Response to anonymous referee #1

We thank the referee for the careful review and useful comments, which have been helpful to us
when improving our manuscript. The reviewer comment is indicated in bold and prefixed with a
“>” symbol. Our answers are interleaved with the referee comments below.

>The paper has some interesting ideas and potential for the incoherent scatter radar (ISR)
community. This paper is jumping to apply MIMO radar techniques to ISR and makes a good
case that this can be applied to the E-region of the ionosphere. It argues that Eiscatt 3-D will
be able to do some interesting high resolution imaging of the E-region ionosphere. The
authors simulate the MIMO radar systems and then find that the SVD seemed to give the best
results.

>The application of generalized inverse techniques to geospace sensors is something I
generally support. I think this paper does a good job at taking specific problem in ISR and
tries to apply general inverse theory and gets some promising results. Overall the authors did
a good job of arguing that this sort of techniques will be useful for ISR. I think they need add
some caveats to clarify the applicability of the technique.

>First off the the technique the authors show does not include fitting for ISR spectra/ACFs to
get plasma parameters. This is fine if they specify that this for the E-region only and that is
not clear from the title or the abstract. Yes, different techniques are required for different
regions of the ionosphere with ISR but it would help the reader understand the current limits
of the method you are applying!

You are correct in saying that a measurement of the full incoherent scatter radar spectrum is needed
in order to fit for the plasma-parameters. However, this paper focuses on characterizing the imaging
capabilities of EISCAT 3D, given the current interferometer design. In order to avoid making this
study overly complicated. we felt the need to make a simplification of what parameter is to be
estimated.

One of the primary purposes of the EISCAT 3D radar imaging will presumably be studying the
structure of the ionosphere during auroral precipitation. One of the key parameters in this case is
electron density. This needs to be measured with as high temporal resolution as possible. It is to first
order proportional to returned power P = n. (1+T¢/T;) . In the E-region the T./T; ratio is somewhat
constant, so we can to first order assume that a radar image of the returned power is related to the
spatial distribution of electron density.

Fitting of the ISR spectrum or ACFs is not the main topic of the article. The ACF is indirectly
mentioned when calculating the integration time where all time lags are used for analyzing the
backscattered power. Implicitly the assumption of E region is repeated here. Clarifying the
restriction to the E region we also regard as important. In the manuscript, we changed the beginning
of the sentence on p. 5, 1. 22-24:

“If we additionally can assume that the autocorrelation function is constant, the number of lagged
product measurements per transmit pulse is Np (Np — 1)/2 because we also can use measurements
with different time lags.”

to “In the E region, we can assume that the autocorrelation function is constant. Then the number of

(.)”

>I want to also point out there has been work on imaging ISR in the past such as seen in [1],
but this was a study that only applied interpolation techniques to ISR data. I think comparing
this 2010 paper with the methods here would be helpful and show that this work is new.



Moving the radar beam to get a wider spatial coverage is somewhat different from the imaging this
article discusses. However, this also is a method to see the horizontal distribution of ionospheric
parameters, only in an other order of magnitude. For improving the survey over the literature, we
move the last part of the paragraph on p.4, 1.20-25 to p. 2, where literature on imaging is mentioned.

(The paragraph starts with “The application of aperture synthesis imaging for radar, i.e., aperture
synthesis radar imaging (ASRI), has been used in space physics for observing high signal to noise
ratio targets (Hysell et al., 2009; Chau et al., 2019).”

Here we will insert

“There is a good amount of literature on ASRI techniques in two dimensions (range and one
transverse beam axis direction) for imaging field aligned irregularities (e.g., Hysell and Chau, 2012,
and references therein). There have also been several researches on imaging of atmospheric and
ionospheric features in three dimensions, eg. Urco et al. (2019), who applied it to observations of
PMSE with the Middle atmosphere ALOMAR radar system (MAARSY), Palmer et al. (1998) on
data from the middle and upper atmosphere radar in Japan, Yu et al. (2000) with a simulation study,
and Chau and Woodman (2001) on the atmosphere over Jicamarca.”

After this comes “The currently available horizontal resolution [insert “of ASRI”] is around 0.5°
with Jicamarca, but down to 0.1° for strong backscatter (Hysell and Chau, 2012) in the case of
field-aligned ionospheric irregularities; and 0.6° with MAARSY for polar mesospheric summer
echoes (PMSE) (Urco et al., 2019).”

The next sentences should be a new paragraph:

“However directly on incoherent scatter in three dimensions there is little literature, but some
approaches have been made, like Schlatter et al. (2015), who used the EISCAT Aperture Synthesis
Imaging array and the EISCAT Svalbard radar to image the horizontal structure of Naturally
Enhanced Ion Acoustic Lines (NEIALs) and Semeter et al (2008) who interpolated sparse multio-
beam PFISR-measurements to estimate the E-region electron density variation over a 65x60 km
area during an auroral event.”)

>The following is a list a technical corrections I’ve found will need to fixed:

>- Page 6 line 25: Do mean truncated cone? Conic section implies a 2-D plane and this is a 3-D
volume.

Yes, we mean a truncated cone. The other referee recommended to switch to a spherical cone as this
figure represents the radar volume better and this will be included in the revised manuscript.

>- Page 7 line 1: You state range, which range is this because we’re not in a multistatic set up
and the term range is ambiguous, transmit, receive, bistatic?

The imaging interferometer antennas for EISCAT 3D can be considered as approximately a
monostatic system, because the largest separation between antennas is less than 2 km. In this case,
the transmitter-target-receiver range is nearly constant for all antennas.

We have added the following statement in the paper to hopefully make this issue more clear to the
reader: “by range, we mean the range from the center of the core array in Skibotn to the target.“
after mentioning the range for the first time on p. 7, L. 2.

>- Page 7 lines 9-10: O2 + is used for the calculation but the dominate species in the E-region
is NO+. I don’t think this will create a huge error in the calculations but it should be
mentioned that this will not throw off the calculation by much.

You are right. Fortunately, the molecular masses are very similar. According to Brekke (2013), p.
222, the dominating ion species in the E region are NO™ and O.," where there is slightly more of O,"
around 120 km, else NO" dominates, but the difference is small. Since the species are



approximately equally common, we can change the ion mass to 31 u corresponding to a mixture of
NO" and O,".

In the article, the ion mass is only used for calculating the thermal velocity, which is used for
calculating the bandwidth of noise. The noise bandwidth is chosen by taking the largest of the
thermal velocity and Since the inverse of the bit length exceeds twice the thermal velocity times the
wave number by at least one order of magnitude, changing the ion mass slightly has no effect on the
signal-to-noise-ratio.

In the paper, we will change “where m; is the ion mass, which we set equal to 32 u corresponding to
0, to “(...) to 31 u corresponding to a mixture of O," and NO". These are the two most dominant
ion species in the E region (Brekke 2013).” (1. 9). At the end of the paragraph, we will add “For all
bit lengths investigated here, 1, exceeds 2vuk by at least one order of magnitude. The bandwidth is
therefore independent on the ion composition as long as the measurements are restricted to the E
region.”

>- Page 8 Figure 2: I’m having trouble seeing the need for this figure since the assumption is

for a monostatic system, and chemical composition is off too. I’'m aware with MIMO that the
resolution can be chosen but this link budget only accounts for a monostatic system. Plus in a
monostatic system the gain from the antenna is directly tied to the resolution.

We feel this figure is of primary importance. It tells us if imaging is feasible or not from the point of
view of signal to noise ratio. The figure shows the expected time resolution achievable with
EISCAT 3D.

The caption for Figure 2 states the following: “Integration time of targets in the E-region observed
using the E3D core for transmit and a single 91 antenna element module for receive”.

A single 91 element antenna module is the antenna module used for interferometry. The integration
time is the required integration time to estimate a cross-correlation function between antenna
modules, which is the basic measurement that goes into imaging.

The gain of an antenna module is significantly less than it is for the full core array receiver. We
therefore felt it to be important to investigate if it is even possible to make a measurement of
incoherent scatter radar with reduced gain on the receiver.

Knowing how long it takes to estimate a cross-correlation between interferometer antennas with a
certain accuracy is of primary importance when determining how long it takes to make a radar
image with this system.

>- Page 13 lines 13-14: Please be more clear about what was done to the image from Figure 1.
It seems you just took the magnitude of the image and mapped it from 0 to 1?

Yes, this is correct. We will add a sentence on this to p. 18, 1. 14 where we mention the image:

“(As original image, we use a part a part of Fig.1). A part of 97 x 97 pixels was cut out of the figure
and the greyscale values were mapped to lay between 0 and 1. (From the...)”

>Qverall, good paper. I think it should be accepted with the changes I’ve go over above.

>[1] J. Semeter, T. Butler, C. Heinselman, M. Nicolls, J. Kelly, and D. Hampton, “Volumetric
imaging of the auroral ionosphere: Initial results from PFISR,” J. Atmos. Solar-Terrestrial
Phys., vol. 71, no. 6-7, pp. 738-743, May 2009.

Thank you for your comments.



Response to anonymous referee #2

We thank the referee for the throughout review which has helped us to improve the manuscript. The
review is repeated here in bold and starting with an arrow. Our comments are written below.

>The present manuscript analyzes the problem of radar imaging in 3D for incoherent scatter
applications that will be implemented using the EISCAT 3D radar. It is mentioned that the
proposed technique includes "near field" effects on the formulation of the radar imaging
problem because EISCAT 3D applications will be in such regime. The analysis includes also
the concept of MIMO radars in order to improve the resolution of radar images. The
manuscript is well organized and the results are presented clearly. Although the analysis
performed in this document introduces new ideas related to the radar imaging problem, I
would recommend a careful revision of the document before its possible publication. As I will
explain there are some important issues that have to be addressed first.

>1. In Equation 2 (page 5), it is assumed that the number of independent measurements per
second is proportional to the number of lagged products in a longpulse experiment. This is
definitely not the case. In a long pulse experiment, lag products are not independent, all of
them are correlated. This is because, within the length of a pulse, signals from a common
volume are mixed. Assuming that all lag products are equally informative, it is also an
oversimplification that I think may lead to not necessarily correct conclusions, particularly, in
this application in which the target fills the radar volumen. I would recommend the authors to
review this section in order to analyze more carefully the relationship between the number of
samples within a longpulse and the integration time needed to reduce statistical uncertainty.
Notice that if you consider Np=1, there is a singularity in equation (7), I don’t think this is
correct. I would also recommend to review equation 11 since a radar volume can be modeled
better as a spherical cone section rather than as a truncated cone. In this expression, if you
consider "r" at the center of the radar volume, the expression becomes simplified.

In the lagged products, the signal is correlated, but white noise is not. As long as the noise power is
much greater than the signal power, also clutter and other non-white noise effects can be neglected.
The lagged products are therefore independent for low SNR. At zero lag, the product includes all
the white noise from the receivers. We therefore ignore the zero lag. This is where the singularity in
eq. (7) comes from. If including the zero lag, the denominator would be F,,N,(N,+1) without
singularity. When inserting Np = 1 into Eq. (7), and the zero lag is ignored, there are no
measurements left and the variance is infinite.

In the E region, the decorrelation time is long in the VHF band which is due to heavy ions (O," and
NO") and relatively low electron and ion temperature. While the pulse is 0.5 ms long, the
decorrelation time is around 1 s.

We have investigated the difference between a truncated cone (conical frustum), a spherical cone
section, and a cylinder when modeling the volume in the E-region using a radar beam
corresponding to the solid angle of the EISCAT 3D beam. We found no significant differences
between these three models in this case. This study is included in the referee response.

The radar volume in Eq. (11) is indeed better represented as a spherical cone than by a truncated
cone. Changing the model to a spherical cone has the consequence that tan2(0/2) is substituted with
2(1-cos(8/2)). For small 8, like 6 = 1° as in the article, the difference is small. For significantly
larger beam opening angles (more than 10 degrees), these models start to diverge. Considering r to
be the range to the center of the radar volume simplifies the expression in the brackets to 3r2+Ar%/4
and the volume shrinks about 1%. The equation in the manuscript will be changed to the spherical



cone, but letting the range be to the lower boundary of the volume as before since this is closer to
what was used in the calculations.

>2. In the introduction (line 22, page 4), it is mentioned that there is not much literature
related to 3D imaging and the authors make reference to a recent work of one of the
coauthors. This is not fully true, the works of Palmer et al(1998), Yu et al (2000), and Chau &
Woodman (2001) (see references below) addressed the imaging problem in 3D in the same
sense as the present manuscript does. Of course the difference is that the new approach is
addressing the incoherent scatter problem while the previous work was mainly focussed on
coherent scatter echoes. So proper references should be used.

We will add the references mentioned. Since the literature description in the article starts to become
complex because similar literature is described two places in the text, we merge the literature on
imaging on p.2. Here we will clarify that the novelty is the use on incoherent scatter.

>3. In line 29, page 7, the integration time for MIMO applications is analyzed and it is
mentioned that the integration time will be longer in the MIMO case than in the SIMO case,
but the authors indicate that the difference depends on cross-coupling between antennas. I
don’t think this conclusion is correct, at least not as a first approximation. There is plenty of
literature related to soft-target radar equations that explain clearly that the received power is
directly proportional to an effective antenna aperture area (which is also proportional to the
true antena area). So, even if you use the same power on transmission, the received power will
be less when using a small antenna. Then, the need for additional integrations in the MIMO
case is directly related to the fact that smaller antennas will be used, less power will be
detected and SNR will be smaller. Cross-coupling may have an additional role but that is
definitely a second order effect. I would recommend to review Radar Principles by Toru Sato.
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19910017301.pdf I would also
recommend to review the work of Woodman(1991) which is very related to the type of
analysis performed in this work.

We were unaware of the Toru Sato and Woodman papers. We have studied them and they both seem
like useful references on how atmospheric radars operate.

When using MIMO, the transmit antenna is divided into N separate transmit sections. These
different regions need to transmit different waveforms in order for us to be able to separate the
different transmitter sections on receive.

If we divide the antenna into N parts (and thus N independent transmitters), each transmit section
will have an aperture of A/N and a power of P/N. Here A is the total area of the full array and P is
the total power of the full array. This is the ideal case.

In discussions with EISCAT staff, we have been told that two neighbouring regions of the antenna
should not be transmitting simultaneously with different codes, as the mutual coupling of two
different transmit signals might be problematic. This mutual coupling may in the worst case cause
power amplifiers to overload and break.

It was suggested that in order to reduce mutual coupling of different regions of the antenna when
dividing it into multiple transmitters, buffer zones could be made around each section of the antenna
array. This would reduce the amount of area and power for each section, making it slightly less than
A/N and P/N.

We have tried to carefully reword this in our manuscript to make this point more clear.
Now the last part of the paragraph says:



“The transmit gain must be divided by the number of transmitters. It could be that because of cross-
coupling between antennas, there must be buffer zones between transmitters. Then the gain
decreases furthermore. On the other hand, the radar will illuminate a larger volume that contains
more scatterers and so increase the received power again. In conclusion, the integration time for
MIMO will be longer than for SIMO. How long is mostly dependent on the possible cross-coupling
between antennas.”

We will change it to:

“Because of the smaller antenna area, also the transmit gain must be divided by the number of
transmitters. Additionally, there could be cross-coupling between antennas, which force buffer
zones between transmitters. Then the antenna area and gain decrease furthermore. In conclusion, the
integration time for MIMO will at least be the number of transmitters times the integration time for
SIMO.”

>4. In the discussion about the baseline cross-correlation, it is not clear why equations 20 and
23 (pages 10 and 11) should give different results. Both expressions come from taking the
Fourier transform of a gaussian blow. It seems the difference comes from a different
interpretation of the geometry. So, if the same interpretation is given both results (the far field
and near field expressions) should be the same.

Equation (23) truly represents the farfield, and Eq. (20) was derivated mostly in nearfield. However
to be integrateable, between Eq. (16) and (17) there was done an approximation to make the
exponential linear. The approximation can be interpreted as assuming plane waves. Therefore, Eq.
(20) is not exact anymore.

> Then, let me ask what the "near field" effects are.

The nearfield effects are blurring of the image as can be seen in the image reconstructions with
matched filter. Palmer et al. (1998) call the method “Fourier-based imaging” because it uses the
Fourier transform for reconstruction, which implies the farfield approximation.

>In fact, let me mention the following. In the work of Woodman (1997), it is argued that the
near field effect can be modeled as a phase correction in the visibility domain, however, in the
present manuscript the near field effect is not presented as a phase correction but as a change
of the magnitude of the visibility (correlation) function. Given the different interpretation of
the near field effects, I should ask again if the there is actually a "near field" effect that has to
be considered in radar imaging problems.

The phase correction in Woodman (1997) can be used for imaging with EISCAT 3D. In the study
we however followed an other approach where we do the simulations completely in the nearfield.
As we say in the introduction, the computation becomes more complex, but is accessible with
modern computers.

>Let me add one more detail. Woodman(1991) derives an expression for the cross-correlation
between the voltages of two different antennas showing that the cross-correlation is equal to
the Fourier transform of a Brightness function to a second order approximation. In this
derivation, there was no need to match the Fraunhofer condition, it was enough that the radar
range should be much greater than the separation between the antennas (R»D). This result
was actually a generalization of an earlier result presented by Kudeki(1990).

>This is a very important issue that needs to be reviewed more carefully in this manuscript.
Since it is argued that "near field" effects are considered, the authors should show clearly
what these effects are. However, based on previous literature, it seems that the Fourier
transform approximation is good enough for the EISCAT 3D scenario. If that is the case, the
problem presented in the manuscript gets simplified and the results presented can be obtained
without a complicated framework.



It seems that Woodman (1991) assumes plane waves in a similar form as the linearization
mentioned above. With the convention Toru Sato refers to, everything closer than ~1000 km is in
the nearfield, if including the EISCAT 3D outrigger subarrays. The Fourier transform with
correction as described by Woodman (1997) might be good enough for EISCAT 3D, but it is
possible to calculate the theory matrices and do the simulations in the nearfield taking into account
the spherical nature of the backscattered wavefronts and the antenna geometry. In general, when
solving inverse problems accurate theory matrices are important.

In practice, when we have some imaging measurements from EISCAT 3D and we want to
reconstruct the image with SVD, only the theory matrix A is needed. Regardless of near- or farfield,
the SVD itself requires the most computational power. However, after having been computed once,
it can be saved and reused.

>R. D. Palmer, S. Gopalam, and T.-Y. Yu, “Coherent radar imaging using capon’s method,”
Radio Science, vol. 33, pp. 1585-1598, November-December 1998.

>T.-Y. Yu, R. D. Palmer, and D. L. Hysell, “A simulation study of coherent radar imaging,”
Radio Science, vol. 35, pp. 1129-1141, September-October 2000.

>J. L. Chau and R. F. Woodman, “Three-dimensional coherent radar imaging at Jicamarca:
comparison of different inversion techniques,” Journal of Atmospheric and Solar-Terrestrial
Physics, vol. 63, no. 2-3, pp. 253-261, 2001.

>R. F. Woodman, “A general statistical instrument theory of atmospheric and ionospheric
radars,” Journal of Geophysical Research, vol. 96, pp. 7911-7928, May 1991.

>Kudeki, E., Siiriicii, F., and Woodman, R. F. (1990), Mesospheric wind and aspect sensitivity
measurements at Jicamarca using radar interferometry and poststatistics steering techniques,
Radio Sci., 25( 4), 595- 612, doi:10.1029/RS025i004p00595.

Thank you for your comments.

Brekke, Asgeir (2013): “Physics of the upper polar atmosphere”, 2. edition, Springer, Heidelberg

Additional responses and comments

After the public discussion phase we did a quick estimation on the phase correction from Woodman
(1997) and compared it to calculations with the true optical path length as in the manuscript and
with pure Fraunhofer plain-wave (farfield) approximation as in f.ex. Woodman(1991). It seems that
the phase correction is about as good as the calculations using the optical path length to recover the
scattered brightness distribution at 100 km range.

In the manuscript change overview below, the changes in the reference list are not reflected due to
the comparison program used (latexdiffcite). The changes there are only additions of references
mentioned in the discussion above.
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Abstract. A new incoherent scatter radar called EISCAT 3D is being constructed in Northern Scandinavia. It will have the capa-

bility of producing volumetric images of ionospheric plasma parameters using aperture synthesis radar imaging. This study uses

the current design of EISCAT 3D to explore the theoretical radar imaging performance when imaging electron density in the E region

and compares numerical techniques that could be used in practice. Of all imaging algorithms surveyed, the singular value de-
composition with regularization gave the best results and was also found to be the most computationally efficient. The estimated
imaging performance indicates that the radar will be capable of detecting features down to approximately 90x90 m at a height
of 100 km, which corresponds to a ~ 0.05° angular resolution. The temporal resolution is dependent on the signal-to-noise
ratio and range resolution. The signal-to-noise ratio calculations indicate that high resolution imaging of auroral precipita-
tion is feasible. For example, with a range resolution of 1500 m, a time resolution of 10 seconds, and an electron density of
2-10''m~3, the correlation function estimates for radar scatter from the E-region can be measured with an uncertainty of 5 %.
At a time resolution of 10 s and an image resolution of 90x90 m, the relative estimation error standard deviation of the image
intensity is 10 %. Dividing the transmitting array into multiple independent transmitters to get at multiple-input-multiple-output

(MIMO) interferometer system is also studied and this technique is found to increase imaging performance through improved

visibility coverage. H

Although this reduces the signal-to-noise ratio, MIMO has successfully been applied to image strong radar echoes as meteors
and polar mesospheric summer echoes. Use of the MIMO technique for ISR should be investigated further.

Copyright statement.

1 Introduction

One of the measurement challenges in the study of the Earth’s ionized upper atmosphere using incoherent scatter radars (ISR)
is that the measurements often do not match the intrinsic horizontal resolution of the physical phenomena that is being studied.
Conventional ISR measurements are ultimately limited in the transverse beam axis direction by the beam width of the radar

antenna, which is determined by the diffraction pattern of the antenna. Even for large antennas, the beam width is typically



10

15

20

25

30

35

around 1°. The mismatch between geophysical feature scales and horizontal resolution obtained by a typical ISR antenna is
demonstrated in Figure 1, which shows an image of auroral airglow taken in the magnetic field aligned direction. Overlayed on
the image are the antenna beam diameters of three incoherent scatter radar antennas: EISCAT UHF, EISCAT 3D, and Arecibo.
It is clear that the auroral precipitation has appreciable structure on scales smaller than the beam size. A conventional ISR
measurement in this case will provide plasma parameters that are averaged over the area of the radar beam, preventing the
observation of small sub-beamwidth scale structure. Only a radar with an antenna size of the Arecibo Observatory dish (305
m) would provide an antenna beam width that approaches the scale size of auroral precipitation.

Another measurement challenge for ISRs is temporal sampling of the spatial region of interest. Single dish radar systems
can only measure in one direction at any given time, and the ability to move the beam into another direction depends on the
speed at which the antenna can be steered. In addition comes the minimum integration time required to measure one position.
It takes a long time to sample a large horizontal region, and even then, the measurements of different horizontal positions are
obtained at different times.

In order to increase the spatial resolution of radio measurements without resorting to constructing an extremely large con-
tinuous antenna structure, a technique called aperture synthesis imaging can be used [e.g., Junklewitz et al., 2016]. It relies
on a sparse array of antennas to estimate a radio image with horizontal resolution equivalent to that of a large antenna. The
correlation between the received signals can be used to produce an image of the brightness distribution of the radio source.
This technique is widely used in radio astronomy to image the intensity of radio waves originating from different sky positions.

The application of aperture synthesis imaging for radar, i.e., aperture synthesis radar imaging (ASRI), has been used in

space physics for observing high signal to noise ratio targets [Hysell et al., 2009; Chau et al., 2019]. There is a good amount

of literature on ASRI techniques in two dimensions (range and one transverse beam axis direction) for imaging field aligned
irregularities [e.g. Hysell and Chau, 2012, and references therein]. There have also been several researches on imaging of
atmospheric and ionos . Urco et al. [2019] who applied it to observations of PMSE
with the Middle atmosphere ALOMAR radar system (MAARSY), Palmer et al. [1998] on the middle and upper atmosphere

currently available horizontal resolution of ASRI is around 0.5° with Jicamarca, but down to 0.1° for strong backscatter Hysell

and Chau [2012] in the case of field-aligned ionospheric irregularities; and 0.6° with the-Middle-atmosphere ALOMAR radar
system-(MAARSY>-MAARSY for polar mesospheric summer echoes (PMSE) Urco et al. [2019].
However directly on incoherent scatter in three dimensions there is little literature, but some approaches have been made,

independent PFISR-measurements to estimate the electron density variation over a 65 x 60 km area during an auroral event.
In radar imaging, the measurements are in the so called visibility domain. Ensemble averages of the cross-correlation of

heric features in three dimensions, e.

complex voltages between two antennas represents a single sample of the visibility Woodman [1997]; Urco et al. [2018].
Throughout this article we will use “far field” for the region further away than the Fraunhofer limit of the radar. The region

closer than the Fraunhofer limit we will call “near field”. If the radar target is in the far field of the radar, the visibility



EISCAT 3D

EISCAT UHF
Arecibo

Figure 1. An image of auroral optical emission in the magnetic field aligned direction showing the horizontal distribution of auroral pre-
cipitating electron flux. Overlayed on top of the image are the beam widths of the EISCAT UHF, Arecibo, and EISCAT 3D radars, with
approximately 0.5°, 0.16°, and 1.0° beam widths. Image from the Auroral Structure and Kinetics (ASK) instrument [Ashrafi, 2007], cour-
tesy of D.K. Whiter.
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domain is related via a Fourier transform to the horizontal brightness distribution or the radio image. Then, the measurements
are samples of the Fourier transform of the spatial variation of backscatter strength, or brightness distribution, of the target
[Woodman, 1997]. The measurements are used to calculate the brightness distribution, or image, of the target.

So far, most of the incoherent scatter radar imaging has been done with a single transmitter and multiple receivers, thereby
using a single-input multiple-output (SIMO) system. The number of measurements and degrees of freedom is here determined
by the number of receivers and their relative locations. Instead of using only one transmitter, multiple transmitters can be
used when performing radar imaging. This allows increasing the number of visibilities that can be measured, which can result
in improved imaging performance, as long as the signal-to-noise ratio is sufficiently high. This technique is called multiple-
input multiple-output (MIMO) radar [Fishler et al., 2006]. The MIMO technique for increasing spatial resolution has recently
been demonstrated with the Jicamarca radar when imaging equatorial electrojet echoes [Urco et al., 2018] and also with
the MAARSY radar for imaging PMSE [Urco et al., 2019]. The primary technical challenge with MIMO radar separating
scattering corresponding to multiple transmitters on receive.

EISCAT 3D, from hereon referred to as E3D, is a new multi-static incoherent scatter radar that is being built in Norway,
Sweden, and Finland [McCrea et al., 2015; Kero et al., 2019]. The core transmit and receive antenna array will be located
in Skibotn, Norway (69.340° N, 20.313° E). There will be additional bi-static receiver antenna sites in Kaiseniemi, Sweden
(68.267° N, 19.448° E) and Karesuvanto, Finland (68.463° N, 22.458° E). The core array of E3D will consist of 109 subarrays,
each containing 91 antennas. The one-way half power full beamwidth (HPBW) or illuminated angle of the core array will be
1°. On transmission, the array is capable of transmitting up to S MW of peak power at a frequency of 233 MHz. Additionally,
there are 10 receive-only outrigger antennas around the core array, providing longer antenna spacings that can be used for high
resolution ASRI. Imaging will already be necessary to maintain the perpendicular resolution constant in the transition from
EISCAT VHF and UHF to E3D. It is possible that the EISCAT 3D radar can also be configured as a MIMO system, where
the core array is separated into smaller subarrays, which act as independent transmitters at slightly different locations. During
the design phase, Lehtinen [2014] investigated the imaging performance of possible layouts of E3D in the far-field. The study
however does not include the current layout that is being built.

EISCAT 3D will not be able to measure radar echoes from magnetic field aligned irregularities, so it will not be possible
to assume that the scattering originates from a two dimensional plane where the radar scattering wave vector is perpendicular
to the magnetic field. All radar imaging will need to be done in 3D and mostly for incoherent scatter. This poses several two
main challenges: 1) the signal-to-noise ratio will in typical cases be determined by incoherent scatter, which is much smaller
than that used conventionally for ASRI; 2) there are more unknowns that need to be estimated, as at each range there is a 2D

image instead of a 1D image that needs to be estimated. While-the

SstSHmagmsg ana—+tn araraca
1)

Natarally-Enhanceddon-Acoustie Lines(NETALs)—{The rest of the paragraph is moved further up.
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For E3D, the Fraunhofer limit is at 2.D2 /A =~ 2000 km, where D ~ 1.2 km is the longest baseline and A = 1.3 m is the
wavelength of the radar. Measurements of the ionosphere are therefore taken in the nearfield of the radar. Woodman [1997]
describes a technique to correct for the curvature in the backscattered field with an analogy of lens focusing. In this study, a
different approach has been taken, where the nearfield geometry is directly included in the forward model of the linear inverse
problems formalism. In this case, it is not possible to resort to frequency domain methods to diagonalize the forward model.
This comes at an increase in computational complexity, but is not prohibitive in terms of computational cost with modern
computers.

In this study, we will simulate radar imaging measurement capabilities of the upcoming EISCAT 3D radar. The study is
divided into the following sections. In Sect. 2, we investigate the achievable time and range resolution of E3D, and how
they are connected. An expression for the cross-correlations between the received signals, taking into account the nearfield
geometry, is derived in Sect. 3. Sect. 4 describes the nearfield forward model for radar imaging and describes several numerical
techniques for solving the linear inverse problem. This section also includes a study of imaging resolution based on simulated

imaging measurements.

2 Time resolution

In this section, we will calculate the required integration time for a certain range resolution with E3D. The elementary radar
imaging measurement is an estimate of the cross-correlation of the scattered complex voltage measured by two antenna mod-
ules. The integration time in this case is the minimum amount of time that is needed to obtain a error standard deviation for the
cross-correlation estimate that is equal to a predefined limit. The estimation error of the cross-correlation determines the mea-
surement error for the imaging inverse problem. By investigating the variance of the cross-correlation estimate using statistical
properties of the incoherent scatter signal, we can decouple the problem of time and range resolution from imaging resolution,
allowing us to study the performance of the imaging algorithm with a certain measurement error standard deviation.

Our signal-to-noise calculations will be based on an observation of incoherent scatter from ionospheric plasma, which is
the case with the smallest expected signal-to-noise ratio. We have ignored self-clutter, as the combination of the E3D core
transmitter illuminating the target and a single 91-elementreceiving subarray receiver module will inevitably be within a low
signal-to-noise ratio regime, dominated by receiver noise.

We will first deduce an expression for the measurement rate, that is, how many measurements are taken per second. There
are two factors that determine the maximum rate at which independent observations of the scattering from the ionosphere can
be made: 1) The minimum inter-pulse period length, which we set to d/,, with d the duty-cycle and 7, the pulse length. 2) The
incoherent scatter decorrelation time, which is inversely proportional to the bandwidth of the incoherent scatter radar spectrum

B. The maximum of these two time scales determines the frequency of independent measurements that can be made:

Fy, =min (dr, ', B) (1)

P
If a transmitted longpulse is divided into Np bits, the number of measurements per longpulse can be multiplied by Np. H-we

In the E region, we can assume that the autocorrelation
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function is constant for the purpose of estimating the variance. Then the number of lagged product measurements per transmit
pulse is Np(Np —1)/2 because we also can use measurements with different time lags. For sake of simplicity, we assume that

all lags within a radar transmit pulse are equally informative. This is approximately the case for E-region plasma measured

using E3D. The number of measurements per second is then
Fc:FmNP(NP_]-)/2' (2)

Next, we will estimate the number of measurements needed for reducing the measurement error of an average cross-
correlation measurement to a certain level. We consider a measurement model where a measurement m is described by a
linear combination of the parameter we want to estimate m = x + &, where x and £ are considered as proper complex Gaussian
random variables with zero mean and variance of respectively Ps and Py. The noise power estimate Py is assumed to have no

error. We estimate the signal power with
K m;m;

J L 3
et K Ny ( )

where the bar denotes complex conjugation. It can then be shown that

2 _ (Ps + Px)?

Var(ﬁ’) = (ePs) e , 4)

where ¢ is the relative standard deviation and K is the number of measurements [Farley, 1969]. If we require the correlation
function to have a relative uncertainty under a certain level ¢, f.ex. e = 0.05 = 5%, the equation can be solved for K in order to

get the number of needed samples

2 2
(Ps + Py) (SNR+ 1) 7 (5)

(ePs)?  \ e SNR

where SNR is the signal-to-noise ratio SNR. The integration time required to obtain a measurement with a certain level of

uncertainty is now

_K (Ps+ Py)° 2 ©)
Fc (6P5)2 FmNP(NP_]-),
or written as a function of SNR
NR+1)? 2
T SNR + . (7
¢-SNR FmNp(Np—l)
The received signal power Pg can be found by the radar equation
PththrxAza
Ps=———— 8
ST P RLRE, ®

where Py is the transmitted power, Gy is the transmit and G the receive gain, ) is the radar wavelength, o is the scattering

cross-section and Ry and R,y are the distance from the scattering volume to the transmitter and receiver [e.g. Sato, 1989].
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Assuming that the Debye length is much smaller than the radar wavelength, the effective scattering cross-section for a single

electron in plasma [Beynon and Williams, 1978] is
op=0.(14+T./T;)"". )

Here, o, is the Thomson scattering cross-section o, = 47rr§, T; is the ion and 7 the electron temperature.
The total scattering cross-section can be found by adding up the cross-sections of all electrons in the illuminated volume

NV,
0 =VNcop. (10)

The scattering volume can be approximated using a eonie-seetion:-spherical cone:

rArtan®(%) 2rAr (1 — cos(6/2
V:Fr ! Zn (3) 2mAr 3005(9/ ))(37"2—1—37“A7“+A7“2) (11)

Here, Ar = c¢7y, /2 is the range resolution of the measurement, where 71, = 73, /N, is the baud length, r is the range of the volume

and 6 is the HPBW angle of the radar. By range, we mean the range from the center of the core array in Skibotn to the target.

We assume that the noise is constant through the ion line spectrum. The noise power is then given by
Py = kpTyys B (12)

where Ty is the system noise temperature, B is the bandwidth of the incoming ion-line, and kg is the Boltzmann constant.
The bandwidth we assume to be equal two times the ion thermal velocity times wave number (v¢rk2vi, k) or the inverse of the

pulse length 7~ !, depending on which one is the largest. The ion thermal velocity is given by

kgT;
Ve = 4] 2= (13)
m;

where my; is the ion mass, which we set equal to 32-t-eorrespondingto-O5-31 u corresponding to a mixture of O and NO*,

These are the two most dominant ion species in the E region | Brekke, 2013]. The system noise temperature we set to 100 K. For

all bit lengths investigated here, 7' exceeds 2v,,,k by at least one order of magnitude. The bandwidth is therefore independent

on the ion composition as long as the measurements are restricted to the E region.

We can now use this to calculate the integration time of electron density measurements in the E-layer at 150 km for different
range resolutions. The standard deviation requirement is set at 5%. The electron and ion temperatures we set to 400 K and 300
K, respectively. We assume a monostatic radar with frequency f = 230 MHz, HPBW 6 =1°, and a transmitter with power of 5
MW. The transmitter gain for the core array we set to 43 dB and the receiver gain to 22 dB for one subarray of the imaging
array. The interpulse period Tpp is 2 ms and the longpulse length is 0.5 ms. The results are shown in Fig. 2.

The figure shows that the integration time decreases with increasing electron density and decreasing range resolution. This

confirms the expected tradeoff between range and time resolution. If the electron density is not too low, a time resolution of a
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Figure 2. Integration time of targets in the E-region observed using the E3D core for transmit and a single 91 antenna element module for

receive.

few seconds is possible. This however assumes a relatively low range resolution of 1000 - 2000 m, which still provides some
useful information about the E-region plasma. When keeping a constant standard deviation, an enhanced electron density can
be used to improve either the time or range resolution.

When using MIMO imaging, the core array is divided into multiple independent groups when transmitting. This provides
more baselines as well as increases the maximum antenna separation. In this case, the imaging resolution will be improved by
having a larger aperture. One of the challenges in this case will be separating the signals from different transmitters in the case
of overspread radar targets. We assume that separate transmitters operate at the same frequency and that the transmitted signals
are distinguished using radar transmit coding. This can be achieved in practice using a different pseudorandom transmit code
on each transmit group [Sulzer, 1986, Vierinen et al., in preparation]. Then, the transmit power is spread over the transmitters.

However, since all-transmitters-pointin-the-same-directionthe scattering volume increases and then includes more scatterers,

the power adds up again. Fhe—transmit-gain—must-be-divided-by—thenumber—oftransmitters: otld-be—that-beeatse—o
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possible-cross-eoupting between-antennas-Because of the smaller antenna area, the transmit gain must be divided by the
number of transmitters. Additionally, there could be cross-coupling between antennas, which might cause buffer zones between
transmitters. Then the antenna area and gain decrease furthermore. In conclusion, the integration time for MIMO will at least

The calculations do not include other echoes than from incoherent scatter or other enhancements than electron density. In
the case of PMSE e-gUreo-et-aks : g5 als ~Se als [e.g. Urco et al., 2019]
and NEIALS [e.g. Grydeland et al., 2004; Schlatter et al., 2015], the echo is significantly stronger than for incoherent scatter.

These enhancements will also make shorter integration time available, and will be more promising candidates for use of MIMO

imaging.

3 Baseline cross-correlation

In this section we calculate the correlation between signals from two different baselines, that are transmitter-receiver-pairs. The
aim is to determine which baselines provide information about ionospheric features of a certain scale size, and to determine
how the nearfield geometry affects this correlation.

We consider a case with one transmitter and two receivers placed with a equally long distance from the transmitter in every
direction. This configuration is shown in Fig. 3. Let the transmitter be placed in the origin and the receivers at | P;) and | P»).
Let the transmitter transmit an eleetrical-potential-signal of the form V = K et where K is a time-independent constant, w,

is the transmit frequency and ¢ is time. The electrical potential induced to receiver antenna 7 then becomes

N
VT _ K Z Gefiw(Tir,,,+Ts7~,,,)7 (14)

n=1
where T}, = ||R; +75)|/cis the time delay from the transmitter to scatterer n and Ts,, = || Rsr — 7 )|/c is the time delay from
Rsr>

is the vector from the centre of the plasma volume to receiver r, and |r,,) is the vector from the centre of the plasma volume

scatterer n to receiver r. Here | R;) is the vector from the transmitter to the centre of the illuminated plasma volume,

to scatterer n, like in Fig. 3. IV is the number of scatterers in the scattering volume, and G € R is the scattering gain which
includes the free-space path loss. The gain may be dependent on the position of the scatterer, the scatterer itself, and on time,
but we neglect these dependencies. We also neglect that the distance to the scatterer varies between the transmitter-receiver

baselines. This has a order of magnitude of ~10 m, which is lower than the best available range resolution.



d

Figure 3. Setup for calculating the cross-correlation function. The box represents an ionospheric feature with size L. The figure is based on

the assumptions in the end of Sect. 2, but is not to scale.

The cross-correlation function for time lag 7 = 0 can then be written as

RV1V2 (t,t +0) =E [VlVQ] (15)
N N
=E|K) Ge Tt N GeTin T o) | (16)
n=1 n’=1

By taking the first-order Taylor approximation of the time delays around |r,,) = |0), we get that T},, ~ w

Ror+(Rerlrn)
(&

and T, &~

, where the hat denotes a unit vector. Carrying out this approximation is essentially the same as assuming plane

waves. When keeping also the second order terms, the nearfield correction described by Woodman [1997] can be deduced.

We note that —% (R; — Ry1| = —(ki| + (ks1| = (k1], that is the Bragg scattering vector. Equation 16 can then be written as
N N
Ryiv, (0) = | K[2G? Z Z e—12(Re2—Ro) [ez(kllrn)—z(kzlrn/)} . a7
n=1n'=1

10
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We assume that the scatterer positions are independent identical normally distributed with mean |u) and covariance L, that is
like a Gaussian blob,

—(rp=—pL " )

flrn)(|rn>) = (18)

e

(27)3/2| det (L)
We use the definition of expectation and then solve the integral. Since the positions of the scatterers are assumed to be indepen-
dent, the expectation becomes zero when n # n’. In addition, in first order approximation, R, — R ~ 0 because D << h.

The result then becomes

Ry, v, (0) = K [P G N il —hali o= = (19)
The normalized cross-correlation function,
R
P12 = ——nr ;
V RVI Vi RVz Va
becomes
p12(0) = B (20)

We note that if the transmitter(s) and all receivers lay in a plane, the vertical components of the Bragg scattering vectors are
exactly equal and make the vertical components of ) and L, namely p,, L, L,, and L. arbitrary. This means that the
horizontal resolution is independent on the vertical resolution.

Equation 20 for (| = [0,0,0] and L = (L/2)°I is plotted in Fig. 4, where L is the extent of the ionospheric feature in all
dimensions, and I is the identity matrix. Figure 4 also shows numerically simulated normalized correlation based on a direct
simulation of Equation 16, which does not significantly differ from the analytical expression. The plot shows that for a height
of 10° m (100 km) and a baseline of 211 m, the correlation crosses 0.95 at a blob size of 70 m and 0.5 at a blob size of 250
m. At 100 km height, the radar beam of E3D is about 1800 m wide. This means that when considering a maximum baseline
of 200 m and a ionospheric feature that is larger than 250x250 m, addition of longer baselines contribute less to recover the
image. The E3D core has a maximum baseline of 75 m. We can simplify these calculations by setting the magnitude of the

desired least cross-correlation to R,
R = ‘plg ‘ (21)

We assume that the scatterers have equal variance in x- and y-direction (L., = L,, = (L/2)?) and that all directions are

uncorrelated (L, = L, = L, = 0). By using the geometry as in Fig. 3,

4n2D? <L>2
ky — b [Llky — k) = — 2 (Z) (22)
(kg — k1|L|k2 — k1) N (h2 s 5 \ 2

Removed 6 lines for clarity] By combining Egs. 20, 21, and 22, we get

2 2112
lnR2:_<s> 2477271)1727
A2 (k24 B2

11
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which can be rewritten to an expression for the feature size L:
A D? 1
L=— (+h2> In — (23)

For short baselines or long distances D < h/5, the expression can be simplified, we solve for the baseline D and get

Ah 1
= 1

D—E H@.

(24)

The resulting expression shows how long the baseline can be to still get contribution to recovering the feature. Equation 24 is
plotted in Fig. 5.

A longer baseline can contribute to recover smaller features, but the improvement will decrease the longer the baseline is.
For example if we want to resolve a feature with size 100 m, baselines up to 200 m have large contribution to the imaging.
Adding longer baselines will improve the resolving less, and stopping slightly above 1 km . This means that the improvement
of the imaging quality by including the E3D outriggers will be large for the closest outriggers. The signal received by furthest
ones will correlate little with the signal received by the core. From Fig. 5 we see that the correlation in the longest E3D baseline
of 1.2 km is about 5 %. This means that if one wants to use E3D to invest ionospheric features with extent around 100 m at 100
km range, there is no need to add longer baselines, the furthest outriggers are far enough. Also, it could be possible to improve
the imaging quality in this example by having more baselines with lengths of around 100 m. This is one reason to use the E3D
core as multiple transmitters to addmere- new baselines.

When inserting R = 0.01, Eq. (24) shows that the diffraction limit is the same as for planar scatter under the assumptions
mentioned in the deduction.

Baselines between the receiver sites in Skibotn, Karesuvanto and Kaiseniemi are so long that they can not be used for
imaging as signals will not be correlated anymore. The baseline cross-correlation calculations also do not claim that the image
is well recovered if including the largest baseline. This is more dependent on which baselines are used, how they are distributed,

and how the image is recovered.

4 Radar imaging model

We consider a radar that may have single or multiple inputs (transmitters), and multiple outputs (receivers) (SIMO or MIMO).
The radar illuminates a plasma volume at range R with thickness dr, and inside of the one-way HPBW 6. We imagine that the
volume is divided into M parts, or pixels, see Fig. 6 .

The signal transmitted from transmitter A and spread by plasma element/pixel g causes a voltage fluctuation in the receivers.
The voltage fluctuation of receiver D due to transmitter A and plasma pixel ¢ is denoted as V{, = F Vae2™ i Tip | where V5
is the amplitude of the signal sent by transmitter A, F is a function of the received signal amplitude, f is the radar transmitting
frequency and 7', is the time delay of the signal due to travelling from transmitter A via pixel ¢ to receiver D, c.f. Fig. 6.

The correlation between signals from two different baselines AD and BE due to an infinitesimal scattering volume dV' can be

12
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Figure 4. Cross-correlation between signal in EISCAT 3D receivers displaced by distance d. The solid lines show the magnitude of the

normalized cross-correlation function, Eq. (20) with L = (I /2)?I. The dots show numerical estimations of the cross-correlation, Eq. 16.
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described as

_ BGM)G ()N oane(r) amis (15—l
donome = S C S e

dVv (25)

where P is transmit power, G is transmit gain, G, is receiver gain, A is the radar wavelength, o, is the scattering cross-section
for a single electron given by Eq. (9), n. is the electron density, R, is the distance from transmitter to the scattering volume, R,
is the distance from the scattering volume to the receiver, and |r) is the position of the scattering volume. We integrate over the
whole scattering volume to get the whole measurement. At a certain time lag, we get the correlation for the range of interest.
We assume that the gains are constant inside of the radar beam and zero otherwise and neglect the dependency of R; and R; on
the exact position of the scattering volume. The correlation can then be written as

PADBE = PthGT)\QUP/ne(|r>)62mf(TA23>_THg)dV' (26)

(47)3 R R?
\%4
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Figure 6. Example of multiple input multiple output radar and plasma volume in its line of sight.

We assume that the electron density (or brightness) distribution can be written as a sum of discretized parts with constant

electron density. We neglect variations in the phase shift inside of one part. The integral can then be replaced with a sum

Q

PGy G \a,, 0\ = neld] - i (T8, —Ts)
=" "Par(2Rtan— Rl et . 27
PADBE (in) R2RE r (2R an 5 qz:; ) e Ao~ Tup (27)

The first factor here is constant and can be normalized away. The number of discretizations () is still needed in the simulations

if the original image has an other resolution than the reconstructions. The series of measurements can be written on matrix

form,

[m) = Alz) +[e). (28)

15
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Here, |2) = [ne[1],ne[2], ..., ne[Q]]",

: . Q Q
62mf(T1§A—T/1A) .. 627”f(TAA_TAA)
A = . .
. . Q Q
ezﬂzf(TéK—TéK) R esz(TKK_TKK)
is the theory matrix, and |€) = [ea444,64448,---,éKKKK] 1S the complex normally distributed noise vector.

Sometimes it is more convenient to have the crosscorrelations on matrix form. The measurements can be transferred from

the one form to the other simply through reshaping the vector |m) to a matrix M or opposite:

PAAAA  PAAAB  “°°  PAAKK
PABAA PABAB “'° PABKK

M= . . . 29)
PKKAA PKKAB " PKKKK

To get an estimate of the intensities of the plasma in the image, Eq. (28) has to be inverted so that
|2) =B|m), (30)

where B is a matrix that reconstructs the image |x) from the measurements |m). When inserting Eq. (28) into Eq. (30) and

neglecting noise, we get |Z) = BA|z). We wish that the reconstructed image is as close to the reality as possible, and so taking

B = A~! would give a perfect solution. H
matrix-and-the-exactinverse-will- therefore-notexistHowever, since we have an underdetermined problem, A cannot be direct]

invertible. Other attempts are therefore needed.
4.1 Matched filter

When the scatterers are behind the Fraunhofer limit in the far field, Eq. (28) represents a Fourier transform. One approach to
get back the original image would be the inverse Fourier transform, which can be represented the hermitian conjugate of the
theory matrix, B = A like a matched filter (MF). Unfortunately, the samples of the Fourier-transformed image, that are the
visibilities, are sparsely and incomplete scattered and the problem gets underdetermined Hysell and Chau [2012]; Harding and
Milla [2013]. The approach can be interpreted as steering the beam after the statistical averaging and is therefore also called

beamforming.
4.2 Capon method

Another approach is the Capon method Palmer et al. [1998]. The purpose of this method is to minimize the intensities in all
other directions than the direction of interest, that is to minimize the sidelobes of the antenna array in directions with interfering

sources. The result is to invert the matrix of correlation measurements M Palmer et al. [1998]. In order to continue using the

16
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notation in this article, M~ ! is reshaped back to a vector |m~!). The estimated intensities by the Capon method can then be

written as

1

‘i'capon> = W? (31)

where the fraction denotes element-wise division.
4.3 Singular value decomposition

The problem in Eq. (28) is overdetermined if the number of unknowns, that is the number of discretizations, is less than the
number of measurements. This can be the case if we solve for a imaging resolution that is low enough. We can then use the

method of least squares to solve it, getting
A -1
Zrs) = (ATA) " AM|m).

One can also use the singular value decomposition (SVD) on the theory matrix, A = USVH, where S is a diagonal matrix
containing the singular values, that are square roots of the eigenvalues of AHA, V contains the normalized eigenvectors of

AP A, and U contains the normalized eigenvectors of AA™. The inversion matrix B can then be written as
B=VSs~'U", (32)

which can be shown still gives the same solution as ordinary least squares, but with increased numerical accuracy Aster et al.
[2013]. Because of inverting the singular values, the eigenvectors corresponding to the smallest values contribute most to the
variance of the solution and make the solution sensitive to noise. Also, the problem can be rank deficient, that is that several
columns in the theory matrix are nearly linear dependent on each other. The problem is then said to be ill-conditioned or
multicollinear.

In such cases, some singular values will be practically zero and the solution may be hidden in the noise. To prevent the noise
sensitivity, the solutions can be regularized. This makes the reconstruction biased towards smoothness and zero, but less noisy
Aster et al. [2013]. We here consider two regularization techniques, truncated SVD (TSVD) and Tikhonov regularization. In
TSVD, the inverse of the singular values below some limit are set to zero. The eigenvectors corresponding to the smallest
singular values will then not contribute to the result. These eigenvectors often contain high frequency components. Ignoring
them makes the solution smoother. Tikhonov regularization or ridge regression can be done in several ways. In this article, we
use zeroth order Tikhonov regularization where the singular values s; are inverted with

Si

% 33
52 +a? (33)

where « is a regularization parameter. By using SVD, we also can get the variance |X;) of the estimates. For pure least squares,

it is diag((AH A)~1), for regularized least squares it is
1%;) = diag(BBH). (34)
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44 CLEAN

CLEAN is another attempt to reduce sidelobes. It is based on the matched filter approach, but iteratively finds the real structure
in the field of view Hogbom [1974]. It supposes a source where the image reconstructed by the matched filter is brightest.
The source is added to an image that only is containing the suspected sources, which will be the reconstructed image. Then
the measurements that the radar would have measured if the reconstructed image were the true image are subtracted from the
real measurements and the next suspected source is found. This procedure is repeated until there are no clear sources left in
the measurements Hogbom [1974]. The method is a special case of compressed sensing requires an assumption on how the
measured sources look like [Harding and Milla, 2013]. For sparse sources, a Dirac delta function could be appropriate, but

lead to sparse solutions.
4.5 Performance of the radar layouts

We considered different radar layouts. The layouts together with plots of the visibilities and the point spread function are shown
in Fig. 7.

When considering a layout with multiple transmitters and multiple receivers (MIMO), it is assumed that the signals from
different transmitters can be distinguished. This increases the number of virtual receivers and thereby the visibilities get more
widespread and denser, cf. Fig 7. However, using multiple transmitters increases the integration time as described in Sect. 2.
We note that when receiving with the outriggers, the main beam becomes narrower. Also, there are gaps in the visibilities. This
is due to the sparse locations of the outriggers and makes the point spread function look more irregularly (cmp. Fig 7c and 7f).
With multiple transmitters, the main beam becomes even narrower (cmp. Fig 7c and 7i). When both using multiple transmitters
and receiving outriggers, the gaps in the visibility domain partially get filled and the sidelobes are clearly reduced. The MIMO

layout used here could possibly be improved by using positions of the transmitters so that gaps in the visibility get more filled.
4.6 Performance of the imaging techniques

We simulate E3D measurements using Eq. 28 and with the presented antenna configurations. As original image, we use a part of

Fig. 1-. A part of 97 x 97 pixels was cut out of the figure and the greyscale values were scaled to the range between 0 and 1.

From the measurements we reconstruct the images with the matched filter (MF), Capon, truncated singular value decomposition
(TSVD) and CLEAN techniques. For TSVD, the singular values below 0.02 of the maximum singular value were truncated.
This value gave-the-bestcombination-gives a good compromise of resolution and low noise level (regularization). For CLEAN,
we used a gain of 1 and a threshold of 1.36 times the average value. We tried both Dirac delta and Gaussian functions in the
CLEAN kernel. In capon filtering, it happens that the correlation measurement matrix M is singular. In such cases, TSVD is
used to invert the matrix. This truncation ignores singular values that are less than 0.03 % of the largest singular value.
To-all-cross-correlations-thereis-added-Noise is added to all cross-correlations which corresponds to white complex Gaus-
sian noise with zero mean and 5 % standard deviation in each receiver. The noise is equal for every reconstruction of a single

resolution, but varies between reconstruction in different resolutions. The results for the SIMO layout is shown in Fig. 8.
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Figure 7. E3D transmitter-receiver layouts considered. The left column shows the layouts, the middle column shows the visibilities, and the
right column shows the point spread function in the near-field at 100 km range. The point spread function was calculated by reconstructing
a 1x1 one-valued central pixel in an 129x129 zero-valued pixel image with a matched filter. The upper layout uses the whole core array as
a single transmitter and receives with each of the 109 antenna groups in the core array. The second layout also includes the interferometric
outriggers. In the third layout only the core is used, but divided into three transmitters. Finally a fourth layout uses both the outriggers and

multiple transmitters
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Figure 8. Comparison of reconstructions. All antennas are transmitting together like one transmitter, but receiving separately. The intensities
are normalized to be between 0 and 1. The top-left figure shows the true image. The others show the reconstructed image: Matched filter

(top-right), TSVD (bottom-left), Capon (bottom-right). For TSVD, the singular values below 0.02 of the maximum singular value were

ignored.
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Figure 9. Comparison of reconstructions using SVD for the SIMO case only using the core antennas. The topleft figure shows the true image.
The bottomright image shows the inverse of the singular values of the theory matrix. The other figures show reconstructions with different
weighting of the singular values: The topmiddle has no weighting and corresponds to ordinary least squares method, in the topright figure,
the singular values below 2 % of the largest singular value are ignored/truncated away, in the bottomleft and bottommiddle, the inverse of
the low singular values are damped like in Eq. (33) with regularizing parameter « of respectively 10 and 100. The reconstructions consider
a image resolution of 20x20 pixels, at 100 km altitude 1 pixel corresponds to 100x100 m. White spaces in the color plots correspond to

negative values.

Of the reconstruction techniques, TSVD clearly gives the best results. It is also the only method that fairly reproduces the
shape of the true image. Capon also partly reproduces the shape, but far worse than TSVD. The matched filter apparently only
reproduces something similar to the point spread function. The performance of CLEAN (not shown here) is accordingly poor.
In terms of calculation time, CLEAN is the slowest algorithm followed by TSVD. MF and Capon are relatively fast. These
differences get stronger when also considering MIMO. Most of the computation time of TSVD is used to invert the theory
matrix. Since the theory matrix only varies from experiment to experiment, it must only be inverted once and can be saved
afterwards. The computation time therefore is reduced to a simple matrix multiplication, and it is not considered as a problem
for the real radar. We therefore concentrate on images reconstructed with techniques using SVD. Here, we compared ordinary
least squares, TSVD with truncating singular values under 2 %, like before, and Tikhonov regularization with regularizing
parameter « = 10 and 100. These results are shown in Figs. 9 to 12 for the four layouts shown in Fig. 7, that are SIMO without

and with outriggers and one MIMO case without and with outriggers, respectively.
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Figure 12. Comparison of reconstructions using SVD for the MIMO case including the outriggers. Else, the plots corresponds to Fig. 9.

For all layouts, at a considered resolution of 20x20 pixels in the radar main beam (here, 1 pixel~100x100 m), the image
reconstruction with method of least squares is very noisy. The singular values of A are varying over several orders of magnitude
which is a sign of that columns in A are linear dependent on each other. The regularized solutions look considerably better,
with a regularization parameter of 10, the recovered images are still a bit noisy, but with stronger regularization the images get
smoother and closer to the original.

The two most strongly regularized images to the upper-right and bottom-middle contain stripes if the radar layout is including
the outriggers. This is propably because the visibility in some regions has gaps, cf. Fig 7. When only considering the core array,
there are no gaps other than the spacing between antennas. The recovered images without the outriggers look smoother than
including the outriggers, but when including the outriggers, more details of the original image can be seen. Also, in the MIMO
case with outriggers, the feature in the south-east can be seen in the reconstruction. For the other layouts it is less visible and
not clearly distinguishable from the main feature in the north.

The uncertainty of the reconstruction itself is given by the variance of the recovered image, Eq (34). The mean standard
deviation for the different layouts and reconstruction techniques is shown in Fig. 13. The plots of the least square variance are
comparable to the variance plots in Lehtinen [2014]. We note that while Lehtinen [2014] investigates far-field imaging, Fig. 13
shows near-field imaging.

By using the standard deviation we neglect errors introduced by the discretization because they are not included in the

variance. This assumption is true if the true image has the same resolution as the reconstruction, but that is only for the case
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of what Kaipio and Somersalo [2010] call a "inverse crime". In reality, the target of E3D, the electron fluctuations in the
ionosphere, is not discrete with steps of several metres. Also, by regularization, bias is introduced to the solution, which the
variance does not take into account. Therefore, we also used the similarity to the true image for uncertainty estimation. As
a measure, we used the mean square deviation, s = Zi\il % so a low value of s means great similarity. Because the
original image and the reconstruction have different resolutions, the smallest is scaled up. The scaling was done by Lanzcos
resampling with a cos?>-kernel. A drawback with the MSE is that it could be influenced by the target, while the variance is not.
The mean standard deviation and the similarity to the original image are shown in Fig. 13 for all layouts considered here and
reconstruction resolutions up to 100x100 pixels.

The variance of the recovered image is strongly increasing with the resolution we assume/want that the radar target has.
Image recovering with LS gives the highest variance for all layouts. The reason is the multicollinearity in the theory matrix
which amplifies the noise in the recovered image. At small resolution, the variances are equal for the different reconstruction
techniques, but diverge when the regularization starts to influence the results. This divergence happens later when including the
outrigger antennas and also later when using MIMO than for SIMO. For high resolutions, the variance of the TSVD solution is
the lowest. However, since bias is introduced by regularizing the solution, this does not necessarily mean that TSVD solution
is the best.

The mean square error (MSE) of the recovered images is in general higher than their mean variance. For small resolutions, it
decreases with increasing resolution until it reaches a bottom point. The error then increases again. For LS and Tikhonov with
a = 10, the minimum is at 10-20 pixels per direction. When including the outriggers, the minimum is at a later stage. Also,
the error is lower. We also note the dip of error at 97x97 pixels. This is exactly where the resolution of the recovered image
matches the resolution of the original image so these dips are the effect of inverse crimes and therefore not transferable to the
real radar. For high resolutions, the MSE is higher for MIMO than for SIMO when using Tikhonov. This could indicate that
for MIMO, more regularization is required.

The original image contains values between 0 and 1 m™ with a mean of about 0.5 m™. In real, the values will be far higher
and the uncertainty will increase accordingly. Therefore, the standard deviation and the MSE are plotted relative to the mean
value of the original image. In order to have a good recover, the relative mean error should be below 1 and, if possible, far
below that. All regularized solutions would fulfil this criterion, but the two strongest regularizations clearly have the lowest
MSE. The minimum of MSE seems to be somewhere between 60x60 pixels for MIMO and 90x90 pixels for SIMO. In practice,
the image reconstructions for higher resolutions look very similar to low resolution (20x20) without adding more details but
with better quality of the reconstructed image.

In the MSE plots, the curves flatten out to a minimum relative MSE at about 10 %. At 100 km range, 20x20 pixels corre-
sponds to a resolution of around 90x90 m. The TSVD indicates that the recovered image with MIMO could be improved with
stronger Tikhonov regularization, but this has not been investigated.

The MSE of TSVD does not decrease significantly from SIMO to MIMO. Therefore it seems that there is little gain by using
the MIMO layouts considered here. However, the feature in the bottom right part of the image in Figs. 10 and 12 gets clearer

with MIMO. For other targets, these results may look different. When comparing the point spread functions in Fig. 7, it could
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Figure 13. Comparison of regularization techniques. Mean standard deviation of the result is shown to the left. The right plots show the
similarity of the recovered image to the true image. Both are shown relative to the mean intensity of the original image. The upper plots show
the relative standard deviation and the similarity for the SIMO cases and the lower plots for the MIMO cases. The solid lines show recovers
when only using the core array, the results with dashed lines include the outriggers. The line color shows the type of regularization; blue is
not regularized (ordinary least squares) orange is TSVD including only singular values higher than 2 % of the greatest singular value, green

and red lines are Tikhonov damped singular values with oo = 10 and 100, respectively.
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be that MIMO configuration is better for point-like targets, like space debris or meteors, but this is beyond the scope of this
article.

In this article, the MIMO approach to ISR and E3D has only been treated superficially. There are still some questions that
must be answered. To distinguish between the transmitters, we assumed code diversity. However, there is need to study how
well the signals can be distinguished. This can influence the possible number of transmitters. The placing of the transmitters
was not investigated here, the example in this article is a simple proposal. At the same time, the transmitter locations can
have great influence on the visibility coverage. Also, the SNR and integration time calculations for MIMO would need to be

investigated more thoroughly.

5 Conclusion

In this article, we have studied the temporal and spatial resolution of the upcoming E3D radar in the case of aperture synthesis
radar imaging, primarily focusing on the feasibility of imaging the incoherent scatter radar return from the E-region. The most
up to date radar design specifications at the time of writing this article was used as a basis of this study.

We find that the range and time resolutions are dependent on each other. When keeping the uncertainty level constant, a better
range resolution goes on the cost of the time resolution. With an increase in the electron density, the resolution in time and/or
range can be improved without increasing the noise level. Under normal conditions in the E-layer (7, ~ 400 K, 7; ~ 300 K,
ne ~ 101 m3), with a desired integration time of 10 seconds, the achievable range resolution is slightly more above 1500 m.

The horizontal (imaging) resolution depends on the radar layout and the imaging technique. The imaging techniques that
were evaluated were: matched filter, least squares using singular value decomposition without and with regularization, Capon,
and CLEAN. Of these techniques, only regularized least squares gave satisfactory results. The two regularization techniques
of either truncating or damping of the inverse singular values both worked and gave similar results.

These image reconstructions can be reduced to a simple matrix multiplication by saving the inverted theory matrix. Regular-
ized SVD is therefore is among the fastest reconstruction techniques amongst the ones evaluated. With Tikhonov regularization
with a damping coefficient of 100, or truncating away singular values below 2 % of the largest value, the relative error of the
recovered image can go down to 10 %. The resolution of the recovered image is about 60x60 pixels, at 100 km range this
corresponds to 30x30 m, but features smaller than 90x90 m will be blurred out.

The simulation results show that using the outriggers increases the imaging accuracy. Dividing the core array into multiple
transmitters to get a MIMO system seems to increase the imaging resolution if the target is smooth. MIMO also has the
drawback that it needs stronger signals or more integration time to keep the same measurement accuracy as SIMO. However,
this needs further investigation. as MIMO may be useful for very bright targets such as PMSE, as well as point-like targets like
space debris or meteors, but the latter needs further investigation.

We conclude with that radar imaging with EISCAT 3D is feasible.
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