
1 
 

Ionospheric Anomalies Associated with Mw7.3 Iran-Iraq Border 

Earthquake and a Moderate Magnetic Storm 

Erman ŞENTÜRK1, Samed INYURT2, İbrahim SERTÇELİK3 

1Department of Geomatics Engineering, Kocaeli University, Turkey 
2Department of Geomatics Engineering, Gaziosmanpaşa University, Turkey 
3Department of Geophysical Engineering, Kocaeli University, Turkey 

Correspondence: Erman Şentürk (erman.senturk@kocaeli.edu.tr) 

 

Abstract. The analysis of the unexpected ionospheric phases before large earthquakes is a popular 

approach in earthquake prediction studies. In this study, the Total Electron Content (TEC) data of five 

International GNSS Service (IGS) stations and the Global Ionosphere Maps (GIMs) were used. The Short-

time Fourier Transform (STFT) and a running median process were applied on the TEC time series to 

detect abnormalities before the Mw7.3 Iran-Iraq border earthquake on November 12, 2017. The analyzes 5 

showed positive anomalies 8-9 days before the earthquake and some positive/negative anomalies 1-6 days 

before the earthquake. These anomalies were cross-checked by space weather indices Kp, Dst, F10.7, Bz 

component of the interplanetary magnetic field (IMF Bz), electric field (Ey), and plasma speed (VSW). The 

results showed that the anomalies 1-6 days before the earthquake caused by a moderate magnetic storm. 

Also, the positive anomalies 8-9 days before the earthquake should be related to the Iran-Iraq border 10 

earthquake due to quiet space weather, local dispersion, and proximity to the epicenter. 

1 Introduction 

The ionosphere is a three-dimensional dispersive atmosphere layer. The layer locates above approximately 

50-1000 km from the Earth's surface and includes molecules with potential for photoionization. The 

molecules are separated into protons and electrons when exposed to light energy emitted from the sun. 15 

Electrons separated from molecules effect the propagation of electromagnetic signals traveling between 

space and earth. The degree of effect is a function of the number of free electrons. The sun is the primary 

determiner of the number of electrons and causes permanent and regular ionospheric trends such as daily, 

27-day, seasonal, semi-annual, annual, and 11-year. The number of electrons also increase/decrease due to 

disturbed space-weather (Bagiya et al., 2009), earthquakes (Liu et al., 2004; Şentürk et al., 2018), 20 

tsunamis (Occhipinti et al., 2013), volcanic eruptions (Dautermann et al., 2009), hurricanes (Chou et al., 

2017) and anthropogenic events (Lin et al., 2017). These events generally cause non-secular changes, 

which are commonly named as ionospheric disturbances/anomalies. 

In recent decades, seismoionospheric studies have become quite popular. The first case was reported 

for Good Friday Alaska Earthquake of 1964 (Davies and Baker, 1965; Leonard and Barnes, 1965). In 25 

those years, data of ionosonde, radio waves, and topside sounding were used to analyze ionospheric 

anomalies before earthquakes (Gokhberg, 1983; Molchanov et al., 1992; Pulinets et al., 1998; Liu et al., 

2000). Calais and Minster (1995) firstly used GPS observations for seismoionospheric analysis of the Mw 

6.7 Northridge earthquake. 
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Global Navigation Satellite System (GNSS) technology provides low-cost, high accuracy, near real-30 

time, and continuous ionospheric data. GNSS based TEC data is preferred in many subsequent 

seismoionospheric studies related to large earthquakes (Liu et al., 2004, 2010; Fuying et al., 2011; 

Yildirim et al., 2016; Ulukavak and Yalcinkaya, 2017; Yan et al., 2017; Ke et al., 2018; Şentürk et al., 

2018; Tariq et al., 2019). Liu et al. (2004) investigated 20 earthquakes with a magnitude greater than 6 in 

Taiwan between 1999 and 2002. They used the GPS based TEC data and applied the 15-days moving 35 

median and quartile range method to the TEC variation. The results showed that ionospheric abnormalities 

were detected before earthquakes, with an 80% success rate. Liu et al. (2010) reported seismoionospheric 

precursors of the 2004 M=9.1 Sumatra-Andaman Earthquake due to anomalous decreases in the TEC 

variation five days before the earthquake. Fuying et al. (2011) used the Kalman filter method to detect the 

abnormal changes of TEC variations before and after the Wenchuan Ms8.0 earthquake. The TEC data 40 

were calculated from the GPS observations observed by the Crustal Movement Observation Network of 

China (CMONOC). The result showed that the Kalman filter is reasonable and reliable in detecting TEC 

anomalies associated with large earthquakes. Yildirim et al. (2016) utilized 4 Continuously Operating 

Reference Stations in Turkey (CORS-TR) and 11 IGS and EUREF Permanent Network (EPN) stations to 

investigate the ionospheric disturbances related to Mw 6.5 offshore in the Aegean Sea earthquake on 24 45 

May 2014. TEC data obtained from Precise Point Positioning and GIMs showed that the TEC values 

anomalously increased 2-4 TECU 3 days before the earthquake and decreased 4-5 TECU on the day 

before the earthquake. Ulukavak and Yalcinkaya (2017) used GNSS based TEC data of 6 IGS stations to 

determine the pre-earthquake ionospheric anomalies before the Mw 7.2 Baja California earthquake on 4 

April 2010. The results showed both positive and negative ionospheric anomalies occurred one to five 50 

days before the earthquake. Yan et al. (2017) utilized data of CMONOC and IGS to statistically 

investigate the TEC anomalies before 30 Mw6.0+ earthquakes from 2000 to 2010 in China. TEC 

anomalies were detected before 20 earthquakes, nearly 67%. Ke et al. (2018) used a Linear Model 

between TEC and F10.7 (LMTF) to detect seismoionospheric TEC anomalies before and after the Nepal 

earthquake 2015. The method was compared with Sliding Quartile and Kalman filter methods. They found 55 

that LMTF is more effective in detecting the TEC anomalies caused by the Nepal earthquake in temporal 

and spatial. Şentürk et al. (2018) comprehensively analyzed the ionospheric anomalies before the Mw7.1 

Van earthquake on 23 October 2011 with temporal, spatial, and spectral methods. The results showed a 2-

8 TECU increase in the TEC time series of 28 GNSS stations and GIMs before the Van earthquake on 9 

October, 15-16 October, and 21-23 October. Tariq et al. (2019) used GNSS based TEC data to detect 60 

seismoionospheric anomalies of three major earthquakes (M>7.0) in Nepal and the Iran-Iraq border during 

2015-2017. The ionospheric precursors of three earthquakes generally occur within ten days, about 08:00-

12:00 UT in the daytime. The temporal and spatial statistical tests showed that the abnormal positive TEC 

changes were detected nine days before the Mw7.3 Iraq earthquake. 

There is still no consensus on the physical process of the changes in the ionosphere before earthquakes, 65 

but several assumptions have been made about the subject (Toutain and Baubron, 1998; Pulinets et al., 

2006; Namgaladze et al., 2009; Freund et al., 2006, 2009; Freund, 2011). Toutain and Baubron (1998) 

reported that the radon and other gases from the earth's crust near the active fault progress toward the 

atmosphere and cause ionization. The increased radon release produces a non-pronounced heat release 

(increasing air temperature) in the atmosphere by connecting the water molecules to the ions. This 70 

increase in air temperature leads to variability in air conductivity (Pulinets et al., 2006). The amount of 

electron density in the ionosphere increases/decreases by this chaining process. Freund et al. (2006) 

detected the ionization of the side surfaces of the block where the air was ionization by increasing the 
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mechanical pressure applied to the upper surface of a granite block in the laboratory. With this 

assumption, strains occurring in the huge rocks in the lithosphere before the earthquakes can cause 75 

electron emission towards the atmosphere and may cause changes in the ionosphere (Freund et al., 2009). 

In this study, the temporal, spatial, and spectral analysis was applied to the GNSS based TEC data to 

detect ionospheric anomalies before the Mw 7.3 Iran-Iraq border earthquake on November 12, 2017. The 

STFT and a running median process were applied to define abnormalities in the TEC time series. The 

indices Kp, Dst, F10.7, IMF Bz, Ey, and VSW were also analyzed to show the effect of space weather 80 

conditions on TEC variation. The paper is organized as follows: In Section 2.1, information on the Iran-

Iraq border earthquake is given. Section 2.2 includes data observations. In Section 2.3, GPS-TEC and 

GIM-TEC data calculations are described. In Section 2.4,   the methods used in the study are explained 

capaciously. The results are given in Section 3, and Section 4 concludes the paper. 

2 Data and Analysis 85 

2.1 Iran–Iraq Border Earthquake 

The deadliest earthquake of 2017, with at least 630 people killed and more than 8,100 injured occurred 

near the Iran–Iraq border (34.911°N, 45.959°E) with a moment magnitude of 7.3 at a depth of 19.0 km on 

November 12, 2017, at 18:18 UTC (U.S. Geological Survey, 2017). The earthquake was felt in Iraq, Iran, 

and as far away as Israel, the Arabian Peninsula and Turkey. The focal mechanism of the earthquake is 90 

pointed out as a thrust-faulting dipping at a shallow angle to the northeast. The earthquake occurred on the 

continental collision between Eurasian and Arabian Plates located within the Zagros fold and thrust belt.  

2.2 The GNSS based TEC data 

The GNSS TEC data of five IGS stations and GIMs produced by the Center for Orbit Determination in 

Europe (CODE) were used to investigate ionospheric anomalies before the Iran-Iraq border earthquake. 95 

The location of the IGS stations and the epicenter are shown in Figure 1. The IGS stations are selected in 

the earthquake preparation area, which is calculated by the Dobrovolsky equation, r = 100.43M km, where 

M is the magnitude (Dobrovolsky et al., 1979). The earthquake preparation area of the Iran-Iraq border 

earthquake is found to be 1380 km. The distance of IGS stations to the epicenter and other information are 

given in Table 1. The geomagnetic coordinates of the stations were obtained from the KYOTO website 100 

(http://wdc.kugi.kyoto-u.ac.jp/igrf/gggm/). Receiver Independent Exchange Format (RINEX) files of the 

IGS stations were downloaded from the IGS website (ftp://igs.ensg.ign.fr/pub/igs/data/), and Ionosphere 

Map Exchange Format (IONEX) files of CODE were downloaded from the National Aeronautics and 

Space Administration (NASA) website (ftp://cddis.gsfc.nasa.gov/gps/products/ionex/). The CODE GIMs 

covers ±87.50 latitude and ±1800 longitude ranges with 2.50x50 spatial resolution (5184 cells) and 2-hour 105 

temporal resolutions. 
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Figure 1. The epicenter of Mw 7.3 Iran-Iraq border earthquake and location of IGS stations (Map of the 

area is provided by http://maps.stamen.com and it was composed in QGIS program) 

Table 1 Information on the stations 110 

Site Network Country Lat. (0N) Long. (0E) 
Geomag. Lat. 

(0N) 

Geomag. 

Long. (0E) 

Distance from the 

epicenter (km) 

ANKR IGS Turkey 39.8875 32.7583 36.54 112.72 1288.95 

ARUC IGS Armenia 40.2856 44.0856 35.27 123.34 619.95 

BSHM IGS Israel 32.7789 35.0200 29.23 113.25 1037.09 

ISBA IGS Iraq 33.3414 44.4383 28.40 122.24 223.72 

TEHN IGS Iran 35.6972 51.3339 29.79 129.11 495.45 

The TEC describes the number of free electrons in a cylinder with 1 m2 base area throughout the line of 

sight (LOS). The unit of the TEC (TECU) is equal to 1016 electron/m2. The linear integral of the electron 

density along the signal path (∫ 𝑁𝑒(𝑟, 𝑡)𝑑𝑠
 

Ɩ
) corresponds to the Slant Total Electron Content (STEC). 

STEC depends on the signal path geometry from GNSS satellites (above 20.000 km height from the 

earth's surface) to a receiver. STEC is converted to the Vertical Total Electron Content (VTEC) with a 115 
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mapping function. This conversion provides the number of free electrons perpendicular to the earth. 

VTEC is used for the input data of the global and regional ionosphere models, and it is a more useful 

parameter to define all ionization in the ionosphere. Assuming all electrons are gathered in a thin layer, 

TEC values in the receiver's azimuth is obtained by the weighted average of the VTECs of all visible 

satellites (Schaer, 1999). 120 

The effect of the ionosphere to the GNSS signal is directly proportional to the number of free electrons 

throughout LOS and inversely proportional to the square of the frequency of the GNSS signals (Hofmann-

Wellenhof et al., 1992). The TEC parameter can be calculated with at least two different frequencies of 

GNSS signals because the effect of the ionosphere during the signal transition depends on the signal 

frequency. In recent years, the TEC parameter is obtained from single-frequency receivers by Precise 125 

Point Positioning (PPP) technique in which some parameters in the TEC calculation model are derived 

from IGS (Hein et al., 2016; Li et al., 2019). In this study, the Geometry-Free Linear Combination (L4=L1-

L2) and “leveling carrier to code” algorithm is used to calculate TEC values of five IGS stations (Ciraolo 

et al., 2007). L4 combination of carrier phase and code observations are as follows, 

𝐿4 = 𝐿1 − 𝐿2 = −𝛼 (
1

𝑓1
2 −

1

𝑓2
2) 𝑆𝑇𝐸𝐶 + 𝜆1𝐵1,𝑖

𝑘 − 𝜆2𝐵2,𝑖
𝑘      (1) 130 

𝑃4 = 𝑃1 − 𝑃2 = 𝛼 (
1

𝑓1
2 −

1

𝑓2
2) 𝑆𝑇𝐸𝐶 + 𝑐(∆𝑏𝑘 − ∆𝑏𝑖)      (2) 

where α is a constant, f is the signal frequency, 𝜆𝐵𝑖
𝑘 = 𝜆(𝑁𝑖

𝑘 + 𝛿𝑁𝑖
𝑘) + 𝑐(𝑏𝑘 + 𝑏𝑖) is the initial phase 

ambiguity (i and k indexes refer to receiver and satellite respectively), λ is the wavelength, Ni
k is an 

integer, δNi
k is the effect of the phase wind-up, c is the speed of light, bk is the satellite, and bi is the 

receiver hardware delays (DCB: Differential Code Biases). The phase leveling technique is based on 135 

differences carrier phase and code observations on a continuous arc to reduce ambiguities from the carrier 

phase (L4). 

〈𝐿4,𝑎𝑟𝑐 + 𝑃4〉𝑎𝑟𝑐 ≅ 𝜆1𝛿𝑁1 − 𝜆2𝛿𝑁2 = 𝐵4       (3) 

𝐿4 = 𝐿4 + 〈𝐿4,𝑎𝑟𝑐 + 𝑃4〉𝑎𝑟𝑐 = 𝛼 (
1

𝑓1
2 −

1

𝑓2
2) 𝑆𝑇𝐸𝐶 + 𝑏4

𝑘 + 𝑏4,𝑖 + 𝐵4    (4) 

In Eq. 3, the carrier phase observations are leveled with a bias produced by phase ambiguity. Finally, 140 

the STEC is calculated using Eq. 5. 

𝑆𝑇𝐸𝐶 =  𝛼 (
1

𝑓1
2 −

1

𝑓2
2)

−1
(𝐿4 − (𝐵4 + 𝑏4

𝑘 + 𝑏4,𝑖))      (5) 

The STEC is converted to VTEC using the Single-Layer Model and a mapping function. 

𝑉𝑇𝐸𝐶 = 𝑆𝑇𝐸𝐶√1 − (
𝑅𝐸

𝑅𝐸+ℎ𝑚
)

2
𝑐𝑜𝑠2 𝜀      (6) 

To define the number of free electrons in the receiver's azimuth, TEC is generally calculated by the 145 

weighted average of the VTECs of all visible satellites (Çepni and Şentürk, 2016). 
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𝑇𝐸𝐶 =
∑ 𝑊𝑖𝑉𝑇𝐸𝐶𝑖

𝑁
𝑖=1

∑ 𝑊𝑖
𝑁
𝑖=1

|
𝑇1

𝑇2

; T1-T2 is time-lapse interval      (7) 

where Wi indicates the weight of a satellite, which is generally described as a component of the 

satellite elevation angle, i = 0,1,…,n and n is equal to the number of visible satellites at any epoch. 

TEC values of the epicenter are interpolated from the nearest four grid points of GIMs using a simple 150 

4-point bivariate interpolation (Schaer et al., 1998). 

𝑇𝐸𝐶(𝜆𝑒 , 𝛽𝑒)  =  |1 − 𝑚 𝑚| |
𝑉𝑇𝐸𝐶00 𝑉𝑇𝐸𝐶01

𝑉𝑇𝐸𝐶10 𝑉𝑇𝐸𝐶11
| |

1 − 𝑛
𝑛

|     (8) 

𝑚 =  |𝜆𝑒 − 𝜆0| ∆𝜆𝐺𝐼𝑀⁄          (9) 

𝑛 =  |𝛽𝑒 − 𝛽0| ∆𝛽𝐺𝐼𝑀⁄          (10) 

where m, n are latitudinal/longitudinal scale factor, β
e
 and λe is geocentric latitude/longitude of the 155 

epicenter, β
0
 and λ0 is geocentric latitude/longitude of the nearest grid point, ∆β

𝐺𝐼𝑀
 and ∆λ𝐺𝐼𝑀 are spatial 

resolutions of the latitude/longitude of the GIMs, VTEC00, VTEC01, VTEC10, VTEC11 are VTECs of the 

nearest grid points. 

2.3 The Short-Time Fourier Transform and Running Median Methods 

The STFT is a method of obtaining the signal frequency information in the time domain as a modified 160 

version of the classical Fourier (Gabor, 1946). The STFT provides the analysis of a small part of the signal 

at a particular time with the “windowing” technique (Burrus, 1995). The method divides the signal with a 

fixed time-frequency resolution (the size of the window is fixed in all frequencies) and presents the results 

in the time-frequency domain. It provides information about both when and at which frequencies a signal 

occurs. In this way, the method can provide statistical information about where and when the abnormality 165 

occurs in a TEC time series. The STFT of a signal is calculated by Eq.11. 

𝑆𝑇𝐹𝑇(𝜏, 𝑓) = ∫ 𝑓(𝑡)𝑔(𝑡 − 𝜏)𝑒−𝑖𝜔𝑡+∞

−∞
𝑑𝑡       (11) 

where f(t) is a time series (e.g., TEC), g(t) is the window function, 𝜏 is a shifting time variable, and ω is 

the angular frequency. Here, a discrete STFT that provides identify and collect the frequency anomalies in 

the time domain was applied to obtain a time-frequency map of the TEC variation. The Gaussian window 170 

was also used as the window function g(t) (Harris, 1978). 

𝑔(𝑡) = 𝑒
−0.5(𝛼

𝑡

(𝑁−1) 2⁄
)

2

         (12) 

where N is the length of the window, and α could be termed as a frequency parameter. The width of the 

window is inversely related to the value of width factor (α), and the α parameter, which controls the 

frequency resolution at both extremities, was taken as 0.005 in this study. When α value increases, the 175 

window becomes narrower, so the selected α parameter gives relatively accurate resolution in the 

frequency domain (see Fig.1). 
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Figure 2. Gaussian windows functions according to α parameter 

A well-known anomaly detection method (running median) for seismoionospheric studies was used to 180 

validate STFT results. This method is based on distribution moments median (M) and standard deviation 

(σ). In our analysis, the median of TEC values in the previous 15 days was calculated to find the 

divergence from the observed TEC on the 16th day. The lower (LB) and upper (UB) bounds were 

calculated by Eq.13-14 to assign the level of the divergence. 

𝐿𝐵 = 𝑀 − 2𝜎           (13) 185 

𝑈𝐵 = 𝑀 + 2𝜎     (14) 

When observed TEC of the 16th day is exceeded UB or LB, the positive or negative abnormal TEC 

signal is approved, respectively. The observed TEC between the UB and LB indicates no abnormal 

condition in the ionosphere. Assuming TECs are in a normal distribution with mean μ and standard 

deviation σ, the divergence of 2σ declare that ionospheric phases are detected with a confidence level of 190 

about %95. 

The percentage of divergence degree of TEC (DTEC) was also calculated by the deviation from 

median values in GNSS TEC analysis. Since DTEC provides the relative TEC, it is more successful in 

detecting abnormalities at dusk when TEC values are lower. 

DTEC = [TECobserved - TECmedian] x 100/TECmedian     (15) 195 

3 Results 

3.1 Space Weather Before the Earthquake 

The space weather indices Kp, Dst, F10.7, IMF Bz, Ey, and VSW were cross-checked with TEC times 

series to reveal the effects of space weather on TEC disturbances. The indices obtained from the OMNI 
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website (https://omniweb.gsfc.nasa.gov/form/dx1.html). The time series of the indices with 15 days before 200 

the earthquake were given in Fig. 3. 

In Fig. 3a, IMF Bz, and Ey indices have some fluctuations on 1-2 October and 7-11 October. These 

two indices remained calm on other days. In Fig. 3b, the VSW index increased rapidly from 300 km/s to 

650 km/s on October 7. On the same day, the Dst index also decreased from +30 nT to -70 nT (see Fig. 

3c). In both indices indicates a moderate magnetic storm (G2 level, Kp=6) occurred on the 7th of October. 205 

On the other days, it was determined that the indices values were at levels where atmospheric conditions 

to be considered calm. In Fig 3d, F10.7 and Kp indices were shown. F10.7 values continue to be quiet 

(<80 sfu) along 15 days before the earthquake. The index ranges from 65-75 sfu. Kp values indicate the 

disturbed magnetic condition between 7-11 October, whereas other days have no magnetic activity values. 

Fig. 3 suggests that the moderate magnetic storm that occurred five days before the earthquake was 210 

capable until the one days before the earthquake. The fluctuations in IMF Bz and Ey indices on 1-2 

October were not seen in other indices. The other days are quite calm in terms of space weather. 

 

Figure 3. (a) IMF Bz and Ey (b) WSW (c) Dst (d) Kp and F10.7 indices before 15 days of the earthquake. 

The vertical black line indicates the earthquake time. 215 

3.2 Temporal and Spectral TEC Variation of GNSS Observations 

TEC values over the epicenter location (34.911°N, 45.959°E) were obtained by interpolation from the 

vTEC values of the four grid points nearest to the epicenter in the GIMs to reveal ionospheric 
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abnormalities in the zenith of the epicenter. The anomalies were detected by the running median method 

based on median and ±2 standard deviations. In Fig. 4a observed and median TEC, upper/lower bounds 220 

were shown from 29 October to November 12, 2017. The anomalies were shown in Fig. 4b. There were 1-

2 TECU positive anomalies on November 3-4 and some small positive/negative anomalies 1-6 days before 

the earthquake. 

In Fig.5, the GNSS based TEC time series of ANKR, ARUC, BSHM, ISBA, and TEHN were 

demonstrated. The sampling rate of TEC data is 30 seconds. The stations were selected within the 225 

earthquake preparation area to reveal the earthquake-induced TEC fluctuations on TEC variation. The 

results showed that positive anomalies were detected on November 3-4, 2017, with 1-4 TECU in all 

stations. Some positive/negative anomalies were also determined on November 7-12. These anomalies 

should be related to the moderate magnetic storm that started on 7 November (the main phase of the storm 

occurred on 8 November). 230 

 
Figure 4. (a) TEC values of CODE GIMs over the epicenter (b) positive and negative anomalies. The 

vertical black line indicates the earthquake time. 
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Figure 5. GNSS TEC variation of the five IGS stations where locate in the earthquake preparation area. 235 

The solid black lines indicate TEC values of stations, and the gray areas demonstrate M ± 2σ. The positive 

and negative anomalies were shown by green/red areas, respectively. 

In Fig. 6, DTEC data of five IGS stations are given. DTEC reveals the relative change of observed 

TEC values to the median TEC value. The ionosphere has a significant day-to-day variability due to 

thermospheric dynamics even though quiet space weather. The diurnal TEC variation related to the lower 240 

atmosphere usually does not exceed ±30% according to the background TEC data (Forbes et al., 2000; 

Mendillo et al., 2002).  In Fig. 6, we showed the 30% limit in the green area. Accordingly, DTEC values 

remaining in the green space can be accepted as the changes due to the daily day-to-day variability of the 

ionosphere. It was observed that the 30% limit was exceeded in the positive direction on November 2-5 

and 7, in the negative direction between 8-12 November. The highest positive DTEC was detected on 245 

November 4 with + 62.5% and the lowest DTEC on November 9 with -43% at the ANKR station. 
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Figure 6. DTEC values of five IGS stations. 

The STFT method was applied as a spectral analysis of GNSS based TEC data with a 30-second 

sample rate. The method provides TEC anomalies both in the time and frequency domains. The amplitude 250 

value ranges from 0 to 30 TECU. The STFT results are shown in Fig. 7. At the ANKR station, high 

amplitude values are seen from November 2 to November 5 and November 7. The highest amplitude value 

of about 30 TECU was seen on November 3. At the ARUC station, high amplitudes were seen all day on 

November 3. This station has a relatively smaller amplitude (~24 TECU) value than the other stations. At 

the BSHM station, high amplitudes are seen on November 3 and 7. In this station, the highest amplitude 255 

value of 29.5 TECU was seen on November 7. At the ISBA and TEHN stations, the high amplitudes were 

recognized on November 3. The highest amplitudes are between 27-30 TECU. In all stations, the largest 

variations of the TEC anomalies correspond to smaller frequencies (≤ 0.5x10-5 Hz), and the maximum 

amplitudes are between 25 and 30 TECU. The STFT analysis had a high amplitude on the days of 

anomalies, which is defined in the running median process. Therefore, the results of STFT are well-260 

correlated with classical methods. The fact that the STFT method reveals TEC anomalies without any 

background value is the strength of the method versus classical methods. 
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Figure 7. STFT analysis of GNSS TEC data of five IGS stations. The x-axis shows pre-earthquake days. 

3.3 Spatial Analysis of Abnormal Periods of TEC Variation 265 

The remarkable abnormal days (3, 4, 7, and 8 November) detected in the temporal and spectral analysis 

were spatially investigated by anomaly maps, which are created with CODE GIM data. These anomaly 

maps bounded by 600 N-600 S latitudes, 1800 W-1800 E longitudes, and have a temporal resolution of 2-

hours. In maps, the epicenter of the earthquake is shown in a purple circle. The TEC anomalies in the 

anomaly maps were detected by the running median method based on M ± 2σ. In Fig. 8, the anomalies 270 

range between -5 and +7 TECU on November 3-4. Fig. 8 showed that anomaly areas were locally 

distributed and a notable anomaly area concentrated near the earthquake epicenter. This area located 

toward the Northeast side of the epicenter with 2-5 TECU from 14:00 UTC to 02:00 UTC on November 

3-4. An anomaly area also located on the Southeast side of the epicenter with 6-7 TECU between 04:00 

and 06:00 UTC on November 4. These anomalies are interesting because no other anomaly region is seen 275 

in a large area, and it is located only in close areas to the epicenter. In Fig. 9, the anomalies range between 

-6 and +14 TECU on November 7-8. The only remarkable detail here is that the anomalies are distributed 

globally, as opposed to Fig. 8. The changes detected in the relevant days mostly point to an ionospheric 

variation caused by a magnetic storm. 
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 280 

Figure 8. The anomaly maps on November 3-4, 2017. 

 

Figure 9. The anomaly maps on November 7-8, 2017. 
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It is reasonable to argue that anomalies that occur in the nighttime in the period of calm space weather 

may be related to the earthquake or other phonemes because the solar penetration towards the ionosphere 285 

reduces in the night. Therefore, the detected anomalies between 18:00 UTC (21:00 LT) and 02:00 UTC 

(05:00 LT) on November 3-4 should be the precursor of the Iran-Iraq border earthquake due to dusk time, 

quiet space weather and local distribution. 

4 Conclusion 

The TEC data of CODE GIM and five IGS stations were analyzed to reveal the earthquake-induced 290 

ionospheric anomalies of the Mw 7.3 Iran-Iraq border earthquake. For this purpose, a classical method 

named as running median and STFT method were applied to the TEC time series from October 29 to 

November 13, 15 days before the earthquake. The running median process of TEC variation was shown 

considerable positive anomalies as 1-4 TECU on November 3-4. This value is outlined from the mean of a 

normal distribution with a width of two standard deviations that is defined as a 95% confidence level. 295 

These positive anomalies were also detected in the spectral analysis. The STFT method was used for 

spectral analysis. STFT is a powerful tool for processing a time series without any background values 

(mean, median, quiet days, etc.). Independence from background data minimizes the error sources of these 

data (other unexpected changes, main trends of the ionosphere such as annual, semi-annual, and seasonal). 

The results showed the power of the STFT method in the detection of TEC anomalies. 300 

There are some positive/negative anomalies 1-6 days before the earthquake, but these anomalies should 

be caused by a moderate geomagnetic storm on November 7-8. A geomagnetic storm affects the 

ionosphere as a whole, producing more global variations of TEC compared to the localized phenomena of 

seismoionospheric coupling. In Fig. 9, the global TEC changes of the moderate magnetic storm is seen. 

On the contrary, the anomalies occurring on 3-4 November, which are thought to be caused by the 305 

earthquake, have local distribution, and are concentrated near the epicenter (see Fig. 8). 

Fig. 10 showed the prompt penetration electric fields (PPEFs) at 460 E longitude (geographical 

longitude of the epicenter) on 3-4 November and 7-8 November. The PPEFs are observable in the 

ionosphere immediately after being transported to the magnetosphere by the solar wind (Tsurutani et al., 

2008). The PPEFs also occur during the negative values of IMF Bz (Astafyeva et al., 2016). Fig. 3 310 

indicated an increase of the solar wind from 300 km/s to 650 km/s, and the IMF Bz decreased to negative 

values as about -10 nT. Accordingly, fluctuations in PPEF variation are observed between 06:00 UTC and 

02:00 UTC on November 7-8 (see Fig. 10b). Many studies have reported that PPEFs cause positive and 

negative phases in the ionosphere during magnetic storms (Basu et al., 2007; Tsurutani et al., 2008; 

Mannucci et al., 2009; Lu et al., 2012; Astafyeva et al., 2016). Fig 10b indicated that the moderate 315 

magnetic storm caused the positive and negative anomalies in the ionosphere along with the change in 

PPEF values on 7-8 November. On the contrary, no significant difference in PPEF values was observed in 

Fig. 10a. These PPEFs values indicated that a magnetic storm or solar wind could not affect the TEC 

variation on 3-4 November.  
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 320 

Figure 10. The prompt penetration electric fields at 460 E longitude (a) on November 3-4 (b) on 

November 7-8, 2017. 

Although the space weather is rather quiet on 3-4 November, the DTEC values of the five IGS stations 

exceeded the 30% limit corresponding to the day-to-day variability of the ionospheric TEC and reached 

65%. This value indicates remarkable positive ionospheric anomalies. It can be said that the positive 325 

anomalies 8-9 days before the earthquake should be associated with the Iraq-Iran border earthquake 

because they occurred in the close areas to the epicenter and dispersed in local rather than global. Also, 

the anomalies continued all day, detecting at all IGS stations which are near the epicenter. 

This study showed the advantages of using different approaches to detect earthquake-related 

anomalies. Notably, it will be useful to prefer spectral analysis methods for the anomaly detection process 330 

as a new and promising approach in future studies. 
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