Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 1.490
IF1.490
IF 5-year value: 1.445
IF 5-year
1.445
CiteScore value: 2.9
CiteScore
2.9
SNIP value: 0.789
SNIP0.789
IPP value: 1.48
IPP1.48
SJR value: 0.74
SJR0.74
Scimago H <br class='widget-line-break'>index value: 88
Scimago H
index
88
h5-index value: 21
h5-index21
Preprints
https://doi.org/10.5194/angeo-2020-57
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-2020-57
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  03 Sep 2020

03 Sep 2020

Review status
This preprint is currently under review for the journal ANGEO.

Dynamic processes in the magnetic field and in the ionosphere during the 30 August–2 September, 2019 geospace storm

Yiyang Luo1,2, Leonid Chernogor3, Kostiantyn Garmash3, Qiang Guo4, Victor Rozumenko3, and Yu Zheng1 Yiyang Luo et al.
  • 1Qingdao university, 308 Ningxia Road, Qingdao, 266071, China
  • 2Department of Theoretical Radio Physics, V. N. Karazin Kharkiv National University, Kharkiv, 61022, Ukraine
  • 3Department of Space Radio Physics, V. N. Karazin Kharkiv National University, Kharkiv, 61022, Ukraine
  • 4Harbin Engineering University, 145 Nantong Street, Nangang District, Harbin, 150001, China

Abstract. Back at the end of the last century, L. F. Chernogor validated the concept that geospace storms are comprised of synergistically coupled magnetic storms, ionospheric storms, atmospheric storms, and storms in the electric field originating in the magnetosphere, the ionosphere and the atmosphere (i.e., electric storms). Their joint studies require the employment of multiple-method approach to the Sun–interplanetary medium–magnetosphere–ionosphere–atmosphere – Earth system. This study provides general analysis of the 30 August–2 September, 2019 geospace storm, the analysis of disturbances in the geomagnetic field and in the ionosphere, as well as the influence of the ionospheric storm on the characteristics of HF radio waves over the People's Republic of China. A unique feature of the geospace storm under study is its duration, of up to four days. The main results of the study are as follows. The energy and power of the geospace storm have been estimated to be 1.5 PJ and 15 GW, and thus this storm is weak. The energy and power of the magnetic storm have been estimated to be 1.5 PJ and 9 GW, i.e., this storm is moderate, and a unique feature of this storm is the duration of the main phase, of up to two days. The recovery phase also was lengthy, no less than two days. On 31 August 2019 and on 1 September 2019, the variations in the H and D components attained 60–70 nT, while the Z-component variations did not exceed 20 nT. On 31 August 2019 and on 1 September 2019, the level of fluctuations in the geomagnetic field in the 100–1000 s period range increased from from 0.2–0.3 nT to 2–4 nT, while the energy of the oscillations showed a maximum in the 300–400 s to 700–900 s period range. The geospace storm was accompanied by a moderate to strong negative ionospheric storm. During 31 August 2019 and 1 September 2019, the electron density in the ionospheric F region reduced by a factor of 1.4 to 2.4 times as compared to the values on the reference day. The geospace storm gave rise to appreciable disturbances also in the ionospheric E region, as well as in the Es layer. In the course of the ionospheric storm, the altitude of reflection of radiowaves could sharply increase from about 150 km to approximately 300–310 km. The geospace storm was accompanied by the generation of atmospheric gravity waves modulating the ionospheric electron density. For the about 30 min period oscillation, the amplitude of the electron density disturbances could attain about 40 %, while it did not exceed 6 % for the about 15 min period. The results obtained have made a contribution to understanding of the geospace storm physics, to developing theoretical and empirical models of geospace storms, to the acquisition of detailed understanding of the adverse effects that geospace storms have on radiowave propagation and to applying that knowledge to effective forecasting these adverse influences.

Yiyang Luo et al.

Interactive discussion

Status: open (until 29 Nov 2020)
Status: open (until 29 Nov 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Yiyang Luo et al.

Viewed

Total article views: 307 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
272 31 4 307 7 5 3
  • HTML: 272
  • PDF: 31
  • XML: 4
  • Total: 307
  • Supplement: 7
  • BibTeX: 5
  • EndNote: 3
Views and downloads (calculated since 03 Sep 2020)
Cumulative views and downloads (calculated since 03 Sep 2020)

Viewed (geographical distribution)

Total article views: 284 (including HTML, PDF, and XML) Thereof 284 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 23 Nov 2020
Publications Copernicus
Download
Citation