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Abstract. We use a full-wave approach to find the field of monochromatic whistler waves, which are excited and propagating in

the low nighttime ionosphere. The source current is located in the horizontal plane and can have arbitrary finite distribution over

horizontal coordinates. The ground-based horizontal magnetic field and electric field at 125 km are calculated. The character

of wave polarization on the ground surface is investigated. The percentages of source energy supplied to the Earth-ionosphere

waveguide and carried upward ionosphere are estimated. Received results are important for the analysis of ELF/VLF emission5

phenomena observed both on the satellites and on the ground.

1 Introduction

ELF/VLF waves, which propagate in the ionosphere in whistler mode, are an important part of the ionosphere dynamics.

Such waves can be emitted by various natural phenomena such as atmospheric lightning discharges and volcanic eruptions,

magnetospheric chorus and hiss. Artificial ELF/VLF waves have been produced by ground based transmitters and by modulated10

HF heating of the ionosphere current system responsible for Sq variations or auroral electrojet, which is by now well-known

technique.

Several numerical methods have been developed for calculating of whistler wave fields in the Earth’s ionosphere (Pitteway,

1965; Wait, 1970; Bossy, 1979; Nygre’n, 1982; Budden, 1985; Nagano et al., 1994 , Yagitani et al., 1994; Shalashov and

Gospodchikov, 2011). One of the main difficulties is numerical instabilities caused by a large imaginary part of the vertical15

wave number. General full-wave analysis, including the problem of numerical ’swamping’ of the evanescent wave solutions,

was made, for example, by Nygre’n (1982), Nagano et al. (1994), Budden (1985). A traditional approach in full-wave analysis

is dividing a stratified ionosphere into a number of thin horizontal and homogeneous slabs and then connecting the solutions

in each slab by applying the boundary conditions. Such technique has been used by Yagitani et al. (1994) to study ELF/VLF

propagation from an infinitesimal dipole source located in the lower ionosphere. The idea of recursive calculation of mode20

amplitudes was developed and used for an arbitrary configuration of the radiating sources by Lehtinen and Inan (2008). Nev-

ertheless, finding fields created by both natural and artificial ELF/VLF radiating sources is still very relevant.
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In this paper, we use numerical methods to find the field of ELF/VLF wave, which have produced in low nighttime iono-

sphere. On the one hand, significant inhomogeneity of plasma parameters, strong wave mode attenuation and effect of wave

mode transformation (for example, whistler to vacuum electromagnetic) in low altitude nighttime ionosphere make the problem

considered to be enough difficult and fundamentally important. On the other hand, it has practical significance, as an example,

for interpretation of numerous experimental results on HF-heating which modulate natural ionospheric currents at altitudes of5

60− 100 km.

In calculations, we use a technique known as the two-point boundary-value problem for ordinary differential equations

(Kierzenka and Shampine, 2001). Using this technique in early work (Bespalov and Mizonova, 2017; Bespalov et al., 2018) has

provided numerically stable solutions of a complete system of wave equations for arbitrary altitude profiles of plasma parame-

ters and in stratified ionosphere for arbitrary angles of wave incidence. Here, we find a wave field created by a monochromatic10

source current located in the low night ionosphere. As an example of calculations we use current distributions similar to those

simulated by HF heating of the auroral electrojet (Payne et al., 2007). The obtained results are important for analysis of the

ELF/VLF emission phenomena observed both in the ground-based observatories and on board of satellites.

2 Basic equations

We consider a whistler wave which is excited and propagating in the layer 0≤ z ≤ zmax of the non-homogeneous stratified15

ionosphere. We choose a coordinate system with vertical upward z axis and x, y axes in horizontal plane, suppose that plasma

parameters depend on coordinate z, plane z = 0 corresponds to the ground surface, above the boundary z = zmax ionosphere

plasma is close to homogeneous, the ambient magnetic field B0 belongs to the y, z plane and is inclined at an angle ϑ to the z

axis. We assume that external currents have monochromatic dependence on time and flow in the source plane z = zs

j(r⊥,z, t) = J(r⊥)δ (z− zs)e−iωt . (1)

At first, we use the Fourier composition of the source current density over the horizontal coordinates20

J(n⊥,z) =

∫
J(r⊥,z)e

−ik0n⊥r⊥k20dr⊥ , (2)

and wave electric and magnetic fields at each altitude

E(n⊥,z) =

∫
E(r⊥,z)e

−ik0n⊥r⊥k20dr⊥ ,

H(n⊥,z) =

∫
H(r⊥,z)e

−ik0n⊥r⊥k20dr⊥ , (3)

and find field amplitudes E(n⊥,z), H(n⊥,z) corresponding to the horizontal wave vector component k⊥ = k0n⊥, k0 = ω/c.

Here we use SI units for E and modified units for H = Z0HSI (Budden, 1985), where Z0 =
√
µ0/ε0 is the impedance of free

space. Then we write the Maxwell equations
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∇×H = Z0j− ik0ε̂E ,

∇×E = ik0H , (4)

where c is the speed of light in free space and ε̂ is permittivity tensor, which yield a set of four equations for the horizontal

components E⊥(n⊥,z), H⊥(n⊥,z) (in a case of source-free medium see, e.g., Budden, 1985; Bespalov et al., 2018; Mizonova,

2019)

dF/dz = M̂F+Z0Iδ(z− zs) . (5)

Here we have taken into attention that the horizontal refractive index of the wave propagating through the stratified medium is5

conserved due to Snell’s law. In Eq. (5) F(n⊥,z) and I(n⊥,z) are four-component column vectors

F =


Ex

Ey

Hx

Hy

 , I =


nxJz/εzz

nyJz/εzz

Jy − Jz(η− ε)sin2ϑ/2εzz

−Jx + Jzig sinϑ/εzz

 , (6)

M̂ is a matrix of which the elements mij are expressed in terms of components of the transverse wave vector k⊥ = k0n⊥, ε,

η, g are elements of the permittivity tensor which depends on the z coordinate (Bespalov and Mizonova, 2017, Bespalov et al.,

2018), εzz = εsin2ϑ+ ηcos2ϑ.

To solve the system (5), (6) we define four boundary conditions. We write two of them on the plane z = 0 assuming the10

ground surface to be perfect conductive

Ex (z = 0) = 0, Ey (z = 0) = 0. (7)

We write two other conditions on the plane z = zmax excluding wave energy coming from above. To clarify them we express

the field vector column F above the boundary z = zmax as sum of four wave modes

F(z) =

4∑
j=1

AjPjexp(ikzj (z− zmax)) . (8)

Here Aj = const, kzj are four roots of local dispersion relation and Pj are four corresponding local polarization vectors. We

mention that values kzj and vectors Pj are the solution of Eqs. (5), (8) for homogeneous plasma without sources. Assuming15

that indices 2 and 4 correspond to coming from above propagating and non-propagating wave modes (imaginary parts of kz2

and kz4 are negative) we write

A2 = 0, A4 = 0. (9)
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Solving the set of Eq. (5) with known source current density (6) and boundary conditions (7), (9) we can find the field of plane

wave with horizontal wave vector k⊥ = k0n⊥ in the layer 0< z < zmax. Then, we use the inverse transform

E(r⊥,z) =

∫
E(n⊥,z)e

ik0n⊥r⊥
dn⊥

(2π)
2 ,

H(r⊥,z) =

∫
H(n⊥,z)e

ik0n⊥r⊥
dn⊥

(2π)
2 , (10)

to calculate the total field.

3 Description of the solution algorithm

We take into account that out of the plane z = zs the source current density (6) is equal to zero, so Eq. (5) becomes

dF/dz = M̂F . (11)

To solve Eq. (11) in layers 0≤ z < zs and zs < z ≤ zmax we apply packaged solver MATLAB bvp4c and use a method of5

known as the two-point boundary-value problem for ordinary differential equations (Kierzenka and Shampine, 2001). The

solver solution starts with an initial guess supplied at an initial mesh points and changes step-size to get the specified accuracy.

At first we find two linearly independent solutions F1 and F2 of Eq. (11) in the layer 0≤ z < zs completing the bound-

ary condition (7) on the plane z = 0 for arbitrary conditions on the plane z = zs− 0. For example, we use four conditions

Ex (z = 0) = 0,Ey (z = 0) = 0,Ex (z = zs− 0) = E,Ey (z = zs− 0) = 0 for the solution F1 and four conditionsEx (z = 0) =10

0, Ey (z = 0) = 0, Ex (z = zs− 0) = 0, Ey (z = zs− 0) = E for the solution F2, where E is constant. Then we write the gen-

eral solution in the layer 0≤ z ≤ zs as sum

F = aF1 + bF2 . (12)

Similarly, we find two linearly independent solutions F∗1 and F∗2 of Eq. (11) in the upper layer zs < z ≤ zmax completing

the boundary condition (9) on the plane z = zmax. By arbitrary conditions on the plane z = zs + 0 we have A2 = 0 ,A4 = 0,

Ex (z = zs + 0) = E, Ey (z = zs + 0) = 0 and A2 = 0, A4 = 0, Ex (z = zs + 0) = 0, Ey (z = zs + 0) = E respectively. We15

write the general solution in the layer zs < z ≤ zmax as sum

F = a∗F∗1 + b∗F∗2 . (13)

Integrating Eq. (5) over z coordinate in a narrow layer (zs− 0,zs + 0) we find a condition connecting solutions (12) and (13)

F(z = zs + 0)−F(z = zs− 0) = Z0I . (14)

That condition yields four algebraic equations for the coefficients a, a∗, b, b∗. Thus, finding those coefficients we obtain the

wave field F (6) in the layer 0≤ z ≤ zmax. In particular, the fields on the ground surface can be expressed as
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H⊥ (z = 0) =

√
|Hx (z = 0)|2 + |Hy (z = 0)|2,

Ey′ (z = 0) =

(
sinϑ− ny

n0z
cosϑ

)
nxHy (z = 0)−

−
((

1−n2y
) cosϑ

n0z
+ny sinϑ

)
Hx (z = 0) ,

Ex′ (z = 0) =
1−n2x
n0z

Hy (z = 0) +
nxny
n0z

Hx (z = 0) , (15)

where n0z =
√

1−n2⊥, Ex′,y′ are electric strength components of incident wave in coordinate system with z′ - axis along

ambient magnetic field. The wave polarization near the ground surface is determined by

Π = Ey′ (z = 0)/Ex′ (z = 0) . (16)

The electric field at the altitude z = zmax can be expressed as

E (z = zmax) =

=

√
|Ex (z = zmax)|2 + |Ey (z = zmax)|2 + |Ez (z = zmax)|2 . (17)

The coordinate dependence of the wave field can be found from the inverse Fourier transform (10). The vertical energy flux5

(Poynting vector) is

Sz = (2Z0)−1Re[E∗⊥,H⊥]z , (18)

and the total power of source is

P =
1

2
Re

∫
(jxE

∗
x(z = zs) + jyE

∗
y(z = zs))dxdy . (19)

Now we present the results of numerically computed solution of the set (5), (6) under model conditions for the nighttime

ionosphere.

4 The ionosphere data and calculation results10

In the calculations, we use the altitude profiles of the plasma density shown in Fig. 1a, and the collision frequencies between

charged and neutral particles shown in Fig. 1b. The plasma density data are taken from International Reference Ionosphere (Bil-

itza and Reinisch, 2007) (https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php) and correspond to 680 N; 250 E;

04 September 2019, 00:30 LT. The collision frequencies data are taken from the book of Gurevich and Shvarcburg (1973).

The angle of magnetic field inclination with respect to the axis z is equal to ϑ= 1680. We use the value zmax = 125 km as15

the upper boundary of the solution. At this altitude a typical spatial scale of plasma inhomogeneity exceeds 70 km and it is
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Figure 1. Nighttime ionosphere model: (a) the electron plasma density and (b) the collision frequency between electron and neutral particles

(solid line) and collision frequency between ion and neutral particles (dashed line).

much more than the wavelength which in the considered case is of order from 20 to 25 km. As an example, we calculate the

fields created by varying at frequency 3 kHz and flowing at the altitude zs = 80 km horizontal current, with equal x and y

components Jx = Jy and Jz = 0. We assume that currents occupy a volume which has a shape of a horizontal pancake and use

for calculations a Gaussian distributions over x and y coordinates J(r⊥) = Jmax exp
(
−x2/2L2

x− y2/2L2
y

)
with characteristic

horizontal sizes Lx = 12 km, Ly = 70 km. Corresponding current distribution (2) in Fourier-space is also Gaussian and has a

form5

J(n⊥) = J0 exp
(
−k20L2

xn
2
x/2− k20L2

yn
2
y/2
)
, where J0 = 2πk20LxLyJmax. We calculate the wave field in N = 400 points

with steps and then use inverse Fast Fourier transform (Cooley and Tukey, 1965) to find its coordinate dependence. We present

the results of field calculation in Fourier-space (Figs. 2-3) and in coordinate space (Fig. 4). The dependences of amplitude of

horizontal magnetic field H⊥(nx,ny)/E0 on ground surface z = 0 and amplitude of electric field E(nx,ny)/E0 at altitude

z = zmax are presented in Figs. 2a,b. The field values are normalized by the valueE0 = Z0J0. Polarization ellipse parameters φ,10

Ey′ = Ex′e−iφ and log |Ey′/Ex′ | are presented in Figs. 2c,d. Positive values of phase φ correspond to right hand polarization,

typical for whistler waves, and negative values of phase φ correspond to left hand polarization. Positive values of parameter

log |Ey′/Ex′ | mean that the polarization ellipse is elongated predominantly along y axis and negative values of parameter

log |Ey′/Ex′ | mean that the polarization ellipse is elongated predominantly along x axis. Examples of altitude dependences of

normalized electric and magnetic fields corresponding to different horizontal wave vectors are presented in Fig. 3. The level15

z = zs of source action is marked by dotted line. Figures 4 shows contour maps of fields created by horizontal currents with

known space distribution. Figure 4a shows current density normalized by the value Jmax. Figure 4b shows electric field at the
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Figure 2. Fields in the z = 0 plane: (a) the horizontal magnetic field, (b) the electric field at the height z = 125 km, (c) the polarization

ellipse parameters φ
(
Ey′ = Ex′e

iφ
)
, and (d) log |Ey′/Ex′ |.
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Figure 3. Altitude dependences of the amplitudes of horizontal electric and magnetic fields.

altitude z = zmax. Figure 4c shows horizontal magnetic field on ground surface z = 0. Both electric and magnetic fields are

normalized by the value Z0Jmax. Figure 4d shows polarization parameter φ. The arrow shows the current direction.
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Figure 4. Source currents and fields space distributions: (a) space distributions of source currents, (b) the electric field at z = 125km, (c) the

horizontal magnetic field at z = 0, and (d) the polarization ellipse parameters φ, Ey′ = Ex′e
−iφ at z = 0.

5 Discussion

We use a full-wave approach to find the field of monochromatic whistler waves which are excited and propagating at night

in the strongly inhomogeneous low ionosphere. A source current is assumed to be located in horizontal plane and to have

in this plane an arbitrary finite space distribution. At first, we consider a plane wave with the horizontal components of the

refractive index n⊥ generated by the current J(r⊥)∼ eik0n⊥r⊥ . The set of wave equation in the layer 0< z < zmax for each

n⊥ - component is completed by boundary conditions assuming a perfect conductivity of ground surface and excluding wave

energy coming on the upper boundary z = zmax from above. The method known as the two-point boundary-value problem for

ordinary differential equations (Kierzenka and Shampine, 2001) is applied to find the solutions of wave equations above and5

below the source plane. Then we connect these solutions using source current distribution. When the dependencies of source

current and wave field in n⊥-space are finite functions with discretized values, the Fast Fourier Transform algorithm can be

used for numerical calculations. Inverse Fast Fourier transform yields space dependence of the wave field.

As an example, we calculate the fields created by varying at a frequency of 3 kHz and flowing at zs = 80 km horizontal

current, with coincided x and y components of current density Jx = Jy . We use a Gaussian distributions of source current10

density over x and y coordinates with characteristic horizontal sizes Lx = 12 km, Ly = 70 km. We mention that the model of

a plane source current can also be effective in a more general case of current layer with small thickness ∆z� λz ∼ 60 km.

The ground-based horizontal magnetic field and the electric field at 125 km are calculated both in Fourier (nx, ny) and

coordinate (x, y) spaces. Since a wave can achieve the ground surface in penetrating mode in case n⊥ ≤ 1. The magnetic

field H⊥(n⊥,z = 0) is noticeably non-zero for Fourier components with n⊥ < 1 and is practically equal to zero for Fourier15

components with n⊥� 1. Waves with n⊥ < 1 are right hand polarized (see Fig. 2c), which is typical for whistlers. However,
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if the horizontal component of the refractive index has an order of unit, then the magnetic field H⊥(n⊥,z = 0) can increase

two or three times (see Fig. 2a). The polarization parameter φ of such components can be negative similar to the left hand

polarized waves (see Fig. 2c). We mention that if the horizontal size of radiating currents is small enough L≤ 1/k0 ∼ 15 km

(for wave with frequency 3 kHz) then Fourier components with n⊥ ∼ 1 can make a noticeable contribution into the whole field

and change the character of polarization.

The magnetic field H⊥(r⊥,z = 0) is predominantly localized under the source (Fig. 4c). The electric field at 125 km oc-

cupies a spot of several times larger size (Fig. 4b). The polarization parameter φ at z = 0 is positive almost everywhere, but5

becomes negative at large distances from the source across the current direction (Fig. 4d). We mention that the current distri-

butions used in our calculation can be similar to electrojet currents modulated in D-region by the HAARP HF heating facility

(Keskinen and Rowland, 2006; Payne et al., 2007). For example, according to data collected during an experimental campaign

run in April 2003 and results of numerical simulations (Payne et al., 2007; Lehtinen and Inan, 2008), the maximum change in

modulated conductivity occupies approximately 10 km over the height and occurs at altitude∼ 80 km. Pedersen and Hall con-10

ductivities approximately coincide so if ambient electrojet field is directed along x axis, then jx ≈ jy . The maximum surface

density of modulated currents (1) has an order Jmax ∼ 10−6−10−5Am−1. Using in our calculations the magnitude of current

density Jmax ∼ 5 · 10−6Am−1 yields the total power of the source ∼ 36W, the ground-based horizontal magnetic field under

the source B⊥ ∼ 1pT and the electric field at the altitude of 125 km above the source E ∼ 400µVm−1. The magnitude of the

magnetic field is similar to the field measured at VLF sites in the immediate vicinity of the HAARP heating facility (Payne15

et al., 2007) and calculated by Lehtinen and Inan (2008). The maximum vertical energy flux (Poynting vector) at the altitude

of 125 km is ∼ 3.2 nWm−2 and total power is ∼ 17 W. The percentages of source energy supplied by the Earth-ionosphere

waveguide and carried upward ionosphere depends on altitude profile of ionosphere plasma. If low boundary of ionosphere

is sharp enough then sufficient part of the source energy is supplied to the Earth-ionosphere waveguide. In a case of smooth

ionosphere low boundary sufficient part of the source energy is carried upward. By the altitude profile of plasma density used20

in calculation about half of the source energy is carried upward, approximately twenty percent of the energy is supplied to the

Earth-ionosphere waveguide and approximately thirty percent of the energy is absorbed.

6 Conclusions

We find a field of monochromatic whistler waves which are excited and propagating in the low nighttime ionosphere. Using

a MATLAB boundary-value problem solver enables to find numerically stable solutions of full set of the wave equations25

applying to conditions of inhomogeneous ionosphere at altitudes below 125 km. Above this altitude the ionosphere plasma

is slightly inhomogeneous, hence approximate methods are suitable. As example, this calculation technique is applied to the

problem of ELF/VLF waves radiation from modulated HF-heated electrojet currents. At first we consider a plane wave with

known horizontal component of the refractive index, find a wave field and analyze a character of wave polarization on the

ground surface. Then we use inverse Fast Fourier transform to find a total field, get the dependencies of wave field at 0 km and30

125 km, analyze the type of wave polarization on the ground surface and estimate absorbed, supplied by the earth-ionosphere
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waveguide and carried upward parts of source energy. The obtained values are in a good agreement with ground and satellite

observations and known calculation results. Using model of plane horizontal source currents can be generalized for the arbitrary

altitude source distribution.

Data availability. The paper is theoretical and no new experimental data are used. The data are taken from International
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