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Abstract. Modern investigations of dynamical space plasma systems such as magnetically complicated topologies within the

Earth’s magnetosphere make great use of supercomputer models as well as spacecraft observations. Space plasma simulations

can be used to investigate energy transfer, acceleration, and plasma flows on both global and local scales. Simulation of global

magnetospheric dynamics requires spatial and temporal scales achievable currently through magnetohydrodynamics or hybrid-

kinetic simulations, which approximate electron dynamics as a charge-neutralizing fluid.5

We introduce a novel method for Vlasov-simulating electrons in the context of a hybrid-kinetic framework in order to

examine the energization processes of magnetospheric electrons. Our extension of the Vlasiator hybrid-Vlasov code utilizes

the global simulation dynamics of the hybrid method whilst modelling snapshots of electron dynamics on global spatial scales

and temporal scales suitable for electron physics. Our eVlasiator model is shown to be stable both for single-cell and small-

scale domains, and the solver successfully models Langmuir waves and Bernstein modes. We simulate a small test-case section10

of the near-Earth magnetotail plasma sheet region, reproducing a number of electron distribution function features found in

spacecraft measurements.

1 Introduction

Physical processes in near-Earth space are dominated by plasma effects such as non-thermal particle distributions, instabilities,

plasma waves, shocks, and reconnection. Modern research into space phenomena utilizes both spacecraft measurements and15

supercomputer simulations, investigating how ions, electrons, and electric and magnetic fields interact in the vicinity of plasma

structures. Spacecraft provide point-like observations, limited in their ability to investigate spatial structures, although modern

constellation missions can have multiple satellites close by allowing for multipoint analysis to decipher, e.g., current sheet

directions (Escoubet et al., 2001; Burch et al., 2016a). Computer simulations on the other hand are limited by spatial resolution,

time stepping, and the large difference between ion and electron temporal and spatial scales (see, e.g., Tóth et al., 2017).20

Simulations capable of modelling the whole near-Earth geospace have historically used magnetohydrodynamics, neglecting

kinetic effects and implementing electrons only as e.g. the Hall term correction to Ohm’s law. These models can be run for

extended periods of time, but as they model plasma motion as a fluid, they use coarse grids, e.g. 0.25RE (Janhunen et al.,
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2012) or 0.1RE (Wang et al., 2020) (where RE is the Earth radius) and cannot model kinetic effects but are sufficient for

some global dynamics. Recent advances have allowed global investigations into hybrid-kinetic models, where ions are treated25

as a kinetic self-consistent species and electrons are a charge-neutralizing fluid. Successful approaches include hybrid-Vlasov

models (Palmroth et al., 2018) and hybrid-PIC (particle-in-cell) codes (e.g. Lin and Wang, 2005; Sibeck et al., 2008; Omidi

et al., 2009; Karimabadi et al., 2014). Kinetic investigation run times rarely exceed one hour or hundreds to a few thousand ion

gyroperiods. The simulation spatial resolution is chosen to be relevant to the scales of investigation, with the most usual metric

being the ion inertial length di. The simulation domain must encompass the necessary global dynamics with sufficient space30

to manage boundary effects.

In order to understand electron physics, kinetic modelling of electrons has been investigated by a number of methods such

as full-PIC (ions and electrons as interacting particles, e.g., Hesse et al. 2005), full-Vlasov (ions and electrons as interacting

distribution functions, e.g., Umeda et al. 2009; Schmitz and Grauer 2006; Pezzi et al. 2019), hybrid-PIC-electrons (dynamic

electron particles, ions as a static background, e.g., Lapenta et al. 2007) and hybrid-Vlasov-electrons (dynamic electron dis-35

tribution function with ions as a static background, e.g., Nunn 2005). In fully kinetic numerical investigations, the standard

approach is to alter the ion-to-electron mass ratio of ∼ 1836 to, e.g., 50 (Hesse et al., 2005) or 25 (Wilson et al., 2016) in order

to achieve interesting dynamics with available computational resources. Using explicit solvers, resolving waves and kinetic

electron instabilities to prevent simulation self-heating requires the spatial resolution to encompass the Debye length λD (Bird-

sall and Langdon, 2005) and the time stepping must resolve the electron plasma oscillation ωpe. This can, however, be bypassed40

via semi-implicit or implicit solver methods, though the resolution decrease incurs the loss of some electron physics. Effects

such as the Dungey cycle (Dungey, 1961), involving the whole magnetosphere, are unachievable with traditional kinetic elec-

tron approaches. Full-PIC approaches have, however, been applied to investigations of, e.g., reconnection in a Harris current

sheet ( Harris 1962, investigated in, for example, Lapenta et al. 2015; Daughton et al. 2011) or asymmetric reconnection (Hesse

et al., 2016). Pritchett (2000) presents a historical review of magnetospheric PIC simulations and anticipates the development45

of more realistic, global 3-D magnetosphere models with increasing computational resources.

More recent simulation studies of electron physics in the magnetosphere have focused on local regions, such as modelling

of electron diffusion regions (EDRs) and extracting resultant electron velocity distribution functions (eVDFs), such as the

PIC simulations by Bessho et al. (2014, 2016) and Hesse et al. (2016). Liu et al. (2013) investigated the small-scale three-

dimensional structure of EDRs with a realistic proton-electron mass ratio with a small configuration, and extended to a larger50

local 3-D configuration with a reduced proton-electron mass ratio. These simulations are always local with prescribed driving.

A more global approach, MHD-EPIC, is presented by Daldorff et al. (2014), with a two-way coupling of a global, 2-D Hall

MHD magnetosphere model and local implicit PIC model at regions of interest, where a proton-electron mass ratio of 25 was

used. Notably, these PIC regions handled by implicit solvers do not resolve the Debye length. MHD-EPIC has since been

employed to study the magnetosphere of Ganymede in 3-D with large embedded PIC domains by Tóth et al. (2016); Zhou55

et al. (2019).
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An example of small-scale global, electromagnetic implicit PIC modelling for a weak comet has been performed by Deca

et al. (2017, 2019) with a reduced proton-electron mass ratio of 100, and local simulations for a lunar minimagnetosphere

(Deca et al., 2015) with a reduced proton-electron mass ratio of 256.

Ricci et al. (2002) discuss the effect of the ratio between the proton mass mp and the electron mass me as a part of the60

GEM challenge, concluding that reconnection rates are well captured by smaller mass ratios of mp/me = 180, although with

modified electron kinetics. Lapenta et al. (2010) discusses modifications to electron microphysics at reconnection sites in more

detail in relation to proton-electron mass ratios of 64, 256, and 1836 using an implicit PIC model.

Another approach compared to PIC simulations is to represent particle velocity distributions with moments beyond the

MHD approach (Wang et al., 2015). For example, Huang et al. (2019) have developed a six-moment multi-fluid full-Maxwell65

model. They note that they do not capture reconnection to an acceptable accuracy and have yet to publish global simulation

results. Global ten-moment results for the Hermean magnetosphere have been published in Dong et al. (2019). Furthermore,

approaches which focus on electron effects at lower frequencies (negating effects at plasma oscillation timescales) have been

investigated in, for example, Lin and Chen (2001) and Tronci and Camporeale (2015).

Several processes that occur in the magnetosphere that depend on electron behavior are still poorly understood. Recently,70

missions such as Magnetospheric MultiScale (MMS; Burch et al., 2016a) have enabled plasma measurements that are able

to better resolve electron-scale physical processes. MMS in particular has provided data to many publications on magnetic

reconnection (e.g., Burch and Phan, 2016; Phan et al., 2018; Huang et al., 2018; Hoilijoki et al., 2019a; Fargette et al., 2020),

the most popular topic of electron physics investigations. Reconnection-driven jets and dipolarization fronts cause magnetic

flux pileup and excitation of waves such as whistlers, affecting energy conversion and dissipation (Khotyaintsev et al., 2011;75

Breuillard et al., 2016; Zhang et al., 2018). Bulk flows along the tail lead to electrons heating up as they approach the Earth

(Runov et al., 2015; Artemyev et al., 2013) with the electron-to-proton temperature ratio approaching even 1 (Wang et al.,

2012). These flows interact with strong currents found in the plasma sheet (Nakamura et al., 2008; Artemyev et al., 2017).

The dynamics of electrons near the current sheet include strong Hall fields and current sheet thinning (Lu et al., 2019, 2016).

Electron anisotropies can excite electron-driven waves and time-domain structures, such as have been observed recently in80

different regions of the magnetosphere (e.g., Cattell et al., 2005; Mozer et al., 2015; Ergun et al., 2016). They have been

characterized as whistler mode waves, electrostatic solitary waves and lower hybrid waves among other types. These waves

interact strongly with electrons, causing effects such as heating, changes to temperature anisotropy, and particle energization.

These energized electrons can then add to energetic particle precipitation, leading to the generation of auroras (Ni et al., 2016).

This paper introduces an alternative, novel method for simulating electron distribution function physics in the context of85

global ion-determined fields. The aim is to investigate how much of the global electron physics and distribution functions can

be understood by utilising ion-generated field as modelled by hybrid-kinetic codes, as opposed to a numerically unfeasible

global full-kinetic approach. The paper is organised as follows. In Section 2, we introduce the ion-kinetic hybrid-Vlasov code

Vlasiator and how the Vlasov equation is solved. In section 3 we introduce the eVlasiator modifications implemented for the

analysis of electron distribution functions. Section 3.1 describes how our electron simulation is set up from fields and moments90

modelled by an ion-kinetic simulation and Section 3.2 details the field solver changes implemented. Section 3.3 describes the
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sample test simulation used in this study. In Section 4 we perform rigorous validation and stability tests for our electron solver,

and in Section 5 we present some electron distribution functions achieved by running our solver on a test dataset, comparing

them with existing literature. Finally, Section 6 draws conclusions of our analysis and lays out a plan for future research

approaches.95

2 The Vlasiator ion-kinetic hybrid-Vlasov code

Vlasiator (von Alfthan et al., 2014; Palmroth et al., 2018) is, at the present time, the only hybrid-Vlasov code capable of

simulating the global magnetospheric system of the Earth, accounting for ion-kinetic effects on spatial and temporal scales

which model both magnetopause and magnetotail dynamics. Vlasiator solves the Vlasov equation for particle distribution

functions discretized on cartesian grids, with closure provided by Ohm’s law augmented by the Hall term. Each particle100

population is described using a uniform cartesian three-dimensional velocity space grid (3V) with a resolution chosen to

accurately model the solar wind inflow Maxwellian distribution and with extents chosen to encompass heated ion populations

associated with the magnetosheath and flux transfer events. A standard Vlasiator global run proton velocity-space grid has a

resolution of 30kms−1, extending between ±4020kms−1. To constrain computational cost and memory usage, those parts of

the velocity distribution function which have a phase-space density below a sparsity threshold are discarded, except for buffer105

regions which allow the correct growth of the VDF in these parts (von Alfthan et al., 2014). The proton sparsity threshold is

usually set to a value between 10−17 and 10−15 m−6 s3.

In the spatial domain, Vlasiator can be run in 1D, 2D, or 3D, with 2D the most usual choice in order to evaluate global

dynamics. Simulations have used spatial resolutions of, e.g., ∆x= 228km or ∆x= 300km, enough to accurately model ion

cyclotron waves though not resolving the ion inertial length in all regions of the simulation domain. Large-scale global 3D110

runs will be made possible in the near future by adaptive mesh refinement (AMR), using non-uniform cell sizes in the spatial

domain, thus cutting down on the computational cost of the simulation.

Vlasiator models standard collisionless space plasmas dominated by protons but can also model other particle species in the

same self-consistent simulation. However, until now, the electron population has been treated in the usual way of implementing

it as a massless charge-neutralizing fluid. This method does not track the evolution of electrons beyond assuming charge115

neutrality, and therefore, these standard Vlasiator simulations cannot be used to infer electron dynamics. This paper presents

a novel approach for investigating how a global plasma current structure can influence electrons with limited self-consistency

enforced through plasma oscillation and current densities.

2.1 Solving the Vlasov equation

Vlasiator uses the hybrid-Vlasov ion approach to model the near-Earth space plasma environment. The full six-dimensional120

(6D) phase space density fs(x,v, t), with x the ordinary space variable, v the velocity space variable, and t the time variable,

for each ion species s of charge qs and mass ms is evolved in time using the Vlasov equation (1). The electric and magnetic

fields, denoted E and B respectively, are evolved using Maxwell’s equations: Faraday’s Law (2), Gauss’s Law (3) and Ampère’s
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Law (4), in which µ0 and ε0 are the vacuum permeability and permittivity, respectively, and j is the total current density.

The solenoid condition in Gauss’s Law (3) is ensured via divergence-free magnetic field reconstruction (Balsara, 2009). In125

the hybrid approach, electrons are assumed to maintain plasma neutrality, resulting in the charge density ρq in Gauss’s law

vanishing. In the Darwin approximation, also used in many hybrid codes, propagation of light waves is neglected by removing

the displacement current term ε0
∂E
∂t in Ampère’s law (4). The Vlasiator field solver follows the staggered-grid approach of

Londrillo and Del Zanna (2004), and is described in detail in Palmroth et al. (2018).

∂fs
∂t

+v · ∂fs
∂x

+
qs
ms

(E+v×B) · ∂fs
∂v

= 0. (1)130

∇×E =−∂B
∂t

(2)

∇ ·B = 0 and ∇ ·E =
ρq
ε0

(3)

∇×B = µ0

(
J+ ε0

∂E

∂t

)
(4)

The generalized Ohm’s Law providing closure for the Vlasov system is

E+V×B =
J

σ
+

J×B

nee
− ∇ ·Pe

nee
+

me

nee2
∂J

∂t
, (5)135

where V is the plasma bulk velocity, σ is the conductivity, e is the elementary charge, ne is the electron number density, and

Pe is the electron pressure tensor. In hybrid approaches of collisionless plasma, we can assume high conductivity, neglecting

the first term on the right-hand side. In the limit of slow temporal variations, the electron inertia term (the last term on the

right-hand side) also vanishes. The remaining two terms on the right-hand side of the equation are the Hall term, J×B/(nee),

and the electron pressure gradient term, ∇ ·Pe/(nee). In hybrid models, a true description of electron pressure is unavailable140

so it must be described via some approximation such as adiabatic, isothermal or polytropic electrons or a fixed ion-to-electron

temperature ratio, or by neglecting the small electron pressure gradient term altogether. The standard ion-hybrid Vlasiator code

supports isothermal fluid electrons but existing simulations have always set this temperature to zero. This along with assuming

charge-neutrality (proton number density np = ne) results in the ion-hybrid Vlasiator using the simplified MHD version of

Ohm’s Law with the Hall term included:145

E+V×B =
1

enpµ0
(∇×B)×B. (6)

As Vlasov methods do not propagate particles but rather evolve distribution functions, we now briefly explain the semi-

Lagrangian method employed by Vlasiator (Palmroth et al., 2018). Vlasiator propagates distribution functions of particles

following the SLICE-3D method (Zerroukat and Allen, 2012) and utilizing Strang splitting with advection (the second term

of Vlasov’s equation 1) and acceleration (the third term of Vlasov’s equation 1) calculated one after the other with a Leapfrog150

offset of 1
2∆t. In this manuscript, ∆ denotes steps on the full simulation grid and associated time step and δ is used to

indicate calculations performed as sub-stepping. For each time step, a Vlasov acceleration is evaluated with time step length

∆t which is, amongst other things, limited to a maximal Larmor orbit gyromotion rotation of 22°. For each acceleration step,
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a transformation matrix is initialized as an identity matrix. The transformation matrix decomposes rotation and field-parallel

acceleration into three shear transformations. The matrix is updated with substepping of δts where each δts corresponds to155

a 0.1° Larmor gyration. Instead of applying linear acceleration by electric fields, a method similar to the Boris-push method

(Boris, 1970) is applied, where first a transformation is performed to move to a frame in which electric fields vanish, then the

rotation is applied, and then a frame transformation back to the original frame is added. In the standard hybrid formalism, the

frame without electric fields is found via the MHD Ohm’s law with the Hall term included (6). This Hall frame estimates the

frame of reference of electrons, assuming electrons generate a current density which corresponds to the local magnetic field160

structure, in accordance with Ampère’s law. After substepping is evaluated, the transformation matrix is applied to the gridded

velocity distribution function by the SLICE-3D algorithm.

3 The eVlasiator global electron solver

In this section we introduce a novel method of simulating electron dynamics within the Earth’s magnetic domain by building on

the strengths of Vlasiator simulations. The method , called eVlasiator, focuses on the evolution of accurately modelled velocity165

distribution functions based on global plasma dynamics and structures evolved by the hybrid model. The spatial scales used

in Vlasiator are not sufficient to resolve in detail small-scale phenomena such as electron-dominated reconnection, but this

balances out with a realistic representation of global structures and asymmetries of the whole magnetosphere. The eVlasiator

model solves the Vlasov equation for electron distribution functions, but applies a simplified field solver, neglecting magnetic

field evolution.170

3.1 Simulation initialization

Modelling the evolution of electron distribution functions in response to global magnetic field structures requires input from

the large-scale fields and moments of a Vlasiator simulation of near-Earth space. In the eVlasiator approach, we read magnetic

field vectors and proton plasma moments for the chosen simulation domain and apply user-defined temperature scaling to

generate initial Maxwellian electron velocity distribution functions.175

We do not model electrons throughout the whole global domain, choosing instead a region of interest to reduce the compu-

tational cost, though our method is designed to work with any subset of and up to the whole global domain. For the selected

domain, we read in the Vlasiator ion-hybrid simulation proton moments, cell-face-average magnetic field components and

cell-edge-average electric field components (the latter being used by the staggered-grid field solving algorithm from Lon-

drillo and Del Zanna 2004). Both protons and electrons for the eVlasiator simulation are initialized from the read moments as180

Maxwellian distribution functions, with electron bulk velocity including the Hall term of generalized Ohm’s law. Re-mapping

input run Vlasiator proton VDFs as Maxwellians does not affect the simulation results as eVlasiator only considers the proton

number density and bulk velocity for current density calculations and does not propagate the proton distribution functions. For

each simulation cell, we use the Balsara (2009) approach for calculating cell-average volumetric magnetic fields and respective

derivatives. The eVlasiator solver uses volumetric field derivatives for calculating∇×B.185

6



3.2 The eVlasiator field solver

For non-relativistic electrons, the advection step of solving the Vlasov equation requires no adjustments, but the acceleration

step must be adjusted to account for electron oscillation and the relevant electric fields.

In our field solver we maintain static magnetic fields as read from the input Vlasiator simulation. We model the electric

field by including additional terms in Ohm’s law (5), allowing for interaction of distribution functions with electron-oscillation190

electric fields. Whistler mode propagation is not included in this study. We do not include any electric field due to Gauss’ law.

We will consider each term of the eVlasiator field solver separately:

– As we keep magnetic fields static, we do not implement Faraday’s law (2).

– Collisionless plasma physics assumes that electrons are fast enough to balance out any charge imbalance, and in hybrid-

kinetic simulations this holds true. We do not implement Gauss’ law (3) in order to quantify to what extent charge195

neutrality holds in the eVlasiator context.

– The last term in Ampère’s law (4) is the displacement current, which is neglected in the Darwin approximation. However,

electron motion can be very rapid and thus we now include this term in our model, though still maintaining static

magnetic fields. This approach thus constrains electrons to the defined static magnetic fields and does not introduce light

waves.200

– As our plasma remains collisionless, we maintain our assumption of infinite conductivity, and thus the J/σ term in the

generalized Ohm’s law (5) remains zero.

– The Hall term, J×B/(nee), is used to estimate the electron reference frame, and is discussed further below.

– As eVlasiator models electrons with full distribution functions, we include the full electron pressure tensor Pe and

implement the electron pressure gradient term using spatial gradients calculated for electron pressure.205

– The final term of the general Ohm’s law is the electron inertia term. Much like with our choice of including the displace-

ment current, we now include the electron inertia term in our solver.

For electron dynamics to be modelled, electron gyration and plasma oscillation must both be considered. We limit the

acceleration time step to a maximum of 22° of Larmor rotation or 22/360 of a single plasma oscillation. The value of 22° is used

to ensure our VDF remapping algorithm SLICE-3D remains stable and the value 22/360 was chosen for equal resolution of210

both oscillations. Due to the computational cost of SLICE-3D remapping, a substepping approach is used in order to accurately

model the electron gyromotion and plasma oscillation. The electron gyroperiod is τce = 2πω−1ce and the plasma oscillation time

is τpe = 2πω−1pe , where the electron plasma frequency is

ωpe =

√
nee2

ε0me
(7)
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and the electron gyrofrequency is215

ωce =
eB

me
. (8)

In transformation matrix generation, substepping is constrained to a maximum of δts ≤min(τpe, τce)/3600. For each substep,

a procedure similar to the hybrid method is applied, with the improvement that instead of performing gyration in the Hall frame

(estimating the electron frame within the hybrid context) the gyration is performed in the actual substep-updated electron frame.

Electron oscillation is handled in parallel with gyration by tracking an additional cell-volume-averaged electric field compo-220

nent EJe which is itself derived from the small-scale electron oscillation. For each substep, we perform two parallel 4th order

Runge-Kutta propagations. The first one is

δVe = δts
e

me
EJe , (9)

tracking electron bulk velocity response δVe to theEJe field. This simple acceleration term is in fact equal to evaluating current

changes via the electron inertia term in Ohm’s law with the EJe field included in the left-hand-side electric field. The second225

Runge-Kutta propagation tracks the evolution of the EJe field due to changing current density, according to the displacement

current on the right-hand side of Ampère’s law (4), whilst maintaining static magnetic fields. The∇×B term in Ampère’s law

is fixed to the static input magetic fields. Thus, for each Runge-Kutta step, the electric field EJe is updated with

δEJe = δts

(
∇×B

ε0µ0
− J

ε0

)
(10)

= δts

(
∇×B

ε0µ0
− eVpnp− eVene

ε0

)
(11)230

= δtsc
2 (∇×B+µ0e(neVe−npVp)) (12)

where c is the speed of light, and B, np and the proton bulk velocity Vp are assumed constant throughout the substep. Each of

the four δVe Runge-Kutta coefficients are updated with the latest estimate for δEJe , and vice versa. Values for EJe are stored

between acceleration steps to ensure continuity of the oscillation. The change δVe calculated via each Runge-Kutta step is then

applied to the transformation matrix, allowing the solver to proceed to perform gyration in the electron frame of reference. The235

substepping procedure is visualized in Figure 1. Further details of the solver and advection methods in Vlasiator can be found

in Palmroth et al. (2018).

After substepping is completed, the transformation matrix describing Vlasov acceleration is passed to the SLICE-3D algo-

rithm, which decomposes the transformation into three cartesian shears and updates the velocity distribution function for the

particle species.240

3.3 Sample simulation setup

In this method introduction, we use a noon-midnight meridional-plane 2D-3V Vlasiator simulation as our test-case input

data. This 2D-3V Vlasiator simulation has been used to investigate global and kinetic magnetospheric dynamics in multiple

studies such as Palmroth et al. (2017); Hoilijoki et al. (2017); Juusola et al. (2018a, b); Hoilijoki et al. (2019b); Grandin et al.
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Translation

Acceleration

1. Δf = Δt ⋅ v ⋅ ∂f
∂r 3. Δf = Δt ⋅ v ⋅ ∂f

∂r

2. Δf = Δt ⋅ a ⋅ ∂f
∂v

t + Δt t+ 3
2 Δt t + 2Δtt+ 1

2 Δtt

0. Δf = 1
2 Δt ⋅ a ⋅ ∂f

∂v 4. Δf = Δt ⋅ a ⋅ ∂f
∂v

δVe = δt
e

me
EJeΔVe = ΣΔtδVe

ΔEJe = ΣΔtδEJe
δEJe = δt( ∇ × B

ε0μ0
− J

ε0
)

t0 t0+ 1
2 δt t0 + δt

δEJe

δVe kV1 (t0)
kE1 (t0)

kV2 (t0+ 1
2 δt) kV3 (t0+ 1

2 δt)
kE2 (t0+ 1

2 δt) kV
E (t0+ 1

2 δt)
kV4 (t0 + δt)
kE4 (t0 + δt)

δVe = kV1 + 2kV2 + 2kV3 + kV4
6

δEJe = kE1 + 2kE2 + 2kE3 + kE4
6

Transformation matrix 
generation substepping

Dual RK4 
for each 
substep

Figure 1. Electron solver procedure including substepping. At simulation start, a half-length acceleration step (0.) is performed. After that,

translation (1,3,. . . ) and acceleration (2,4,. . . ) steps alternate in a Leapfrog approach. Each acceleration step applies a transformation matrix

which is generated in substeps, each of which updates electron acceleration ∆Ve and electric field change ∆EJe . Each of these updates is

performed via a dual Runge-Kutta 4 algorithm over step lengths δt with Runge-Kutta coefficients kE1...4 and kV1...4

(2019); Akhavan-Tafti et al. (2020). It has solar wind values of β = 0.7, magnetosonic Mach number Mms = 5.6, Alfvén Mach245

number MA = 6.9, proton number density np = 1cm−3, and solar wind speed usw along the êx (Earth–Sun) direction with

usw,x =−750 kms−1, simulating fast solar wind conditions and ensuring efficient simulation initialization. The simulation

input interplanetary magnetic field is purely southward with Bz =−5nT and the Earth’s magnetic dipole is a êz-aligned

line dipole scaled to result in a realistic magnetopause standoff distance (Daldorff et al., 2014). The simulation has an inner

boundary at 3 · 106 m≈ 4.7 Earth radii, modelled as a perfectly conducting sphere.250

For this eVlasiator sample run, we choose a region from the magnetotail with 70×1×40 simulation cells in the X, Y, and Z

directions, respectively. The subregion extent is from X− =−75.6 · 106 m to X+ =−54.6 · 106 m, from Y− =−0.15 · 106 m

to Y+ = +0.15 · 106 m, and from Z− =−6 · 106 m to Z+ = +6 · 106 m. Within this domain, visualized with a small rectangle

in Figure 2a, the electron plasma period τpe ranges from ∼ 0.7ms in the magnetotail plasma sheet up to ∼ 2.5ms in the near-
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plasmasphere lobes. The electron gyroperiod τce ranges from ∼ 14ms in most of the lobes up to ∼ 770ms at a tail current255

sheet X-line site.

Figure 2. Simulation box initialization values. Panel a): Zoom-in to the central 16% section of the Vlasiator input simulation with plasma

number density overlaid with magnetic field lines. A small rectangle in the magnetotail region indicates the electron simulation domain

(panels b–f). Panel b): proton number density overlaid with magnetic field lines. X-line topology is visible at X ∼−73 · 106 m Z ∼−0.5 ·

106 m. Panel c): Proton temperature as a scalar. Electron initialization temperatures are scaled down by a constant factor 4. Panel d): ratio of

electron plasma and gyrofrequencies. Panels e) and f): Proton and electron bulk velocity magnitudes with in-plane directions indicated with

vectors.
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The distributions are discretized onto eVlasiator velocity meshes, with the electron velocity mesh consisting of 4003 cells,

extending from−4.2·107 to +4.2·107 ms−1 in each direction, resulting in an electron velocity space resolution of 210kms−1.

The electron VDF sparsity threshold was set to 10−21 m−6 s3, ensuring good representation of the main structure of the VDF.

Discretizing a hot and dense electron distribution onto a cartesian grid is numerically challenging without using vast amounts of260

memory. As portions of our simulation domain have proton temperature up to 108 K, we use an empirical estimate of Ti/Te ∼ 4

as magnetosheath temperature ratios are usually around 4 to 12 (Wang et al., 2012). Paterson and Frank (1994), Hoshino et al.

(2001), Artemyev et al. (2011), and Grigorenko et al. (2016) show similar proton-electron temperature ratios in the magnetotail.

In order to constrain the extent of our velocity space and numerical requirements of our solver, we implement our electrons

with a mass of 10 times the true electron mass, resulting in an ion-to-electron mass ratio of mi/me = 183.6. As mentioned265

above, we calculate the required electron bulk velocity for each cell using the local volumetric (cell-average) derivatives so that

the ion and electron fluxes in each cell correspond with the current density J required for fulfilling Ampère’s law (4) (with the

displacement current neglected at initialization). This is equal to performing a transformation to the Hall frame of reference.

Proton densities, magnetic field lines, proton temperatures, proton bulk velocities and electron bulk velocities calculated for

simulation initialization are shown in Figure 2 along with an overview of the input Vlasiator simulation and the selected270

electron sub-domain.

4 Solver performance

4.1 Single-cell stability of electron oscillation

To validate the performance of our electron solver, we performed single-cell tests, with resultant electron bulk velocities Ve

and plasma oscillation electric fields EJe shown in Figure 3. These single-cell tests did not have magnetic field curvature or an275

ion population present, resulting in the electron motion oscillating around a stability point at Ve = 0 and EJe = 0. We set the

electron number density to ne = 0.1cm−3 and the magnetic field to Bx = 20nT (panels a through d) or Bx = 200nT (panels

e and f). We set an initial velocity perturbation of Ve,0 = (−100,−150,200)kms−1, close to but below our electron velocity

resolution of ∆v = 210kms−1. As can be seen from Figure 3, the electron oscillatory motion is well resolved and remains

stable over an extended period. In panels e) and f) where the magnetic field strength was artificially increased in order to set280

the plasma and gyroperiods to values closer to each other (1.11 ms and 1.79 ms, respectively), we see a gradual evolution of

oscillation amplitude and, thus, EJe field magnitude as the two types of electron motion interact. Over longer periods of time

this growth becomes unstable, but it can be counteracted by using a smaller substep time step. Also, this instability occurs only

when τce ≈ τpe which does not occur in our full simulation domain.

4.2 Dispersion relation analysis285

Although our method is geared towards solving electron motion at coarse spatial resolutions, to further validate the solver, a

wave dispersion test was run (Kilian et al., 2017; Kempf et al., 2013). As waves are a collective, emergent phenomenon of
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Figure 3. Graphs of solver stability in relation to electron plasma oscillation and gyromotion in a single-cell simulation. Note the different

time axes used. Panels a), c), and e): Oscillation electric field EJe components. Panels b), d), and f): Electron bulk velocity Ve components.

Panels a) and b) graph values in relation to the electron plasma oscillation period (indicated with a thick grey bar) and panels c) and d)

in relation to the electron gyroperiod (indicated with a thick black bar), with a background magnetic field of B = 20nT. Panels e) and f)

showcase a simulation with a magnetic field of B = 200nT, resulting in the gyro- and oscillatory motions interacting over multiple periods.

the kinetic simulation approach, a correct reproduction of wave dispersion behaviour is a good indicator of correct physical

behaviour of the simulation system.

Two 1D-simulation setups with a spatial grid resolution of ∆x= 300m (= 0.01 de) andNx = 1000 cells were initialized with290

an electron number density of ne = 0.4 · 106 m−3, an electron temperature of Te = 2.5MK, and a magnetic field magnitude of

50 nT. In one simulation, the magnetic field direction was chosen to coincide with the extended simulation direction (resulting

in parallel plasma wave modes to be resolved), in the other one, the magnetic field was set up perpendicular to the long
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dimension, resulting in perpendicular mode resolution. The plasma had zero bulk velocity in the simulation frame, with an

added white noise velocity fluctuation of ṽ = 1000m/s. The simulation was run for 0.037 seconds (433 ω−1pe ).295

Figure 4 shows the dispersion data resulting from spatial and temporal Fourier transform (using a von Hann window).

Overlaid are analytic dispersion curves for the Langmuir wave (black dashed curve) and electron Bernstein modes (black

solid curves). The wave behaviour in the simulation shows good agreement in both parallel and perpendicular directions. One

noteworthy additional feature visible in the parallel direction (Figure 4a) is the presence of an entropy wave feature at low wave

number k and angular frequency ω that shows a quantization consistent with the electron velocity space resolution.300

a) b)

Figure 4. Dispersion analysis of the electron solver in a 1D test case with an axis-parallel (panel a) and axis-perpendicular (panel b) magnetic

field. The colormap shows the spatiotemporal Fourier transform of EJe,‖ (panel a) and EJe,⊥ (panel b) overlaid with analytical solutions for

the Langmuir wave (black dashed curve) and Bernstein modes (black solid curves).

4.3 Stability within larger simulation domain

We also evaluate the stability of our solver over the larger simulated domain described in Section 3.3, with initialization values

derived from the Vlasiator hybrid-Vlasov simulation. These graphs are shown in Figure 5. Panels a through e show the evolution

of electron temperature values over a simulation of 1.0 s, covering hundreds of electron plasma periods and, for the most part,

tens of gyroperiods. We evaluate minimum, maximum, mean, and median values for total, B-parallel, and B-perpendicular305

electron temperatures. The system is seen to relax somewhat towards a final state, though some evolution is still apparent at

the end of the simulation, possibly due to boundary effects. The maximum temperature plot in panel b is of particular interest

as the hottest plasma cells appear to diffuse into their surroundings until t∼ 0.4 s when dynamic gyration processes overtake

this temperature diffusion with perpendicular heating.

Panel f shows the agyrotropy measure (Swisdak, 2016) calculated from the electron pressure tensor, indicating that in310

the majority of the simulation domain electrons remain gyrotropic and even peak values do not grow past 10−3. Panel g

shows statistics for the electron number density deviation from the initialisation value, indicating loss of plasma neutrality due
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to the motion of electrons. The minimum value oscillating between approximately 10−9 and 10−6 cm−3 indicates the level

of numerical fluctuations, and the maximum, mean and median values show how charge imbalance does grow initially but

stabilises within about 0.1s and does not grow beyond 10−1 cm−3.315

In panels h through k of Figure 5 we show how the instantaneous plasma oscillation electric fields EJe are well-behaved

throughout the simulation box, converging towards stable values. We note that as EJe fields oscillate around zero, the averages

are indeed zero throughout (not shown) and the values used for inferring minimum, maximum, mean and median values are

instantaneous values from a arbitrary phase of the oscillation. In panel l we show the normalized current density J departure

from the balance current JB = ∇×B
µ0

which would be required to maintain the magnetic field structure according to Ampère’s320

law (4). This metric is seen to also stabilize, mostly at values well below unity. We expect the maximum value outliers to be due

to locally small values of JB. Panels m and n show statistics for the parallel and perpendicular components of the electric field

caused by electron pressure gradients, that is, the −∇·Pe

nee
term. As expected due to the ability of electrons to propagate along

field lines, perpendicular components are much larger than parallel components. All components remain stable at roughly their

initial values. A minimum value is not shown as the use of a numerical slope limiter in the calculation of pressure gradients325

gives identically zero field components at local extrema of pressure.

As part of our evaluation of solver stability, we performed a comparison run where our electron solver performed the rotation

transformation corresponding with gyromotion in the Hall frame instead of in the substep-associated electron bulk frame. This

transformation choice resulted in unstable growth of, in particular, EJe , as could be expected (not shown).

5 Results330

Results from the electron simulation after 1.0 s of evolution are presented in Figure 6. Figures 6a, b show parallel and perpen-

dicular acceleration or deceleration of electrons as the ratio of end-of-simulation temperature to initial temperatures. Heating

is found in particular near the X-line configuration and where the PSBL meets the magnetosphere, with parallel heating more

localized than perpendicular heating.

Figure 6c shows the agyrotropy measure (Swisdak, 2016) calculated for electrons, indicating where the electron distribution335

has become non-gyrotropic. In most of the simulation domain, the value is very small, but enhanced agyrotropy (still relatively

small values below 10−3) are found in the PSBL regions and at the magnetic field X-line. Some of this agyrotropy may be

due to spatial sampling of electron gyromotion with a magnetic field gradient leading to larger gyroradii further away from the

plasma sheet.

Figure 6d shows the electric field due to ∇Pe, with the field strongest where the PSBL meets the magnetosphere. The field340

direction is pointed towards the tail sheet or the magnetosphere, as expected. Magnitudes remain of the order of a few millivolts

per metre.

Figures 6e,f quantify the charge imbalance resulting from electrons evolving due to static magnetic fields and the electric

field resulting from the Ohm’s law terms presented in this paper. Figure 6e, shows the level of charge imbalance as change

in electron number density, and Figure 6f as the change scaled by the original electron number density. In the majority of345
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Figure 5. Evolution of electron and solver parameters over the whole simulation domain. a–d: Minimum, maximum, mean, and median

values for electron temperature Te and its components parallel and perpendicular to the local magnetic field. e: Minimum, maximum, mean,

and median values for electron temperature anisotropy. f: Minimum, maximum, mean, and median values for electron agyrotropy QAg,e. g:

Minimum, maximum, mean, and median values electron density deviation from initial state, indicating charge imbalance. h–k: Minimum,

maximum, mean, and median values for the plasma oscillation electric field EJe and its components parallel and perpendicular to the local

magnetic field. l: Minimum, maximum, mean, and median normalized values for current density J deviation from the value JB = ∇×B
µ0

required to fulfill Ampère’s law for the local magnetic field. m,n: Maximum, mean, and median values for parallel and perpendicular

components of the electric field due to electron pressure gradients.

the simulation domain, imbalance remains below 10−2 cm−3. The electric field response is unable to maintain full plasma

neutrality with some regions near the magnetosphere showing greater deviation from the initial state. Some stronger imbalance

at the domain edges is likely a boundary effect which shall resolve itself with a larger simulation domain.

In Figure 7 we display electron velocity distribution functions after 1.0 s of simulation. Figure 7a shows the evolved electron

temperature anisotropy T⊥,eT−1‖,e , and Fig. 7b displays the maximum of instantaneous values of EJe , taken over 10 measure-350
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Figure 6. Electron distribution properties with in the test domain after 1.0 s of simulation. a: The ratio of parallel electron temperature at

1.0 s to the parallel temperature at the start of the simulation, indicating parallel heating. b: The same but for perpendicular temperature. c:

The agyrotropy measure for the electron population. d: The magnitude and direction of the electron pressure gradient term of the electric

field. e and f: The charge imbalance ne −ne,0 and relative charge imbalance (ne −ne,0)n−1
e,0 found at the end of the simulation.

ments at 0.05 s intervals near the end of the simulation. Panels c) through n) of Figure 7 show parallel and perpendicular

projections of electron VDFs at virtual spacecraft (VSC) [1] through [6], with positions of VSC indicated in panels a) and b).

Figure 7a shows how temperature anisotropy T⊥,eT−1‖,e indicates parallel energization in the low-density regions adjacent to

the plasma sheet boundary layer (PSBL) and perpendicular energization adjacent to the X-line and within the tailmost region
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of the magnetosphere. As we have bulk flows of both ions and electrons towards the tail current sheet, some small part of355

this heating can be attributed to betatron acceleration as electrons convect towards stronger magnetic fields just adjacent to

the actual high-beta plasma sheet. Other effects causing anisotropies may arise from spatial leakage of electrons undergoing

plasma oscillation, with gyromotion binding perpendiculary heated electrons to the oscillation region and parallel accelerated

electrons propagating along field lines to the near-magnetosphere PSBL regions.

The maximum of instantaneous values of EJe , shown in Figure 7b, indicate that the strongest electron oscillations on our360

simulated scales are found in or near the PSBL, which would be consistent with observations of electron-driven waves in the

PSBL (Onsager et al., 1993). Some increase in EJe is seen also at the X-line location, but not in other parts of the current sheet.

We note that the X-line included in the Vlasiator simulation snapshot was not actively reconnecting. Comparison with Figure 7a

and virtual spacecraft measurements indicate that parallel features, akin to electron beams, are indeed found in regions with

enhanced EJe .365

The temperature anisotropies found in the near-Earth tail region of our simulation are mostly in the 0.5. . . 1.5 range. Arte-

myev et al. (2014) reported on Cluster observations of electron temperature anisotropies ranging from 0.8. . . 1.6 and cen-

tered around ∼ 1.1, in agreement with our results, though their observations were gathered between −20RE <X <−15RE

(−127 · 106 <X < 96 · 106 m). Regions where parallel temperatures dominate (anisotropy < 1) are found in regions of cold

plasma, as can be seen by comparing Figures 2c and 7a. This does not preclude the possibility of parallel acceleration in regions370

of hot plasma, but rather shows that the acceleration may not be strong enough to be discerned over the main hot VDF.

Parallel heating near the magnetotail plasma sheet has been reported to coincide with bi-directional electron distributions

(Hada et al., 1981) with temperature ratios going up to 2–3, as in our simulation. Our VSC [2] and [5] show clear bi-directional

distributions. Due to our static background magnetic field, our parallel heating cannot be due to conventional Fermi accelera-

tion. However, Hada et al. (1981) propose that adiabatic plasma processes where curvature drifts dominate over gradient drifts375

(Yamamoto and Tamao, 1978) can lead to significant parallel heating. Our VSC [1] is from close to the X-line and shows

parallel elongation of the central part of the distribution, reminiscent of the football or shifted-football distributions of Figure 2

of Hoshino et al. (2001).

Asano et al. (2006) describe streaming 500 eV electrons at the PSBL, associated with a substorm event and variation of By ,

especially at small scales. Scaling with our electron mass, this corresponds to approximately 4000kms−1 electron velocities,380

which is reasonably within the range of our VDFs in Figure 7. We note that our simulation produces a background By profile

with∇By in agreement with Figure 4 of Asano et al. (2006) (not shown), on top of which the streaming electrons are observed.

Onsager et al. (1991) describe a simple 2-D Liouville model for the PSBL, as well as some ISEE-1 and ISEE-2 observations

supporting their model. The formation mechanisms of eVDFs in Onsager et al. (1991) are listed as time-of-flight, energy

conservation and magnetic moment conservation, which are included in our model, though we perform a more robust evaluation385

of plasma oscillation interplay with gyration. The eVDFs shown in their Figure 4 agree with e.g. our VSC [1], [2], [5], and [6].

We also note our VSC [3] displaying a disjoint parallel beam, matching the ISEE-2 observations in Figure 5 of Onsager et al.

(1991).
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Observations of perpendicular crescents are shown in MMS data in Burch et al. (e.g. 2016b, 2019) at electron diffusion

regions (EDRs), in conjunction with dayside magnetopause reconnection sites. These observed structures are produced at very390

small spatial scales, not captured by our current model. We do, however, observe similar agyrotropic crescents in our results

further out (in particular in Figure 7j), suggesting successful capture of a level of electron dynamics. These perpendicular

crescents are found at very low phase-space density values, as could be expected by the low agyrotropy values seen in Figure 6e.

Something akin to a parallel electron crescent (Burch et al., 2016b) can be seen in Figure 7c, and bi-directional distributions as

reported in Figures 6 and 7 of Burch and Phan (2016) are qualitatively similar to our Figures 7k and m.395

6 Conclusions

In this method paper we have presented a novel approach to investigating electron distribution function dynamics in the context

of global ion-hybrid field structures. Our method exploits global dynamics provided by hybrid-Vlasov simulations in order to

evaluate the response of gyrating and plasma oscillating electrons to global magnetic field structures.

We have shown our solver to behave in a stable manner, resolving electron inertia and updating a responsive electric field400

EJe derived from the displacement current. If run at much finer spatial resolutions, our model replicates Langmuir waves and

electron Bernstein modes. Electron temperatures evolve in response to the field structure but do not experience uncontrolled

growth. Our sample simulation produces multiple features associated with spacecraft observations of VDFs, such as parallel

acceleration, bi-directional distributions, and perpendicular crescents.

Our model has several built-in limitations as it does not treat electrons as a fully self-consistent species. Magnetic fields405

gathered from the Vlasiator simulation are kept constant and thus force electron bulk motion to adhere to the required current

density structure. As the initialization information is gathered from a hybrid-Vlasov simulation, it has a spatial resolution far

below that required for resolving electron-scale waves such as whistlers, Bernstein waves and chorus waves. Scattering of

electrons via these missing waves is somewhat accounted for by initializing every simulation from a Maxwellian isotropic

distribution. These features together limit the applicability of the model to short periods of time. On the other hand, our model410

is efficient, and much larger spatial domains of investigation are easily achievable. Also, multiple eVlasiator runs can be

performed from a single Vlasiator magnetosphere run to evaluate different driving conditions such as temperature ratios and

anisotropies. The method builds on the efficiently parallelized Vlasiator codebase and will benefit from future numerical and

computational improvements to Vlasiator solvers.

Our model can be applied to investigate electron dynamics on global spatial scales, with the current version applicable to 2D415

investigations, e.g., in the noon-midnight meridional plane. Electron velocity distribution functions generated by the model can

be used to investigate, e.g., energetic electron precipitation into the Earth’s auroral regions. The generated electron anisotropies

can be used to infer regions where, for example, whistler waves can be expected to grow. The model can be run for several

different initialization time steps to evaluate long-term evolution of precipitating electron distributions. This could be used to,

for example, evaluate electron distribution changes as bulk flows and dipolarization fronts in the Earth’s magnetotail propagate420

earthward. Li et al. (2020) observe electron Bernstein modes driven by perpendicular crescent distributions. As we have shown
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in Figures 4 and 7, with sufficient resolution we can reproduce electron Bernstein waves and agyrotropic electron distributions.

Thus, we are in position to investigate this connection further in eVlasiator.

Future improvements to our model will allow simulation initialization from non-uniform 3D-3V Vlasiator meshes, allowing

investigation of spatially three-dimensional topologies including tail plasma sheet clock angle tilt. A possible path of future425

investigation would be to upsample the initialization fields and moments in order to achieve better resolution, but we em-

phasize that the model does not attempt to solve electrons in a fully self-consistent manner as magnetic fields are still kept

constant. Increasing resolution by interpolating the input moments to a finer grid might not significantly improve plasma sheet

density and temperature profiles. Increasing spatial resolution introduces numerous caveats including increased computational

cost and possible charge imbalance resulting from spatially resolved electron oscillations, though our dispersion tests did not430

indicate such problems. If such imbalances arise from a future model, some method of solving Gauss’ Law such as a Poisson

solver should be implemented. A more detailed investigation into comparing electron VDFs and dynamics with observations

is expected in a future study.
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