Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
    1.445
  • CiteScore value: 2.9 CiteScore
    2.9
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Preprints
https://doi.org/10.5194/angeo-2020-44
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-2020-44
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  15 Jul 2020

15 Jul 2020

Review status
This preprint is currently under review for the journal ANGEO.

On the relationship of energetic particle precipitation and mesopause temperature

Florine Enengl1,2, Noora Partamies2,3, Nickolay Ivchenko1, and Lisa Baddeley2,3 Florine Enengl et al.
  • 1KTH Royal Insitute of Technology, Stockholm, Sweden
  • 2The University Centre in Svalbard, Norway
  • 3Birkeland Centre for Space Science, Norway

Abstract. Energetic Particle Precipitation (EPP) has the potential to change the neutral atmospheric temperature at the mesopause region. Recent results, however, are inconsistent leaving the mechanism and the actual effect still unresolved. Here we have searched for electron precipitation events and investigated a possible correlation between D region electron density enhancements and simultaneous neutral temperature changes. The rotational temperature of the exited hydroxyl (OH) molecules is retrieved from the spectrum of the OH airglow. The electron density is monitored by the EISCAT Svalbard radar from the International Polar Year (IPY) in 2007–2008, when the EISCAT Svalbard radar was run continuously, until February 2019. Particle precipitation events are characterized by rapid increases in electron density by a factor of 4 at an altitude range of 80–95 km, which overlaps with the nominal altitude of the OH airglow layer. The OH airglow measurements and the electron density measurements are co-located. Most of our 8 electron precipitation events are associated with a temperature decrease of 10–50 K. Only one event was related to temperature change less than 10 K. We interpret the results in terms of the change in the chemical composition in the mesosphere. Due to EPP ionisation the population of excited OH at the top of the airglow layer decreases. As a consequence, the airglow peak height changes and the temperatures are probed at lower altitudes, providing inconsistent temperature responses. This is in agreement with conclusions of earlier studies, but is, for the first time, constructed from electron precipitation measurements as opposed proxies. The EPP related temperature change recovers very fast, typically within 30 minutes. We therefore further conclude that this type of particle precipitation events would only have a significant impact on the longer-term heat balance in the mesosphere if the lifetime of the precipitation was much longer than that of a typical EPP event found in this study.

Florine Enengl et al.

Interactive discussion

Status: open (until 26 Aug 2020)
Status: open (until 26 Aug 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Florine Enengl et al.

Florine Enengl et al.

Viewed

Total article views: 122 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
88 29 5 122 8 7
  • HTML: 88
  • PDF: 29
  • XML: 5
  • Total: 122
  • BibTeX: 8
  • EndNote: 7
Views and downloads (calculated since 15 Jul 2020)
Cumulative views and downloads (calculated since 15 Jul 2020)

Viewed (geographical distribution)

Total article views: 108 (including HTML, PDF, and XML) Thereof 108 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 11 Aug 2020
Publications Copernicus
Download
Citation