Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 1.490
IF1.490
IF 5-year value: 1.445
IF 5-year
1.445
CiteScore value: 2.9
CiteScore
2.9
SNIP value: 0.789
SNIP0.789
IPP value: 1.48
IPP1.48
SJR value: 0.74
SJR0.74
Scimago H <br class='widget-line-break'>index value: 88
Scimago H
index
88
h5-index value: 21
h5-index21
Preprints
https://doi.org/10.5194/angeo-2020-62
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-2020-62
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  22 Sep 2020

22 Sep 2020

Review status
This preprint is currently under review for the journal ANGEO.

Seasonal dependence of the Earth's radiation belt: new insight

Rajkumar Hajra Rajkumar Hajra
  • Indian Institute of Technology Indore, Simrol, Indore 453552, India

Abstract. Long-term variations of the relativistic (~ MeV) electrons in the Earth's radiation belt are explored to study seasonal features of the electrons. An L-shell dependence of the seasonal variations of the electrons is revealed for the first time. A clear ~ 6-month periodicity is identified for 1.5–6.0 MeV electron fluxes in the L-shells between ~ 3.0 and ~ 5.0, representing two peaks per year. The two-peak variation is strong during solar cycle descending to minimum phases, with weaker/no variations during solar maximum. The peaks are largely asymmetric in amplitude. These are not essentially equinoctial: sometimes the peaks are shifted to solstices and sometimes one annual peak is only observed. No such seasonal features are prominent for L < 3.0 and L > 5.0. The results imply varying solar/interplanetary drivers of the radiation belt electrons at different L-shells. This has a potential impact on the modeling of space environment. Plausible solar drivers are discussed.

Rajkumar Hajra

Interactive discussion

Status: open (until 21 Nov 2020)
Status: open (until 21 Nov 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Rajkumar Hajra

Rajkumar Hajra

Viewed

Total article views: 243 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
215 24 4 243 3 3
  • HTML: 215
  • PDF: 24
  • XML: 4
  • Total: 243
  • BibTeX: 3
  • EndNote: 3
Views and downloads (calculated since 22 Sep 2020)
Cumulative views and downloads (calculated since 22 Sep 2020)

Viewed (geographical distribution)

Total article views: 170 (including HTML, PDF, and XML) Thereof 170 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 27 Oct 2020
Publications Copernicus
Download
Short summary
Geomagnetic activity is known to exhibit semi-annual variation with larger occurrences during equinoxes. A similar seasonal feature was reported for relativistic (∼ MeV) electrons throughout the entire outer zone radiation belt. Present work, for the first time reveals that electron fluxes increase with an ∼ 6-month periodicity in a limited L-shell only with large dependence in solar activity cycle. In addition, flux enhancements are not essentially equinoctial.
Geomagnetic activity is known to exhibit semi-annual variation with larger occurrences during...
Citation