  (P_model – P_vespa)^2. 

 

8) Line 185: “Going to higher frequencies, there is a pronounced change in the dominant 

direction of the source from the Atlantic in winter to the Barents Sea in summer (Fig. 3).” Do 

the higher frequencies react stronger on the change of wind direction in the stratosphere 

from eastward to westward than the lower ones? If yes, then why? 

In case of the low frequencies (0.1 – 0.2 Hz), there is a limited number of possible oceanic 

sources. To generate infrasound at such low frequencies, the source need to have a substantial 

size. In Fig. 2j(g) one can also see a change in the dominant source direction in summer. Signals 

coming from NE and SE are interpreted as those from the Pacific and the Indian oceans (see 

point 12 in the reply to R2 comments). However, this effect is more pronounced for the higher 

frequencies. The possible explanation could be the distance between IS37 and ocean sources. 

The North Atlantic microbarom source is located much closer to the station than the Pacific 

and the Indian oceans (~3000 km vs ~8000 km). Propagating over such a long distance, the 

attenuation might be crucial and lead to the signal to be below the noise threshold. This can 

also explain the reason why many data points have been ignored in the infrasound vespagram 

(Fig. 2j(g)) during summer (see point 11 in the reply to R2 comments).  

 

Thank you for taking the time to review our submission, we believe that your advice have 

helped to clarify the manuscript. 

 

Your sincerely, 

Ekaterina Vorobeva, on behalf of all authors 
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