
Response to anonymous referee #2
We thank the referee for the throughout review which has helped us to improve the manuscript. The
review is repeated here in bold and starting with an arrow. Our comments are written below.

>The present manuscript analyzes the problem of radar imaging in 3D for incoherent scatter 
applications that will be implemented using the EISCAT 3D radar. It is mentioned that the 
proposed technique includes "near field" effects on the formulation of the radar imaging 
problem because EISCAT 3D applications will be in such regime. The analysis includes also 
the concept of MIMO radars in order to improve the resolution of radar images. The 
manuscript is well organized and the results are presented clearly. Although the analysis 
performed in this document introduces new ideas related to the radar imaging problem, I 
would recommend a careful revision of the document before its possible publication. As I will 
explain there are some important issues that have to be addressed first.

>1. In Equation 2 (page 5), it is assumed that the number of independent measurements per 
second is proportional to the number of lagged products in a longpulse experiment. This is 
definitely not the case. In a long pulse experiment, lag products are not independent, all of 
them are correlated. This is because, within the length of a pulse, signals from a common 
volume are mixed. Assuming that all lag products are equally informative, it is also an 
oversimplification that I think may lead to not necessarily correct conclusions, particularly, in
this application in which the target fills the radar volumen. I would recommend the authors to
review this section in order to analyze more carefully the relationship between the number of 
samples within a longpulse and the integration time needed to reduce statistical uncertainty. 
Notice that if you consider Np=1, there is a singularity in equation (7), I don’t think this is 
correct. I would also recommend to review equation 11 since a radar volume can be modeled 
better as a spherical cone section rather than as a truncated cone. In this expression, if you 
consider "r" at the center of the radar volume, the expression becomes simplified.

In the lagged products, the signal is correlated, but white noise is not. As long as the noise power is 
much greater than the signal power, also clutter and other non-white noise effects can be neglected. 
The lagged products are therefore independent for low SNR. At zero lag, the product includes all 
the white noise from the receivers. We therefore ignore the zero lag. This is where the singularity in 
eq. (7) comes from. If including the zero lag, the denominator would be FmNp(Np+1) without 
singularity. When inserting Np = 1 into Eq. (7), and the zero lag is ignored, there are no 
measurements left and the variance is infinite.

In the E region, the decorrelation time is long in the VHF band which is due to heavy ions (O2
+ and 

NO+) and relatively low electron and ion temperature. While the pulse is 0.5 ms long, the  
decorrelation time is around 1 s.

We have investigated the difference between a truncated cone (conical frustum), a spherical cone 
section, and a cylinder when modeling the volume in the E-region using a radar beam 
corresponding to the solid angle of the EISCAT 3D beam. We found no significant differences 
between these three models in this case. This study is included in the referee response.  

The radar volume in Eq. (11) is indeed better represented as a spherical cone than by a truncated 
cone. Changing the model to a spherical cone has the consequence that tan²(θ/2) is substituted with 
2(1-cos(θ/2)). For small θ, like θ = 1° as in the article, the difference is small. For significantly 
larger beam opening angles (more than 10 degrees), these models start to diverge. Considering r to 
be the range to the center of the radar volume simplifies the expression in the brackets to 3r²+Δr²/4 r²/4 



and the volume shrinks about 1%. The equation in the manuscript will be changed to the spherical 
cone, but letting the range be to the lower boundary of the volume as before since this is closer to 
what was used in the calculations. 

>2. In the introduction (line 22, page 4), it is mentioned that there is not much literature 
related to 3D imaging and the authors make reference to a recent work of one of the 
coauthors. This is not fully true, the works of Palmer et al(1998), Yu et al (2000), and Chau & 
Woodman (2001) (see references below) addressed the imaging problem in 3D in the same 
sense as the present manuscript does. Of course the difference is that the new approach is 
addressing the incoherent scatter problem while the previous work was mainly focussed on 
coherent scatter echoes. So proper references should be used.
We will add the references mentioned. Since the literature description in the article starts to become 
complex because similar literature is described two places in the text, we merge the literature on 
imaging on p.2. Here we will clarify that the novelty is the use on incoherent scatter.

>3. In line 29, page 7, the integration time for MIMO applications is analyzed and it is 
mentioned that the integration time will be longer in the MIMO case than in the SIMO case, 
but the authors indicate that the difference depends on cross-coupling between antennas. I 
don’t think this conclusion is correct, at least not as a first approximation. There is plenty of 
literature related to soft-target radar equations that explain clearly that the received power is 
directly proportional to an effective antenna aperture area (which is also proportional to the 
true antena area). So, even if you use the same power on transmission, the received power will 
be less when using a small antenna. Then, the need for additional integrations in the MIMO 
case is directly related to the fact that smaller antennas will be used, less power will be 
detected and SNR will be smaller. Cross-coupling may have an additional role but that is 
definitely a second order effect. I would recommend to review Radar Principles by Toru Sato. 
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19910017301.pdf I would also 
recommend to review the work of Woodman(1991) which is very related to the type of 
analysis performed in this work.

We were unaware of the Toru Sato and Woodman papers. We have studied them and they both seem
like useful references on how atmospheric radars operate.

When using MIMO, the transmit antenna is divided into N separate transmit sections. These 
different regions need to transmit different waveforms in order for us to be able to separate the 
different transmitter sections on receive. 

If we divide the antenna into N parts (and thus N independent transmitters), each transmit section 
will have an aperture of A/N and a power of P/N. Here A is the total area of the full array and P is 
the total power of the full array. This is the ideal case. 

In discussions with EISCAT staff, we have been told that two neighbouring regions of the antenna 
should not be transmitting simultaneously with different codes, as the mutual coupling of two 
different transmit signals might be problematic. This mutual coupling may in the worst case cause 
power amplifiers to overload and break. 

It was suggested that in order to reduce mutual coupling of different regions of the antenna when 
dividing it into multiple transmitters, buffer zones could be made around each section of the antenna
array. This would reduce the amount of area and power for each section, making it slightly less than 
A/N and P/N.



We have tried to carefully reword this in our manuscript to make this point more clear. 
Now the last part of the paragraph says:
“The transmit gain must be divided by the number of transmitters. It could be that because of cross-
coupling between antennas, there must be buffer zones between transmitters. Then the gain 
decreases furthermore. On the other hand, the radar will illuminate a larger volume that contains
more scatterers and so increase the received power again. In conclusion, the integration time for 
MIMO will be longer than for SIMO. How long is mostly dependent on the possible cross-coupling 
between antennas.”
We will change it to:
“Because of the smaller antenna area, also the transmit gain must be divided by the number of 
transmitters. Additionally, there could be cross-coupling between antennas, which force buffer 
zones between transmitters. Then the antenna area and gain decrease furthermore. In conclusion, the
integration time for MIMO will at least be the number of transmitters times the integration time for 
SIMO.”

>4. In the discussion about the baseline cross-correlation, it is not clear why equations 20 and 
23 (pages 10 and 11) should give different results. Both expressions come from taking the 
Fourier transform of a gaussian blow. It seems the difference comes from a different 
interpretation of the geometry. So, if the same interpretation is given both results (the far field
and near field expressions) should be the same. 
Equation (23) truly represents the farfield, and Eq. (20) was derivated mostly in nearfield. However 
to be integrateable, between Eq. (16) and (17) there was done an approximation to make the 
exponential linear. The approximation can be interpreted as assuming plane waves. Therefore, Eq. 
(20) is not exact anymore.

> Then, let me ask what the "near field" effects are.
The nearfield effects are blurring of the image as can be seen in the image reconstructions with 
matched filter. Palmer et al. (1998) call the method “Fourier-based imaging” because it uses the 
Fourier transform for reconstruction, which implies the farfield approximation. 

>In fact, let me mention the following. In the work of Woodman (1997), it is argued that the 
near field effect can be modeled as a phase correction in the visibility domain, however, in the 
present manuscript the near field effect is not presented as a phase correction but as a change 
of the magnitude of the visibility (correlation) function. Given the different interpretation of 
the near field effects, I should ask again if the there is actually a "near field" effect that has to 
be considered in radar imaging problems.
The phase correction in Woodman (1997) can probably be used for imaging with EISCAT 3D. In 
the study we however followed an other approach where we do the simulations completely in the 
nearfield. As we say in the introduction, the computation becomes more complex, but is accessible 
with modern computers.

>Let me add one more detail. Woodman(1991) derives an expression for the cross-correlation 
between the voltages of two different antennas showing that the cross-correlation is equal to 
the Fourier transform of a Brightness function to a second order approximation. In this 
derivation, there was no need to match the Fraunhofer condition, it was enough that the radar
range should be much greater than the separation between the antennas (R»D). This result 
was actually a generalization of an earlier result presented by Kudeki(1990).

>This is a very important issue that needs to be reviewed more carefully in this manuscript. 
Since it is argued that "near field" effects are considered, the authors should show clearly 
what these effects are. However, based on previous literature, it seems that the Fourier 
transform approximation is good enough for the EISCAT 3D scenario. If that is the case, the 



problem presented in the manuscript gets simplified and the results presented can be obtained
without a complicated framework.
It seems that Woodman (1991) assumes plane waves in a similar form as the linearization 
mentioned above. With the convention Toru Sato refers to, everything closer than ~1000 km is in 
the nearfield, if including the EISCAT 3D outrigger subarrays. The Fourier transform with 
correction as described by Woodman (1997) might be good enough for EISCAT 3D, but it is 
possible to calculate the theory matrices and do the simulations in the nearfield taking into account 
the spherical nature of the backscattered wavefronts and the antenna geometry. In general, when 
solving inverse problems accurate theory matrices are important.

In practice, when we have some imaging measurements from EISCAT 3D and we want to 
reconstruct the image with SVD, only the theory matrix A is needed. Regardless of near- or farfield,
the SVD itself requires the most computational power. However, after having been computed once, 
it can be saved and reused.
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Thank you for your comments.
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