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Abstract.  9 

The accuracy and availability of satellite-based applications like GNSS positioning and remote sensing crucially 10 

depends on the knowledge of the ionospheric electron density distribution. The tomography of the ionosphere is 11 

one of the major tools to provide link specific ionospheric corrections as well as to study and monitor physical 12 

processes in the ionosphere and plasmasphere. In this work, we apply an Ensemble Kalman Filter (EnKF) approach 13 

for the 4D electron density reconstruction of the topside ionosphere and plasmasphere with the focus on the 14 

investigation of different propagation models and compare them with the iterative reconstruction technique 15 

SMART+. The STEC measurements of eleven LEO satellites are assimilated into the reconstructions. We conduct 16 

a case study on a global grid with altitudes between 430 and 20200 km, for two periods of the year 2015 covering 17 

quiet to perturbed ionospheric conditions. Particularly, the performance of the methods to estimate independent 18 

STEC and electron density measurements from the three Swarm satellites is analysed. The results indicate that the 19 

methods EnKF with Exponential decay as the propagation model and SMART+ perform best, providing in 20 

summary the lowest residuals.   21 

1 Introduction 22 

The ionosphere is the upper part of the atmosphere extending from about 50 - 1000 km and going over in the 23 

plasmasphere. The characteristic property of the ionosphere is that it contains sufficient free electrons to affect the 24 

radio waves propagation of trans-ionospheric radio signals, as from telecommunication, navigation or remote 25 

sensing satellites, by refraction, diffraction and scattering. 26 

Therefore, the knowledge of the three-dimensional electron density distribution and their dynamics are of practical 27 

importance. Around 50% of the signal delays or range errors of L-band signals used in GNSS originate from 28 

altitudes above the ionospheric F2 layer, which consist of topside ionosphere going over into the plasmasphere. 29 

So far, especially the topside ionosphere and plasmasphere is not well described.  30 

The choice of the ionospheric correction model has an essential impact on the accuracy of the estimated 31 

ionospheric delay and its uncertainties. A widely used approach for ionospheric modelling is the single-layer 32 

model, whereby the ionosphere is projected onto a two-dimensional (2D) spherical layer, typically located between 33 

350 and 450 km. However, usually 2D models are not accurate enough to support high accuracy navigation and 34 

positioning techniques in real time (e.g. Odijk 2002; Banville 2014). Additionally, they do not provide the 35 

possibility to look insight the complex coupling processes between magnetosphere, plasmasphere and ionosphere. 36 

More accurate and precise positioning is achievable by considering the ionosphere as 3D medium. There are 37 

several activities in the ionosphere community aiming to describe the median ionospheric behavior by the 38 
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development of 3D electron density models based on long-term historical data. Two widely used models are the 39 

International Reference Ionosphere model (IRI, cf. Bilitza et al., 2011) and the NeQuick model (cf. Nava et al., 40 

2008).  41 

Since those models represent a median behavior, it is essential to update them by the assimilation of actual 42 

ionospheric measurements. There is a variety of approaches developed and validated for the ionospheric 43 

reconstruction by combination of actual observations with an empirical or a physical background model. 44 

Hernandez-Pajares et al. (1999) present one of the first GNSS-based data-driven tomographic models which 45 

considers the ionosphere as a grid of three-dimensional voxels and the electron density within each voxel is 46 

computed as a random walk time series. The voxel-based discretisation of the ionosphere is used for instance in 47 

Heise et al., 2002; Wen et al., 2007; Gerzen and Minkwitz, 2016, Gerzen et al., 2017, Wen et al., 2020. These 48 

authors reconstruct the 3D ionosphere by algebraic iterative methods. An alternative is to estimate the electron 49 

density as a linear combination of smooth and continuous basis functions, like e.g. spherical harmonics (SPH) 50 

(Schaer 1999), B-splines (Schmidt et al., 2008; Zeilhofer, 2008; Zeilhofer et al., 2010; Olivares-Pulido et al., 2019), 51 

B-splines and trigonometric B-splines (Schmidt et al. 2015), B-splines and Chapman functions (Liang et al., 2015 52 

and 2016), and empirical orthogonal functions and spherical harmonics (Howe et al., 1998).  53 

Besides the algebraic methods, also techniques taking benefit of information on spatial and temporal covariance 54 

information, such as Optimal Interpolation, Kalman Filter, three- and four-dimensional variational techniques and 55 

Kriging, are applied to update the modelled electron density distributions, cf. Howe et al., 1998; Angling et al., 56 

2008; Minkwitz et al., 2015 and 2016; Nikoukar et al., 2015; Olivares-Pulido et al., 2019.  57 

Moreover, there are approaches based on physical models, which combine the estimation of the electron density 58 

with physical related variables such as neutral winds or the oxygen/nitrogen ratio (cf. Wang, et al. 2004; Scherliess 59 

et al., 2009; Lee et al., 2012; Lomidze et al., 2015; Schunk, et al., 2004 and 2016; Elvidge and Angling, 2019).  60 

In general, the majority of data, available for the reconstruction of the ionosphere and plasmasphere, are Slant 61 

Total Electron Content (STEC) measurements, i.e. the integral of the electron density along the line of sight 62 

between the GNSS satellite and receiver. Often, STEC measurements provide limited vertical information and 63 

hence the modelling of the vertical the electron density distribution is hampered (Dettmering, 2003).  64 

The estimation of the topside ionosphere and plasmasphere poses a particular difficulty since direct electron 65 

density measurements are rare and since low plasma densities at these high altitudes contribute only marginally to 66 

the STEC measurements. Especially, ground-based STEC measurements are dominated by electron densities 67 

within and below the characteristic F2 layer peak. Consequently, information about the plasmasphere can be hardly 68 

extracted from ground-based STEC measurements, cf. e.g. Spencer and Mitchell, 2011. Thus, in the presented 69 

work, we concentrate on the modeling of the topside part of the ionosphere and plasmasphere and utilize only the 70 

space-based STEC measurements. 71 

In this paper, we introduce an Ensemble Kalman Filter to estimate the topside ionosphere and plasmasphere based 72 

on space-based STEC measurements. The propagation of the analyzed state vector to the next time step within a 73 

Kalman Filter is a tricky point.  The majority of the approaches, working with EnKF variants, uses physic-based 74 

models for the propagation step (cf. e.g. Elvidge and Angling 2019; Codrescu et al., 2018; Lee et al., 2012).  In 75 

our work, we investigate the question how the propagation step can be realized, if a physical model is not available 76 

or if the usage of a physical model is rejected as computational time consuming. We discretize the ionosphere and 77 

the plasmasphere below the GNSS orbit height by 3D voxels, initialize them with electron densities calculated by 78 

the NeQuick model and update them with respect to the data. We present different methods how to perform the 79 
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propagation step and assess their suitability for the estimation of electron density. For this purpose, a case study 80 

over quiet and perturbed ionospheric conditions in 2015 is conducted, investigating the capability of the 81 

estimations to reproduce assimilated STEC as well as to reconstruct independent STEC and electron density 82 

measurements.  83 

We organize the paper as follows: Section 2 describes the EnKF with the different propagation methods and the 84 

generation of the initial ensembles by the NeQuick model. Section 3 outlines the validation scenario with the 85 

applied data sets and section 4 presents the obtained results. Finally, we conclude our work in section 5 and provide 86 

an outlook on the next steps. 87 

2 Estimation of the topside ionosphere and plasmasphere by EnKF 88 

2.1 Formulation of the underlying inverse problem 89 

The information about the slant total electron content (STEC), along the satellite-to-receiver ray path 𝑠 can be 90 

obtained from multi-frequency GNSS measurements.  In detail, STEC is a function of the electron density 𝑁𝑒 91 

along the ray path 𝑠, given by 92 

𝑆𝑇𝐸𝐶𝑠 = ∫ 𝑁𝑒(ℎ, 𝜆, 𝜑)𝑑𝑠, (1) 

where  𝑁𝑒(ℎ, 𝜆, 𝜑) is the unknown function describing the electron density values depending on altitude ℎ, 93 

geographic longitude 𝜆 and latitude 𝜑.  94 

The discretization of the ionosphere by a 3D grid and the assumption of a constant electron density function within 95 

a fixed voxel allow us the transformation of Eq. (1) into a linear system of equations 96 

𝑆𝑇𝐸𝐶𝑠 ≈ ∑ 𝑁𝑒𝑖 ∙ ℎ𝑠𝑖
𝐾
𝑖=1  ⇒ 𝑦 = 𝐻𝑥 + 𝑟, (2) 

where 𝑦 is the a 𝑚 × 1  vector of the STEC measurements, 𝑥 is the vector of unknown electron densities with 𝑥𝑖 =97 

𝑁𝑒𝑖 equals the electron density in the voxel 𝑖, ℎ𝑠𝑖 is the length of the ray path s in the voxel 𝑖 and 𝑟 is the vector of 98 

measurement errors assumed to be Gaussian distributed with 𝑟 ∼ 𝑁(0, 𝑅) with expectation 0 and covariance 99 

matrix 𝑅.  100 

2.2 Background model 101 

As regularisation of the inverse problem in Eq. (2), a background model often provides the initial guess of the 102 

state vector 𝑥. In this study, we apply the NeQuick model version 2.0.2. The NeQuick model was developed at the 103 

International Centre for Theoretical Physics (ICTP) in Trieste/Italy and at the University of Graz/Austria (cf. 104 

Hochegger et al. (2000); Radicella and Leitinger (2001); Nava et al. (2008)). We use the daily solar flux index 105 

F10.7, to drive the NeQuick model. 106 

2.3 Analysis step 107 

We apply an EnKF to solve the inverse problem defined in Section 2.1. Evensen (1994) introduces the EnKF as 108 

an alternative to the standard Kalman Filter (KF) in order to cope with the non-linear propagation dynamics and 109 

the large dimension of the state vector and its covariance matrix. In an EnKF, a collection of realisations, called 110 

ensembles, represent the state vector 𝑥 and its distribution.  111 
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Let 𝑋𝑓 = [𝑥1
𝑓

, … , 𝑥𝐾
𝑓

] be a 𝐾 × 𝑁 matrix whose columns are the ensemble members, ideally following the a priori 112 

distribution of the state vector 𝑥. Further, the observations collected in 𝑦 are treated as random variables. Therefore, 113 

we define a 𝑚 × 𝑁  ensemble of observations 𝑌 = [𝑦1, 𝑦2 , … ,  𝑦𝑁] ∈  with 𝑦𝑖 = 𝑦 + 𝜖𝑖 and a random vector 𝜖𝑖 114 

from the normal distribution 𝑁(0, 𝑅).  115 

We define the ensemble covariance matrix around the ensemble mean 𝐸(𝑋𝑓) =
1

𝑁
∑ 𝑥𝑗

𝑓𝑁
𝑗=1  as follows: 116 

𝑃𝑓 =
1

𝑁−1
∑ {(𝑥𝑗

𝑓
− 𝐸(𝑋𝑓)) ∙ (𝑥𝑗

𝑓
− 𝐸(𝑋𝑓))

𝑇

}𝑁
𝑗=1  . (3) 

In the analysis step of the EnKF, the a priori knowledge on the state vector 𝑥 and its covariance matrix is updated 117 

by  118 

𝑋𝑎 = 𝑋𝑓 + 𝑃𝑓𝐻𝑇(𝑅 + 𝐻𝑃𝑓𝐻𝑇)−1 ∙ (𝑌 − 𝐻𝑋𝑓), (4) 

where the matrix 𝑋𝑎 represents the a posteriori ensembles and hence the a posteriori state vector. 119 

For the propagation of the analysed solution to the next time step, we test different propagation models described 120 

in Section 2.4. In order to generate the initial ensembles 𝑋𝑓(𝑡0) we use the NeQuick model and describe the 121 

procedure in section 2.5. Keeping in mind that we have to deal with a huge state vector (details are presented in 122 

Section 3.1), the big advantage of the EnKF, for the present study, is that there is no need for explicitly calculation 123 

of the ensemble covariance matrix (cf. Eq. (3)). Instead, to perform the analysis step in Eq. (4) we follow the 124 

implementation suggested by Evensen (2003).  125 

2.4 Considered models for the propagation step 126 

In this section, we introduce the different models investigated to propagate the analysed solution to the next time 127 

step. With all of them, we propagate the ensembles 20 minutes in time. These propagation models can be generally 128 

described as 𝑋𝑓(𝑡𝑛+1) = 𝐹(𝑋𝑎(𝑡𝑛)) + 𝑊𝐹(𝑡𝑛+1) + 𝛺𝐹(𝑡𝑛+1). 129 

We applied different approaches to model 𝐹, the systematic error 𝑊𝐹 and the process noise 𝛺𝐹 and present in this 130 

paper a selection of the most promising variants of them.  131 

2.4.1 Method 1: Rotation 132 

The method Rotation assumes that in magnetic coordinates, the ionosphere remains invariant in space while Earth 133 

rotates below it (cf. Angling and Cannon, 2004). Thus, we propagate the analysed ensemble 𝑋𝑎(𝑡𝑛) from time 𝑡𝑛 134 

to the next time step 𝑡𝑛+1 by: 135 

𝑋𝑓(𝑡𝑛+1) = 𝑅𝑜𝑡(𝑋𝑎(𝑡𝑛)) + 𝑊𝑟𝑜𝑡(𝑡𝑛+1). (5) 

In detail, to calculate 𝑅𝑜𝑡(𝑋𝑎(𝑡𝑛)) the magnetic longitude is changed corresponding to the evolution time ∆𝑡 =136 

𝑡𝑛+1 − 𝑡𝑛, i.e. 5 degree of longitude per 20 minutes. 𝑊𝑟𝑜𝑡 denotes the systematic error introduced by approximation 137 

of the true propagation of 𝑋𝑓 by a simple rotation. We tested here the following estimation of 𝑊𝑟𝑜𝑡: 138 

𝑊𝑟𝑜𝑡(𝑡𝑛+1) = 𝑟𝑎𝑡𝑖𝑜𝑟𝑜𝑡(𝑡𝑛+1) ∙ 𝐸 (𝑅𝑜𝑡(𝑋𝑎(𝑡𝑛))) ∙ 𝜖1×𝑁 and 𝑟𝑎𝑡𝑖𝑜𝑟𝑜𝑡(𝑡𝑛+1) =
(𝑥𝑏(𝑡𝑛+1)−𝑅𝑜𝑡(𝑥𝑏(𝑡𝑛)))

3∙𝑅𝑜𝑡(𝑥𝑏(𝑡𝑛))
, (6) 

where 𝑥𝑏 is the electron density vector calculated by the NeQuick model and 𝜖1×𝑁 is an 1-by-𝑁 matrix of ones. 139 

The division in the second equation is an element-wise one.  140 
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2.4.2 Method 2: Exponential decay 141 

Here we assume the electron density differences between the voxels of the analysis and the background model to 142 

be a first order Gauss-Markov sequence. These differences are propagated in time by an exponential decay function 143 

(cf. Nikoukar et al. 2015, Bust and Mitchell, 2008; Gerzen et al., 2015) 144 

𝑋𝑓(𝑡𝑛+1) =  𝑋𝑏(𝑡𝑛+1) ∙ 𝜖1×𝑁  + 𝑓(𝑡𝑛+1) ∙ [𝑋𝑎(𝑡𝑛) − 𝑋𝑏(𝑡𝑛)],  (7) 

where 𝑋𝑏(𝑡) is the ensemble of electron density vectors calculated by the NeQuick model for the time 𝑡 as 145 

described in section 2.5; 𝑓(𝑡𝑛+1) = exp (−
∆𝑡

𝜏
);  ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛;  𝜏 denotes the temporal correlation parameter 146 

chosen here as 3 hours.  147 

Note: Similar to the method described here, we tested also the application of 𝑅𝑜𝑡([𝑋𝑎(𝑡𝑛) − 𝑋𝑏(𝑡𝑛)]) instead of 148 

[𝑋𝑎(𝑡𝑛) − 𝑋𝑏(𝑡𝑛)] in Eq. (7). The results were similar and are therefore not presented here. 149 

2.4.3 Method 3: Rotation with exponential decay 150 

As third method, we define the propagation model as a combination of the propagation models described in the 151 

previous subsections, in particular   152 

𝑋𝑓(𝑡𝑛+1) =  𝑥𝑏(𝑡𝑛+1) ∙ 𝜖1×𝑁 + 𝑓(𝑡𝑛+1) ∙ 𝑅𝑜𝑡([𝑋𝑎(𝑡𝑛) − 𝑥𝑏(𝑡𝑛) ∙ 𝜖1×𝑁]) + 𝑊(𝑡𝑛+1)+√
∆𝑡

20
∙ 𝛺𝑒𝑥𝑝(𝑡𝑛+1).  (8) 

The systematic error 𝑊 is estimated as  153 

Thereby 𝑓 and 𝑊𝑟𝑜𝑡 are defined as in the two sections bevor. The process noise Ω𝑒𝑥𝑝 is assumed to be white with 154 

Ω𝑒𝑥𝑝(𝑡𝑛+1) = 𝑓(𝑡𝑛+1) ∙ Ω𝑟𝑜𝑡(𝑡𝑛+1) + (1 − 𝑓(𝑡𝑛+1)) ∙  𝑄𝑒𝑥𝑝(𝑡𝑛+1). Here the matrix Ω𝑟𝑜𝑡 consists of random 155 

realizations of the distribution 𝑁(0, Σ𝑟𝑜𝑡) with 156 

Σ𝑖𝑖
𝑟𝑜𝑡(𝑡𝑛+1) = (𝑟𝑎𝑡𝑖𝑜𝑖 ∙ {𝐸 (𝑅𝑜𝑡(𝑋𝑎(𝑡𝑛)))}

𝑖
)

2

, (10) 

where 𝑟𝑎𝑡𝑖𝑜𝑖  increases continuously depending on the altitude of the voxel 𝑖 from 
0.5

100
 for lower altitudes to 

1

100
 for 157 

the higher altitudes; 𝐸 (𝑅𝑜𝑡 (𝑋𝑎(𝑡𝑛))) denotes the ensemble mean vector. The equations (8) and (10) can be 158 

interpreted as follows: for the chosen time step of 20 minutes, the standard deviation of the time model error 159 

regarding the voxel 𝑖  is equal to √Σ𝑖𝑖
𝑟𝑜𝑡(𝑡𝑛+1) = 𝑟𝑎𝑡𝑖𝑜𝑖 ∙ {𝐸 (𝑅𝑜𝑡(𝑋𝑎(𝑡𝑛)))}

𝑖
, varying between 0.5% and 1% of 160 

the corresponding analyzed electron density in the voxel 𝑖. In details, we generate at each time step a new 161 

vector 𝜌𝑖~𝑁(0,1) with dim(𝜌𝑖) = 100 × 1 and calculate to calculate the 𝑖-th row 𝜔𝑖
𝑟𝑜𝑡 of Ω𝑟𝑜𝑡 by 162 

The matrix 𝑄𝑒𝑥𝑝(𝑡𝑛+1) consists of random realizations (different for each time step) consistent with the a priori 163 

covariance matrix 𝐿 of the errors of the background 𝑥𝑏(𝑡𝑛+1) (cf. Howe and Runciman, 1998). In details: The a 164 

priori covariance is assumed to be diagonal and 𝐿𝑖𝑖  equals the square of 1% of the corresponding background 165 

model value. Then the 𝑖-th row of 𝑄𝑒𝑥𝑝 is calculated by Eq. (12): 166 

𝑞𝑖(𝑡𝑛+1) =  √𝐿𝑖𝑖(𝑡𝑛+1) ∙ 𝜌𝑖(𝑡𝑛+1)𝑇. (12) 

𝑊(𝑡𝑛+1) = 𝑓(𝑡𝑛+1) ∙
8

10
∙ 𝑊𝑟𝑜𝑡(𝑡𝑛+1). (9) 

𝜔𝑖
𝑟𝑜𝑡(𝑡𝑛+1) = √Σ𝑖𝑖(Ω𝑟𝑜𝑡(𝑡𝑛+1)) ∙ 𝜌𝑖(𝑡𝑛+1)𝑇. (11) 

https://doi.org/10.5194/angeo-2020-39
Preprint. Discussion started: 23 June 2020
c© Author(s) 2020. CC BY 4.0 License.



6 

 

2.5 Generation of the ensembles 167 

In order to generate the ensembles we vary the F10.7 input parameter of the NeQuick model (cf. Section 2.2). 168 

First, we analysed the sensitivity of the NeQuick model on F10.7. Based on the results, we calculate a vector 169 

𝑭𝟏𝟎. 𝟕(𝑡) of the solar radio flux index  with dim(𝑭𝟏𝟎. 𝟕(𝑡)  ) = 100 × 1 and 𝑭𝟏𝟎. 𝟕(𝑡)~𝑁 (F10.7(𝑡),
3

100
∙170 

F10.7(𝑡) ) at time 𝑡. The vector 𝑭𝟏𝟎. 𝟕 serves as input for the NeQuick model to calculate the 100 ensembles of 171 

𝑋𝑏 during the considered period and the initial guess of the electron densities 𝑋𝑓(𝑡0). 172 

An example on the variation of the generated ensembles is provided by Figure 1. Particularly, we show in this 173 

figure the distribution of the differences between the ensemble of electron densities 𝑋𝑏(𝑡) and the NeQuick model 174 

values for DOYs 041 and 076. The residuals are depicted for a selected altitude and chosen UT times, presented 175 

through different colors (cf. subfigure history). In addition, the mean, the standard deviation (STD) and the root 176 

mean square (RMS) of the residuals are presented in the subplots.  177 

3 Validation scenario 178 

Within this study, the EnKF with the different propagation methods is applied and validated for the tomography 179 

of the topside ionosphere and plasmasphere. Particularly, two periods with quiet (DOY 041-059, 2015) and 180 

perturbed (DOY 074-079, 2015) ionospheric conditions are analysed. In this scope, we investigate the ability to 181 

reproduce assimilated STEC as well as to estimate independent STEC measurements and in-situ electron density 182 

measurements of the Swarm Langmuir Probes (LP).  183 

In addition, we apply the tomography approach SMART+ (Gerzen and Minkwitz, 2016 and Gerzen et al., 2017) 184 

to provide a benchmark. For SMART+ the number of iterations at each time step is set to 25 and the correlation 185 

coefficients are chosen as described in Gerzen and Minkwitz (2016).   186 

3.1 Reconstruction area 187 

We estimate the electron density over the entire globe with a spatial resolution of 2.5 degrees in latitude and 188 

longitude. Altitudes between 430 km and 20 200 km are reconstructed where the resolution equals 30 km for 189 

altitudes from 430 km to 1000 km and decreases exponentially with increasing altitude for altitudes above 1000 190 

km, i.e. in total 42 altitudes. Consequently, the number of unknowns is 𝐾 = 217728. The temporal resolution is 191 

set to 20 minutes.  192 

3.2 Ionospheric conditions in the considered periods 193 

We use the solar radio flux F10.7, the global planetary 3h index Kp and the geomagnetic disturbance storm time 194 

(DST) index to characterize the ionospheric conditions during the periods of DOY 041-059 and DOY 074-079 195 

2015. In the February period (DOY 041-059, 2015) the ionosphere is evaluated as quiet with F10.7 between 108 196 

and 137 sfu, a Kp index below 6 and DST values between 20 and -60 nT. The 17-th of March (DOY 076) 2015 is 197 

known as the St. Patrick’s Day storm. The F10.7 value equals ~116 sfu on DOY 075 and ~113 sfu on DOY076, 198 

the Kp index is below 5 on DOY 075 and increases to 8 on DOY 076; DST drops down to -200nT on DOY 076.  199 
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3.3 Data 200 

3.3.1 STEC measurements 201 

As input for the tomography approaches and for the validation, we use space-based calibrated STEC measurements 202 

of the following satellite missions: COSMIC satellites, Swarm satellites, TerraSAR-X, MetOpA and MetOpB, 203 

GRACE LEO satellites. Please note that in 2015, the orbit height of the COSMIC and MetOp satellites is ~800 204 

km, the orbit height of the Swarm B and TerraSAR-X satellites is ~500 km and the one of the Swarm C satellite 205 

~460 km. The STEC measurements of Swarm A and GRACE are used only for the validation.  206 

The STEC measurements of the Swarm satellites are acquired from https://swarm-diss.eo.esa.int/ and the STEC 207 

measurements of the other satellite missions are downloaded from http://cdaac-208 

www.cosmic.ucar.edu/cdaac/tar/rest.html. Both data provider supply also information on the accuracy of the 209 

STEC data. We utilize this information to fill the covariance matrix 𝑅 of the measurement errors.  210 

3.3.2 In-situ electron density measurements from the Swarm Langmuir Probes 211 

The LPs on board the Swarm satellites provide in-situ electron density measurements with a time resolution of 2 212 

Hz. For the present study, the LP in-situ data are acquired from https://swarm-diss.eo.esa.int/. Further, information 213 

on the pre-processing of the LP data is made available.  214 

Lomidze et. al (2018) assess the accuracy and reliability of the LP data (December 2013 to June 2016) by nearly 215 

coincident measurements from low‐ and middle‐latitude incoherent scatter radars, low‐latitude ionosondes, and 216 

COSMIC satellites, which cover all latitudes. The comparison results for each Swarm satellite are consistent across 217 

these different measurement techniques. The results show that the Swarm LPs underestimate the electron density 218 

systematically by about 10%.  219 

4 Results 220 

In this section, the different methods are presented with the following color code: blue for the method Rotation, 221 

green for the method Exponential decay, light blue for the method Rotation with exponential decay, magenta for 222 

NeQuick and red for SMART+. The legends in the figures are the following: “Rot” for the method Rotation, “Exp” 223 

for the method Exponential decay, “Rot and Exp” for the method Rotation with exponential decay. 224 

4.1 Reconstructed electron densities 225 

At the end of each EnKF analysis step, we have, for each of the considered methods, 100 ensembles representing 226 

the electron density values within the voxels. The EnKF reconstructed electron densities are then calculated as the 227 

ensemble mean. The top subplots of Figure 2 present the electron densities at DOY 076, 19:00 UT, reconstructed 228 

by the method Rotation with exponential decay. The left hand side subplot shows horizontal layers of the topside 229 

ionosphere at different heights between 490 and 827 km. The right hand side subplot shows the plasmasphere for 230 

altitudes between 827 and 2400 km at chosen longitudes. The bottom line subplots show the vertical TEC maps 231 

deduced from the 3D electron density in the considered altitude range between 430 and 20200 km for the same 232 

time stamp. The left hand side subplot show the reconstructed values and the right hand side VTEC is deduced 233 

from the NeQuick model calculated electron density. The reconstructed results are a bit higher than NeQuick ones.  234 
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Figure 3 displays method Rotation reconstructed electron density layers at different heights between 490 and 827 235 

km (left) and vertical TEC map deduced from the reconstructed 3D electron density in the altitude range between 236 

430 and 20200 km (right) for the same DOY 076, at 19:00 UT. The method Rotation delivers much higher values 237 

than NeQuick. All reconstructed values seems to be plausible, showing as expected the crest region, low electron 238 

densities in the Polar regions, etc.  239 

4.2 Plausibility check by comparison with assimilated STEC 240 

In this chapter, we check the ability of the methods to reproduce the assimilated STEC measurements. For that 241 

purpose, we calculate STEC along a ray path 𝑗, for all ray path geometries, using the estimated 3D electron 242 

densities, denoted as 𝑆𝑇𝐸𝐶𝑗
𝑒𝑠𝑡 , and compare them with the measured STEC, 𝑆𝑇𝐸𝐶𝑗

𝑚𝑒𝑎𝑠, used for the 243 

reconstruction. Then the mean deviation ∆𝑺𝑻𝑬𝑪 between the measurements 𝑆𝑇𝐸𝐶𝑗
𝑚𝑒𝑎𝑠 and the estimate 𝑆𝑇𝐸𝐶𝑗

𝑒𝑠𝑡  244 

is calculated for each of the considered methods according to  245 

∆𝑺𝑻𝑬𝑪(𝑡𝑛) =  
1

𝑚
∑(|𝑆𝑇𝐸𝐶𝑗

𝑚𝑒𝑎𝑠(𝑡𝑛) −  𝑆𝑇𝐸𝐶𝑗
𝑒𝑠𝑡(𝑡𝑛)|)

𝑚

𝑗=1

, (13) 

where m = number  of assimilated measurements. ∆𝑺𝑻𝑬𝑪 is calculated at each epoch 𝑡𝑛. In terms of the notation 246 

used for the Eqs. (1) - (4), we can reformulate the above formula for the mean deviation as  247 

∆𝑺𝑻𝑬𝑪(𝑡𝑛) =  
1

𝑚
∑ (|𝑦𝑗(𝑡𝑛) − 𝐸(𝑋𝑎(𝑡𝑛))

𝑇
∙ 𝐻𝑗|)𝑚

𝑗=1 , with 𝐻𝑗 = 𝑗-th row of 𝐻.               (14) 

Further, we consider the RMS of the deviations, in detail 248 

𝑹𝑴𝑺(𝑡𝑛) = √
1

𝑚
∑(|𝑆𝑇𝐸𝐶𝑗

𝑚𝑒𝑎𝑠(𝑡𝑛) −  𝑆𝑇𝐸𝐶𝑗
𝑒𝑠𝑡(𝑡𝑛)|)

2
𝑚

𝑗=1

. (15) 

To calculate ∆𝑺𝑻𝑬𝑪 and 𝑹𝑴𝑺, the same measurements are used as for the reconstruction. In this sense, the results 249 

presented in Figure 4 - Figure 8  can serve as a plausibility check, testing the ability of the methods to reproduce 250 

the assimilated TEC.  251 

Figure 4 depicts the distribution of the residuals, left subfigure for the quiet period, right subfigure for the 252 

perturbed period. The corresponding residual median, standard deviation (STD) and root mean square (RMS) 253 

values are also presented in the figure. It is worth to mention here that during the quiet period, the measured STEC 254 

is below 150 TECU. For all DOYs of the perturbed period, except DOY 076, the measured STEC is below ~130 255 

TECU. On DOY 076, the STEC values rise up to 370 TECU.  256 

The NeQuick model seems to underestimate the measured topside ionosphere and plasmasphere STEC during both 257 

periods. During both periods, SMART+ seems to perform best, followed by the method Rotation. However, the 258 

last one produces higher STD and RMS values. Compared to the NeQuick residuals, SMART+ is able to reduce 259 

the median of the residuals by up to 86% during the perturbed and up to 79% during the quiet period. The RMS is 260 

reduced by up to 48% and the STD by up to 41%. Rotation reduces the NeQuick median by up to 83%, the RMS 261 

by up to 27%, the STD value is almost on the same level as for NeQuick. The method Exponential decay is able 262 

to decrease the median of the NeQuick residuals by up to 54%, the RMS by up to 25%, and the STD values by up 263 

to 13%. The method Rotation with exponential decay performs similar to the NeQuick model.  264 

Interestingly, the median values are higher during the quiet period, while during the perturbed period the RMS and 265 

STD values are significantly higher. The reason therefore is probably that the assimilated STEC values have in 266 
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average lower magnitude during the days in the perturbed period, compared to those during the quiet period (which 267 

explains the lower median), except the storm DOY 076, while on DOY 076 they are significantly higher (which 268 

explains the higher STD and RMS).  269 

Figure 5 and Figure 6 plot ∆𝑺𝑻𝑬𝑪 values versus time for the selected periods. Noticeable is the increase of 270 

∆𝑺𝑻𝑬𝑪 during the storm on DOY 76. On the rest of the period, ∆𝑺𝑻𝑬𝑪 is below eight TECU.  During both periods, 271 

SMART+ generates the lowest ∆𝑺𝑻𝑬𝑪 values. ∆𝑺𝑻𝑬𝑪 of the methods Rotation and Exponential decay are in most 272 

of the cases higher than SMART+ delta STEC values and lower than the NeQuick model. ∆𝑺𝑻𝑬𝑪 of the method 273 

Rotation with exponential decay is similar to the NeQuick model. 274 

Figure 7 and Figure 8 present the distribution of ∆𝑺𝑻𝑬𝑪 and the 𝑹𝑴𝑺 error (cf. Eq. (14)) for the quiet and 275 

perturbed periods respectively. Figure 7 confirms the conclusions we draw so far from Figure 4 and Figure 5 . 276 

SMART+ delivers the lowest ∆𝑺𝑻𝑬𝑪 and 𝑹𝑴𝑺 values, followed by the method Rotation and then by the method 277 

Exponential decay. Rotation with exponential decay performs similar to the NeQuick model. For the perturbed 278 

period, again SMART+ delivers the lowest ∆𝑺𝑻𝑬𝑪 and 𝑹𝑴𝑺 statistics, followed by the Exponential decay and 279 

the Rotation with similar results.  280 

4.3 Validation with independent space-based sTEC data   281 

In order to validate the methods with respect to their capability to estimate independent STEC, the LEO satellites 282 

Swarm A and GRACE are chosen. The STEC measurements of these satellites are not assimilated by the tested 283 

methods. It is to mention here that 2015 the Swarm A satellite was flying site on site with the Swarm C satellite at 284 

around 460 km height. The height of the GRACE orbit was around 450 km. All satellites were flying on almost 285 

polar orbits. 286 

For each of the tree LEOs, the residuals between 𝑆𝑇𝐸𝐶𝑚𝑒𝑎𝑠 and 𝑆𝑇𝐸𝐶𝑒𝑠𝑡 are calculated and denoted as 𝑑𝑇𝐸𝐶 =287 

𝑆𝑇𝐸𝐶𝑚𝑒𝑎𝑠 − 𝑆𝑇𝐸𝐶𝑒𝑠𝑡 . Further, the absolute values of the residuals |𝑑𝑇𝐸𝐶| are considered. 288 

In general, for the quiet period, the STEC measurements of Swarm A vary below 105 TECU and for the second 289 

period below 170 TECU. For the GRACE satellite, the STEC measurements are below 282 TECU for the quiet 290 

period and below 264 TECU for the second period. 291 

Figure 9 and Figure 10 display the histograms of the STEC residuals during the quiet period for Swarm A and 292 

GRACE respectively. Presented are the distributions of the residuals 𝑑𝑇𝐸𝐶 and the absolute residuals |𝑑𝑇𝐸𝐶|. 293 

Also plotted are the median, STD and RMS of the corresponding residuals. Figure 11 and Figure 12 depict the 294 

histograms of the STEC residuals during the perturbed period. 295 

Again, the NeQuick model seems to underestimate the measured STEC during both periods for GRACE and 296 

Swarm A satellites. Compared to the NeQuick model, during both periods, the methods SMART+ and Exponential 297 

decay decrease the residuals and the absolute residuals between measured and estimated STEC for both GRACE 298 

and Swarm A satellites. The method Rotation with exponential decay performs for both periods very similar to the 299 

NeQuick model. The performance of the method Rotation is partly even worse than the one of the background 300 

model. Our impression is that the number and the distribution of the assimilated measurements is too small and 301 

angle limited to be sufficient to dispense with a background model, as is the case with the Rotation method, which 302 

uses the model only for the estimation of the systematic error. 303 
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Regarding the STEC of Swarm A, the lowest residuals and the most reduction in comparison to the NeQuick 304 

model, are achieved by SMART+. The median and the STD of the SMART+ residuals are ~0.3 TECU and ~3.4 305 

TECU resp. for quiet and ~ 0.7 TECU and ~7 TECU for the perturbed period. Compared to the NeQuick model, 306 

the absolute median value is reduced up to 64% by SMART+ during the quiet and by up to 61% during the 307 

perturbed period. The STD value is decreased by up to 47% during the quiet and up to 29% during the storm 308 

period. The second lowest residuals are achieved by the Exponential decay - here the median of the residuals is 309 

around 0.2 TECU for quiet and around 0.8 TECU for the perturbed period.  310 

Regarding the STEC of GRACE during the quiet period, the lowest residuals and the most reduction in comparison 311 

to background, are achieved by the Exponential decay, followed by SMART+. Exponential decay reduces the 312 

background absolute median value by up to 26% and the STD value by up to 28%. The median of the residuals is 313 

around 0.2 TECU. For SMART+, the median of the residuals is around 2.9 TECU. During the perturbed period, 314 

SMART+ reduces the absolute median at most by 17% and the STD by 9%, the Exponential decay does not reduce 315 

the absolute median, compared to NeQuick, but it reduces the absolute STD value by 23%. The median of the 316 

residuals are around -0.5 TECU for Exponential decay and around 0.8 TECU for SMART+.  317 

Comparing between quiet and storm conditions, in general an increase of RMS and STD of the residuals is 318 

observable for the NeQuick model and all tomography methods regarding both satellites.  319 

4.4 Validation with independent LP in-situ electron densities   320 

In this section, we further extend our analyses to the validation of the methods with independent LP in-situ electron 321 

densities of the three Swarm satellites. According to the locations of the LP measurements, the estimated electron 322 

density values are interpolated from the 3D electron density reconstructions. For each satellite, the measured 323 

electron density 𝑁𝑒𝑚𝑒𝑎𝑠 is compared to the estimated one 𝑁𝑒𝑒𝑠𝑡 .  In particular we calculate the residuals 𝑑𝑁𝑒 =324 

𝑁𝑒𝑚𝑒𝑎𝑠 − 𝑁𝑒𝑒𝑠𝑡, the absolute residuals |𝑑𝑁𝑒|, the relative residuals 𝑑𝑁𝑒𝑟𝑒𝑙 =
𝑑𝑁𝑒

𝑁𝑒𝑚𝑒𝑎𝑠 ∙ 100% and the absolute 325 

relative residuals |𝑑𝑁𝑒𝑟𝑒𝑙|. 326 

Figure 13 depicts the distribution of the residuals 𝑑𝑁𝑒 for the quiet period along with the median, STD and RMS 327 

values. Each of the three subplots presents one of the Swarm satellites. In Figure 14 the histograms of |𝑑𝑁𝑒| and 328 

|𝑑𝑁𝑒𝑟𝑒𝑙| are given for the same period. In Figure 14 we do not separate the values for the different satellites, 329 

because these are similar. Figure 15 and Figure 16 show the corresponding histograms for the perturbed period.  330 

The electron densities of the NeQuick model are in median slightly higher than the LP in-situ measurements for 331 

all three satellites during both periods. The median and STD values for the |𝑑𝑁𝑒𝑟𝑒𝑙| residuals produced by 332 

NeQuick are ~33% and ~38% resp. during the quiet period. For the perturbed period, we observe higher median 333 

and STD values of ~45% and ~56%, resp. The increase of the RMS and STD values of the absolute residuals is 334 

also visible for all the considered reconstruction methods. 335 

 The methods SMART+ and Rotation with exponential decay follow the trend of the model and show similar 336 

distributions in Figure 13 and Figure 15. Comparing these two methods with the NeQuick model, the performance 337 

of SMART+ is slightly better reducing the median of the absolute and absolute relative residuals by up to 8%. 338 

Further, during both periods, SMART+ reduces the STD values of the |𝑑𝑁𝑒| values by up to 23%. However, the 339 

STD and RMS values of the |𝑑𝑁𝑒𝑟𝑒𝑙| residuals for SMART+ during the quiet period are higher than those of the 340 

NeQuick model. The median and STD values of the |𝑑𝑁𝑒𝑟𝑒𝑙| residuals for SMART+ are ~30% and ~43% resp. 341 
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during quiet and higher during perturbed period, namely ~43% and ~53% resp. The statistics of the methods 342 

Exponential decay and Rotation are worse than those of NeQuick.   343 

5 Summary and conclusions  344 

In this paper, we focus on the assessment of three different propagation methods for an Ensemble Kalman Filter 345 

approach in the case that a physical propagation model is not available or discarded due to computational burden. 346 

We validate these methods with independent STEC observations of the satellites GRACE and Swarm A and with 347 

independent Langmuir probes data of the three Swarm satellites. The methods are compared to the algebraic 348 

reconstruction method SMART+, serving as a benchmark and to the NeQuick model for periods of the year 2015 349 

covering quiet to perturbed ionospheric conditions. This work is carrying out our first case study in this regard. 350 

Overlooking all the validation results, the methods SMART+ and Exponential decay reveal the best performance 351 

with the lowest residuals. In general, the method Rotation with exponential decay follows the trends of the 352 

NeQuick model. One significant difference between the investigated reconstruction approaches is that Rotation, 353 

as the only one of considered methods, uses the background information only for the estimation of the systematic 354 

error. The number of the assimilated measurements is small compared to the number of unknowns, additionally 355 

the distribution of measurements is uneven and angle limited. We assume these are the main reasons, why the 356 

method Rotation reproduces the assimilated STEC data well, but exhibits degraded results in comparisons with 357 

independent data.  358 

In summary, the comparison with the assimilated STEC show that during both periods all methods reduce 359 

successfully the median, RMS and STD values of the STEC residuals in comparison to the background model. 360 

SMART+ performs at best improving the statistics of the NeQuick model by up to 86%, followed by the method 361 

Rotation, decreasing the median of the residuals by up to 83%. The method Exponential decay lowers the median 362 

by up to 55%, but the STD values stay almost on the same level as for the NeQuick model.  363 

Regarding the ability to estimate independent STEC measurements, the methods SMART+ and Exponential decay 364 

reduce the independent STEC residuals by up to 64% for Swarm A and 28% for GRACE, compared to the NeQuick 365 

model. SMART+ generates the smallest residuals for the STEC measurements of Swarm A and Exponential decay 366 

performs at best for STEC measurements of GRACE. 367 

Concerning the estimation of independent electron density data, SMART+ shows the best results, reducing the 368 

background statistics of the absolute residuals by up to 23%. The median and STD values of the absolute residuals 369 

|𝑑𝑁𝑒𝑟𝑒𝑙| for SMART+ are ~30% and ~43% resp. during quiet and higher, namely ~43% and ~53% resp. during 370 

perturbed period. The distributions of the residuals produced by Rotation with exponential decay are similar to the 371 

ones of the NeQuick model. In general, all the considered methods generate relatively high residuals. It should be 372 

noted here that the independent electron density measurements are located at the lower edge of the reconstructed 373 

area and all the assimilated measurements are located above. Additionally, as already mentioned in Section 3.3.2, 374 

Swarm LPs was found to underestimate the true electron density systematically. This could be the second reason, 375 

why the reconstructions, based on the STEC, do not match the LPs electron densities. To get better results for the 376 

lower altitudes, it might be necessary to apply a kind of anchor point from below within the reconstruction 377 

procedure. We plan to utilise therefor the Swarm LPs electron denisty measurements themselves.   378 
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Further, to get a comprehensive concluding impression of the performance of the investigated methods and to get 379 

an insight in the ability of the methods for correct characterization of the electron density profile shapes, we start 380 

to work on comparisons with independent electron density data, located in the plasmasphere and with coherent 381 

scatter radar data. 382 

Furthermore, a pre-adjustment of the background model, e.g. in terms of F2 layer characteristics or the 383 

plasmapause location, may be helpful to improve the reconstruction results (cf. e.g. Bidaine and Warnant, 2010, 384 

Gerzen et. al., 2017). 385 
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 496 

Figure 1: The distribution of the ensemble residuals for a chosen altitude and selected UT times, for all 497 

latitudes, longitudes. Left – for DOY 041, right – for DOY 076. 498 

 499 

 500 
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Figure 2: Subfigures top: Rotation with exponential decay reconstructed electron density represented by 501 

layers at different heights between 490 and 827 km (left) and at chosen longitudes for altitudes between 827 502 

and 2400 km (right). Subfigures bottom: The vertical TEC map deduced from the reconstructed (left) and 503 

NeQuick-modeled (right) 3D electron density in the altitude range between 450 and 20200 km.  504 

 505 

Figure 3: Subfigures top: Method Rotation reconstructed electron density represented by layers at different 506 

heights between 490 and 827 km (left) and vertical TEC map deduced from the reconstructed 3D electron 507 

density in the altitude range between 450 and 20200 km (right). 508 

 509 

Figure 4: Plausibility check – distributions of the STEC measured – STEC estimated residuals. Left 510 

subfigure depicts residuals of the quiet period, right subfigure for the perturbed period.  511 

 512 

Figure 5: Plausibility check for the quiet period – ∆𝑺𝑻𝑬𝑪  values versus time.  513 

  514 

 515 
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 516 

Figure 6: Plausibility check for the perturbed period – ∆𝑺𝑻𝑬𝑪  values versus time.  517 

 518 

Figure 7: Plausibility check for the quiet period – distributions of the delta TEC (left) and RMS (right) 519 

values.  520 

 521 

Figure 8: Plausibility check for the perturbed period – distributions of the delta TEC (left) and RMS (right) 522 

values.  523 

 524 
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Figure 9: Histograms of the STEC residuals (left) and absolute residuals (right) during the quiet period, for 525 

Swarm A.  526 

 527 

Figure 10: Histograms of the STEC residuals (left) and absolute residuals (right) during the quiet period, 528 

for GRACE.  529 

 530 

Figure 11: Histograms of the STEC residuals (left) and absolute residuals (right) during the perturbed 531 

period, for Swarm A.  532 

 533 

Figure 12: Histograms of the STEC residuals (left) and absolute residuals (right) during the perturbed 534 

period, for GRACE. 535 
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536 

 537 

Figure 13: Validation with LP data – distribution of the Swarm A, B, C (separated) electron density 538 

residuals for the quiet period.  539 

 540 
  541 

Figure 14: Validation with LP data – distribution of the Swarm absolute and absolute relative electron 542 

density residuals for the quiet period.  543 
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544 

 545 

Figure 15: Validation with LP data – distribution of the Swarm A, B, C (separated) electron density 546 

residuals for the perturbed period. 547 

 548 

Figure 16: Validation with LP data – distribution of the Swarm absolute and absolute relative electron 549 

density residuals for the perturbed period.  550 
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