Response to Reviewer #2

We would like to thank the reviewer for his or her substantial review of our manuscript. The overall positive appraisal of our work leaves us feeling grateful. In addition, the minor corrections to manuscript and especially the suggestions to the content by the reviewer are very much appreciated. All comments have found its way into the manuscript and will be addressed point by point below.

...Abstract: Instead of "particles" use "ions" since you known what your particles are.

...Line 21: Spell out "WISPR", or is it "WISPER"

...Line 42: Write "... as solar wind ions hit dust particles."...

...Line 47: Typo "exampless"...

...Line 63: Write "... bombardment by energetic ions

The minor corrections by the reviewer have been applied to the manuscript.

...Line 65: "... and form high quality surfaces." Perhaps you want to add the ref. J. E. Greene, Jou. Vac. Sc. Techn. A 35, 2017, 05C204... We give thanks to the reviewer for this suggestion. This publication is indeed a very valuable reference and fits perfectly. We have added it to the manuscript.

...Line 80: ".. used for the solar wind / CME conditions .." spell out "/""

We have changed the manuscript accordingly.

...Table 1: Perhaps you want to add two columns to give the (fractional) abundance of He and heavies.

We thank the reviewer for the suggestion to add the abundances to the table and have done so.
<table>
<thead>
<tr>
<th></th>
<th>plasma density n_p</th>
<th>speed v_p</th>
<th>He fraction</th>
<th>Heavy ion frac.</th>
</tr>
</thead>
<tbody>
<tr>
<td>slow SW</td>
<td>8 cm^{-3}</td>
<td>300 km/s</td>
<td>$4%$</td>
<td>$0.11%$</td>
</tr>
<tr>
<td>fast SW</td>
<td>3 cm^{-3}</td>
<td>800 km/s</td>
<td>$2%$</td>
<td>$0.06%$</td>
</tr>
<tr>
<td>CME</td>
<td>70 cm^{-3}</td>
<td>500 km/s</td>
<td>$30%$</td>
<td>$3%$</td>
</tr>
</tbody>
</table>

We have changed the manuscript in accordance with the corrections by the reviewer.

Figure 2: The absolute sputter yield is somewhat misleading, since only the sputter yield prorated to the solar wind ion abundance applies. Perhaps you plot the prorated sputter yield for all the solar wind ions, and sum curve that adds the yield contributions from H to Fe stepwise, thus showing their contributions. If you do that also for fast SW and CME you will get a very strong plot.

The reviewer is definitely correct about the absolute sputtering yield. We have replaced the old Figure 2 with a new Figure that shows in a stacked bar plot the solar wind composition prorated sputtering yield. (Figure can be seen on the last page)

We have also added a description of this new figure. However, we still mention the absolute sputtering yield as it is available in the supplemented material.

The description of Figure 2 has been changed to: 'Figure 2 shows the results of the assessment, i.e. the sputtering yield as a function of ion species (H - S), for the three different materials. The given values are not absolute but prorated with solar wind ion composition present in fast and slow solar wind as well as CME conditions ($Y_{i,k} \cdot c_k$, c_k is the fractional abundance of ion k in the solar wind conditions, cf. Eq. 1, Tab. 1). The highest sputtering yields are found for Fe$_{0.4}$Mg$_{0.6}$O material, the yields are somewhat smaller for silicate and are the lowest by far for carbon material. The Figure 2 also shows that the sputtering yields strongly increase during CME conditions and that this is due to the sputtering by the heavy ions that are more abundant during CME than in the normal solar wind. Likewise, the higher abundance of He-ions in the slow solar wind explains why sputtering yields are larger in the slow solar wind then in the fast solar wind.

...Line 100: I guess you mean "(H - Iron, Fe),"...

... Line 151: Write "... have sputtering lifetimes that can reach ...

...Line 179: Typo: "... assuming the dust is in at a distance ..."

...Line 194 ff: use italics for the formula symbols, same as in the formula. ...

...Line 202ff: "re-emitted" wouldn’t "emitted" just do it? It is a photon of different energy anyway. ...

...Line 209: Typo: "... material(not shown)." ...

...Line 230: use italics for the formula symbols, same as in the formula.

...Line 237: Write "... are larger than 10^{-5} d." Remember the difference of drinking a great cup of tea, and drinking a large cup of tea.
We would like to thank the reviewer for identifying the typos and small mistakes in the text. We have corrected all the comments.

The reviewer raises a valid point on the dust composition changes in the proximity of the Sun. We have added a short paragraph, which shortly discusses this point based on our model calculations. However, quantitative statements are not possible from our results.

‘Our calculation allow the assumption that the majority of nanodust in the close proximity of the Sun is made of carbon. Fe_{0.4}Mg_{0.6}O and silicate dust is very likely sublimated or sputtered and not very abundant there. Quantitative statements on the abundance of different dust species depends also on their production rates near the Sun. Giving production rates for dust and nanodust made of different material are beyond the scope of this study.’

The reviewer refers to a general point in dust science. There are different types of dust, on the one hand rock solid fragments of small solar system bodies and on the other hand fragile conglomerates of smaller parts that form a larger dust grain. In the case of nanodust, its structure can be assumed as clusters of atoms and molecules. In the case of atomic clusters the binding energy might be as larger as in solid grains. Molecular clusters are much weaker bound and the term ‘fragile’ might be used for these clusters.

Our intention using the term ‘fragile’ related to the short lifetimes of nanodust, so that a single CME might be enough to destroy a nanometersized dust grain. In addition, we did not aim to relate to the idea mentioned by the reviewer as our calculation does not cover this perspective of the dust and nanodust. For clarification, we have changed the term ‘fragile’ to ‘small’ within the manuscript.

The reviewer points out a good possibility for future research. PSP carries a Wide field visible light imager (WISPR) that is not able to do spectroscopic measurements. Solar orbiter on the other hand carries different spectrometers for the EUV- and X-rays. We have added the following paragraph to account for that idea.

‘An additional possibility to characterize the composition of dust near the Sun is the detection of emission lines from sublimated dust atoms or ions. At 0.1 AU sublimation starts to be effective and might lead to layers of atomic species. Also collisional dust destruction can be a source of ions which might be visible near the sun (Mann et al. 2005). These ions might be detected optically from specific emission lines or using in-situ mass spectrometric measurements onboard spacecraft.’
We have implemented the correction.

Fig. 1. Solar wind ion prorated sputtering yield for Fe$_{0.4}$Mg$_{0.6}$O, silicate and carbon. Sputtering yields are a function of solar wind ion itself, its fractional abundance (fast solar wind (fSW), sSW, CME), H, He, C, O, N, Fe, Ne, Mg, Si, S.