Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-1-AC1, 2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

ANGEOD

Interactive comment

Interactive comment on "An Early Low Latitude Aurora Observed by Rozier (Beziers, 1780)" *by* Chiara Bertolin et al.

Chiara Bertolin et al.

chiara.bertolin@ntnu.no

Received and published: 9 April 2020

Dear Editor, The authors want to thank the reviewers for their work on the submitted paper. In the following, specific answers to the comments are reported and all changes in the new revised manuscript are highlighted in yellow.

Reviewer #1: R1: I have carefully read the paper titled "An Early Low Latitude Aurora Observed by Rozier (Beziers, 1780)". The authors present a suspected aurora observed by Francois Rozier on 15 August 1780 in Beauséjour, close to Beziers (at MLAT= 50.18 N, according to the authors). It should be noted that the observation was made under adverse weather conditions (presence of a lightning storm). In section 4, the authors indicates that at the same time an aurora was also observed at Ratisbon

Printer-friendly version

(Germany, 49 N), 5.5 further north than Beziers, and recorded in Angot's catalogue (Angot, 1897). If this article is selected for publication, I suggest some revisions to the manuscript and other small suggestions before it can be published in ANGEO.

A: Many thanks for your detailed review. We have taken into account all your suggestions and the manuscript has improved a lot.

R1: 1 Background and Introduction Line 20: For the physical mechanism of the aurora origin, (Vazquez et al. 2014) is not the appropriate reference (see e.g., Brekke, 2013, Physics of the Upper Polar Atmosphere, 2nd edn. Springer, Heidelberg).

A: We agree with the referee, We have deleted the cite of Vazquez et al. 2014 and included two more appropriate cites i.e. Brekke 2013 and Gonzalez et al., 1994.

Brekke, A.: Physics of the Upper Polar Atmosphere, 2nd Ed., (Springer) 2013.

Gonzalez, W. D., Joselyn, J. A, Kamide, Y., Kroehl, H. W., Rosoker, G., Tsuruani ,B. T. and Vasyliuna, V. M.: What is a geomagnetic storm?, J. Geophys. Res., 99, 5771-5792, doi.org/10.1029/93JA02867, 1994.

R1: Lines 25-26: The three articles cited relate to the Carrington event. It is interesting to point out other exceptional events, such as that of 1921 (Silverman, S.M., Cliver, E.W.: 2001, J. Atmos. Solar-Terr. Phys. 63, 523), as well as that which occurred in 1770 (Hayakawa, H., et al.: 2017, Astrophys. J. Lett. 850, L31).

A: We have included the events proposed by the referee and other important and wellstudied events. Moreover we have updated some references of the Carrigton storm in accordance with referee 2. "This was the case of well studied extreme space weather events as those occurred on September 1770 (Hayakawa et al. 2017a); the Carrington event in August/September 1859 (Green and Boardsen, 2006; Green et al., 2006; Humble 2006; Tsurutani et al., 2003; Cliver and Dietrich, 2013; Hayakawa et al., 2019a); the storm on 1872 February (Hayakawa et al. 2018; Silverman, 2008); the extreme event on September 1909 (Hayakawa et al., 2019b); May 1921 (Hapgood, ANGEOD

Interactive comment

Printer-friendly version

2019; Silverman and Cliver, 2001; Love et al., 2019) or March 1989 (Allen et al., 1989) resulting in extreme magnetic disturbances and auroral displays at very low latitudes .".

Hayakawa H., Tamazawa H., Ebihara Y., Miyahara H., Kawamura A. D., Aoyama T. and Isobe H.: Records of sunspots and aurora candidates in the Chinese official histories of the Yuán and Míng dynasties during 1261–1644, Publ. Astron. Soc. Jpn 69, 65, doi: 10.1093/pasj/psx045, 2017a.

Green, J. L. and Boardsen, S.A.: Duration and extent of the great auroral storm of 1859, Adv. Space Res. 38, 130–135, 10.1016/j.asr.2005.08.054, 2006.

Green, J.L., Boardsen, S. A, Odenwald, S., Humble, J. and Pazamickas, K.A.: Eyewitness reports of the great auroral storm of 1859, Adv.Space Res. 38-2, 145-154, doi.org/10.1016/j.asr.2005.12.021, 2006.

Humble, J.: The solar events of August/September 1859 – Surviving Australian observations, Adv. Space Res. 38, 155–158, 10.1016/j.asr.2005.08.053, 2006.

Tsurutani B. T., Gonzalez W. D., Lakhina G. S., Alex S. (2003) The extreme magnetic storm of 1–2 September 1859, J. Geophys. Res., 108, 1268, doi:10.1029/2002JA009504.

Cliver, E. W. and Dietrich, W. F.: The 1859 space weather event revisited: limits of extreme activity, J. Space Weather Space Clim. 3, A31, doi: 10.1051/swsc/2013053, 2013.

Hayakawa, H., Ebihara, Y., Willis, D.M., Toriumi, S., Iju, T., Hattori, K., Wild, M. N., Oliveira, D. M., Ermolli, I., Ribeiro, J. R., Correia, A.P., Ribeiro, A. I. and Knipp, D. J: Temporal and Spatial Evolutions of a Large Sunspot Group and Great Auroral Storms Around the Carrington Event in 1859, Avd. Space Res, 17, 1553–1569. https://doi.org/10.1029/2019SW002269, 2019a.

Hayakawa, H., Ebihara, Y., Cliver, E. W., Hattori, K., Toriumi, S., Love, J. J., Umemura, N., Namekata, K., Sakaue, T., Takahashi, T., and Shibata, K.: The extreme space

Interactive comment

Printer-friendly version

weather event in September 1909. Monthly Notices of the Royal Astronomical Society, 484, 3, 4083-4099. DOI: 10.1093/mnras/sty3196, 2019b.

Hapgood, M.: The Great Storm of May 1921: An Exemplar of a Dangerous Space Weather Event, Adv. Space Res., 17, 950–975. https://doi.org/10.1029/2019SW002195, 2019

Love, J. J., Hayakawa, H. and Clive, E. W.: Intensity and Impact of the New York Railroad Superstorm of May 1921, Avd. Space Res, 17, 1281–1292. doi.org/10.1029/2019SW002250, 2019.

Silverman, S.M. and Cliver, E.W.: Low-latitude auroras: the magnetic storm of 14 –15 May 1921, J. Atmos. Sol-Terr. Phys. 63, 523–535, doi.org/10.1016/S1364-6826(00)00174-7, 2001

Allen, J., Frank, L., Sauer, H. and Reiff, P.: Effects of the March 1989 Solar Activity, EOS, 70, 1479-1488. doi: 10.1029/89EO004090, 1989.

R1 Line 26: About LLA, the authors state that "and have been considered a proxy of solar activity". This needs to be correctly documented. Overall, I think that this section needs to be improved and expanded with more background information.

A: We have rewritten and expanded the Background and Introduction section including an important amount of references to clarify some aspects. About the use of aurora night as a proxy we have included: "Low and mid latitude auroras nights show an association with solar activity indices as sunspot records. This link has been observed during the telescopic era (Silverman, 1992; Lockwood and Barnard, 2015; Lockwood et al., 2016) but also in pre-telescopic era from the comparison with naked-eye sunspot reports (Hayakawa et al. 2017a; Bekli and Chadou, 2019). This relationship is due mainly to the highest frequency of LMLAs during the maximum and the decaying phase of the solar cycle (Gonzalez et al., 1994). Therefore, the mid-latitude aurorae, being footprints of solar CMEs, can be considered as proxies for the long-term solar activity. Interactive comment

Printer-friendly version

Nevertheless, LMLAs sometimes occurred in periods of low solar activity (Silverman 2003; Willis et al. 2007; Vaquero et al., 2007 and 2013; Garcia and Dryer, 1987 and Hayakawa et al., 2020). These auroras are called "sporadic auroras".

2 Methodology 2.1. The Observer

R1: The subsection (2.1), which is a biography of F. Rozier, is unnecessary and the text should be reduced considerably.

A: The text has been shortened a 25%.

R1: Lines 35-39: please refer to reliable sources for accurate information and remove the links.

A: A new reference: Gutton, J.P. and Bonnet, J. C., Guton J. P. (Ed): Les Lyonnaises dans l'Histoire, Privat, 1991 has been added and the links eliminated as required.

2.2. The Documentary Source and the Observation description

R1 : Lines 65-66: The book's title should be rectified as follow: Observations sur la physique, sur l'histoire naturelle et sur les arts, avec des planches en taille-douce

A: The title has been amended ad indicated.

R1 : Lines 66-67: The subtitle should be rectified as follow: Observation sur une Nuée rendue phosphorique par une surabondance de l'électricité, vue de Beauséjour près de Beziers, le 15 Août

A: The subtitle has been modified as required.

R1: Lines 82-83: bad translation: The sentence "avant-coureurs de l'orage" means "before the storm" not "before it was orange colored"

A: The translation has been amended

R1: Line 93: The sentence "l'orage s'éloigna de Beziers" means "the storm moved away from Beziers", not "the orange moved away from Beziers"

Interactive comment

Printer-friendly version

A: The translation has been amended

R1: Line 101: why the author uses the term "explosion"?

A: The literary translation for Âń il n'y eut point d'explosion Âż is Âń there was no explosion". It can be also interpreted as "there was no thunder" but in those cases Rozier utilized other terms as "tonnerre".

R1: Page 2: Footnote 1: The reference must be written correctly as indicated in "Manuscript preparation guidelines for authors" of ANGEO (Publisher, Location: : :). Also, please indicate the relevant pages.

A: The footnote has been removed and the reference has been added to the reference list.

3 Analysis

R1: of the Observation Line 105: Please specify how you obtained the two values of solar depression angle (13 and 14.9).

A: The paragraph has been updated and the calculation carefully checked with the HORIZONS NASA web interface that has been quoted in the text as follows: The calculation of the solar depression angle for the geographical coordinates in Béziers and the day of the observation has been performed using the HORIZONS Web-interface of the American National Aeronautics and Space Administration (NASA) (https://ssd.jpl.nasa.gov/horizons.cgi?s_type=1#top).

R1: Lines 113-121: Color: as I said before, the orange color is not specified by the author. Therefore, this paragraph must be corrected.

A: The quote to the orange color has been cancelled and the section has been modified accordingly.

R1: Lines 133-134: There is no exact definition of the low latitude, but for me the present event must be classified as a mid-latitude aurora!

Interactive comment

Printer-friendly version

A: There is no exact definition where that boundary lies, but we agree with the referee about it is more accurate to consider the Rozier aurora as mid latitude. We have changing the text accordingly.

4 Discussion

R1: Lines 138 and 140: (Angot, 1897) not (Angot, 1896)

A: The reference has been amended: Angot A.: The Aurora Borealis, (D. Appleton & Co) 326 pp, 1897.

R1: Lines 157-160: A similar phase opposition and anti-correlation between auroral occurrence and sunspot were reported by some authors. It is an important point which must be well documented (see e.g., Silverman, S.M., 1992, Secular variation of the aurora for the past 500 Years, Rev. Geophys. 30, 333–351).

A: We have included this anticorrelation between auroral night and sunspot in the background section: "Low and mid latitude auroras nights show an association with solar activity indices as sunspot records. This link has been observed during the telescopic era (Silverman, 1992; Lockwood and Barnard, 2015; Lockwood et al., 2016) but also in pre-telescopic era from the comparison with naked-eye sunspot reports (Hayakawa et al. 2017a; Bekli and Chadou, 2019). This relationship is due mainly to the highest frequency of LMLAs during the maximum and the decaying phase of the solar cycle (Gonzalez et al., 1994). Therefore, the mid-latitude aurorae, being footprints of solar CMEs, can be considered as proxies for the long-term solar activity. Nevertheless, LMLAs sometimes occurred in periods of low solar activity (Silverman 2003; Willis et al. 2007; Vaquero et al., 2007 and 2013; Garcia and Dryer, 1987 and Hayakawa et al., 2020). These auroras are called "sporadic auroras"".

Moreover we have modify this paragraph also the paragraph commented by the referee:

"Figure 3 shows the sunspot number during the period 1766-1800. Rozier's observa-

Interactive comment

Printer-friendly version

tion was in the declining phase of the solar cycle 3, 2-years after the maximum. This is a good moment to see LMAA because long-lived coronal holes - source of high ionized particles in the solar wind - occur more frequently in the declining phase of the sunspot cycle (Verbanac et al., 2011; Lefèvre et al., 2016). It is important to note that the Rozier's observation occurred in a period with few sunspot records. As we can see in Figure 4 the solar observations during the 1780's are rare, frequently below the 30 observations per year. For this reason, any contribution to the knowledge of the geomagnetic activity in this period is very beneficial".

R1: Overall, a more extended state of the art is needed. Some articles relating to the present work should be viewed and cited (e.g., Ordaz, J., 2010, Auroras boreales observadas en la Península Ibérica, Baleares y Canarias durante el siglo XVIII, Treb. Mus. Geol. Barcelona 17, 45-110; Legrand, J. P., & Simon, P. A., 1987, Two hundred years of auroral activity (1780-1979), AnGeo 5, 161-167; : :)

A: The state of the art has been improved reorganizing and expanding the Background and introduction section. Both references have been included in the new version of the section.

Conclusions

R1: I think the conclusion is too short and it does not summarize the work in sufficient detail.

A: The conclusions have been rewritten as follows: "We have found a record of an atmospheric phenomenon observed on 15 August 1780 in Beausejour, close to Béziers $(43^{\circ} \ 19a\ddot{A} \ N, 3^{\circ} \ 13a\ddot{A} \ E)$, France, by the abbot Francois Rozier described as a "big white cloud ... whitish color of phosphorus burning in the open air". Rozier was not an astronomer and it is clear that he did not fully understand the phenomenon he was recording. Probably for this reason he recorded the event with minute details to later discuss it with other academicians of his time. Thanks to this accuracy, we have been able to analyse quantitative information and facts that contribute to confirm that ANGEOD

Interactive comment

Printer-friendly version

Francois Rozier observed a Mid latitude aurora that night. The aurora was observed during the nautical and astronomical twilight, it was white, enough brilliant to not be overshined by the full moon which however was above the horizon in ESE direction. It showed two bands and some rays which could fit with the class of auroral forms of both homogeneous arcs/uniform diffuse surface, and homogenous bands. Its temporal evolution could also resemble an auroral sub-storm expansion. This auroral event contributes to enlarge the geomagnetic knowledge of the late 18th century period in which the geomagnetic and the solar activity have high uncertainties due to few sunspots and LMLA observations reported from primary sources. The Rozier record is a clear case of how, a scientist from a research field far from Astronomy or Meteorology in the 18th century, could record and publish descriptions on atmospheric phenomena that he did not fully understand but however he considered worth to be documented. These sources are very valuable because they report details of infrequent and/or partially unknown atmospheric phenomena. In this case the Rozier's report had contributes to enlarge the geomagnetic knowledge of a period with low information. "

References

R1: Line 237: The source of the data (WDC-SILSO) must be cited properly as indicated on their website. I think: SILSO data/image, Royal Observatory of Belgium, Brussels. In addition, you can also indicate the version.

A: The reference has been amended.

R1: Figure 1 is not cited in the text. Furthermore, Figure 1 (b) hides part of Figure 1 (a); I think it is better to remove Figure 1 (b).

A: Figure 1 has been modified following the suggestions

Figure 1: (a) Photographic portrait of Abbot Francois Rozier (photo in public domain) (Library of Congress Prints and Photographs Division Washington; http://loc.gov/pictures/resource/ppmsca.02227/). (b) The two printed pages reporting

Interactive comment

Printer-friendly version

the aurora observation made by Abbot Francois Rozier, on 15 August 1780 in Beziers, France (Rozier, 1781).

Please also note the supplement to this comment: https://www.ann-geophys-discuss.net/angeo-2020-1/angeo-2020-1-AC1supplement.pdf

Interactive comment on Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-1, 2020.

ANGEOD

Interactive comment

Printer-friendly version

ANGEOD

276 OBSERVATIONS SUR LA PHYSIQUE,

OBSERVATION

Sur une Nuée rendue phosphorique par une furabondance de Véléctricité, vue de Beauséjour près de Beziers, le 15 Août;

Par M. l'Abbé ROZIER, l'un des Auteurs de ce Recueil.

La chaleur de ce jour avoit été de 25 degrés & demi ; le basonière annonçoit un orage: de gres magge blanes errèrent dans la région fugrieure de l'armolphice pendant rotat la journes , & le foldit la coucha derrière une malle de ces magge estafféte uns fur les aurres. A fept heures du foir, l'armolphére fe charge de plus en plus; les

A lept heures du foir, l'atmolphère fe chargea de plus en plus ; mages paurest quites la région fopéricue pour s'abailler exers la terre , & un temps lourd & polant civil les moyens de réfisire avec facilité. Plus la nuit approchoir, plus les nanges fe bailnomeint & s'accamuloient vers la grande chaîne de ces montagues du troilième oudre, qui traverient lo Bas-Languedo de l'eft à l'oucli.

A fore hourse roois quarts, la lumiter incertaire de quelques éclairs partis du côré de Youeft, annonçoit que le ronnere grondoit à une diftance trop élognée pour érec entendu. Peu-J-peu les éclairs frent multiplits, le fuscédèrem avec une rapidité furprenante, & le buit du tonnerre commença à tre fentible.

A huir haures du foir, les vents fe contraitent & donnierent aux mages differentes directions; copendant, le vent d'oneff intérnieres le dominant. A cette époques, les coups de tonnerer redoublérent du côde le la montagene. Ne le ciel étoir tour en feu, La nuir fairvinn j îl ne fuir plus polible de ditingues la direction des mages, parce que la vivacité els la lumière de étairs faitot paroitre plus profonde l'objecutité qui l'hui faiccédois; entin l'onge étançoit avec rapidité de l'outif à l'eft, & il étoit terrible vers la montagne.

A huit beures cinq minures, il étoit complèrement muit. C'ell à cet infture, qu'examinar la direction & Getes effest des éclies, 7 appergreis derritére le penchant de la colline, qui, d'un côte, termine la vue de ma mailon, un point lumieux. Sa lumière ne refinabilet pas à celle d'une bougie vue de loin, ni à celle que répandent du bois ou des herbes dans lear état d'ignition. Elle me parte avoir la colume histanchite de celle du phofphore qui brûle à l'ait hbre, ou plutôr de celle du mercure qu'on agire dans un tube piré d'air.

Ce point lumineux acquit peu - à - peu du volume & de l'étendue, 11

SUR L'HIST. NATURELLE ET LES ARTS. 277

(b)

forma infentiblement une zone, une bande pholphorique qui le montroit à mes yeux fur une hauteur de trois pieds : & en partant de la croupe de la colline pour s'approcher près de Deriers, cette zone fembloit former . La balle d'un angle de 60 dégrés, dont le former répondoit à mon œil.

Sur cette première zone lumineule, il s'en forma une feconde de la même hautgur, & qui n'avoit que 30 degrés détendue, c'eft. à - dire, j la moitié de celle de la zone inférience. Entre deux, refia un vuide dont la hauteur égaloit celle d'une des deux zones prife léparément.

Quoique ces deux zones faivillent une direction horizontale, il ne faux past croire que leur ligne de démarcation fit exacêment en ligne divite. On remarquoit fur l'une comme fur l'autre des irrégularités à peu-pets comme fur les hordes de car gros mages blance, vante coureurs de l'orage, & ces hords n'étoient pas sous égulement lumineurs, quoique le centre des zones offit mue carte uniforme.

Pendant le temps que ces zones avançõent ver Felt, les delaris & le buit des tonnerrés le flicedeloient avec la plus grande rapidité; enfan, à trois repelles différentes, la fondre s'ellaris, de l'extrémité de la zoné inférieure. Mais un objet digns de remaque, elt que le bruit qui fuivi tes s'eluits; s'il y en su un, fai folible, & l'olie de lie profigue nul, parce qu'il ue me fit pas même polífiele de le diffingent du hoult des coups de fonnetre qui partient el la arméle gérérale, me faifors appercevoir reis-chairement es vigens, la renoite & dans un plus grand élolgement. Chaque eclair, lancé de la multe gérérale, me faifors appercevoir reis-chairement es vigens, la renoite & les fanuofités des parises montagnes placées fur le devant de la grande chaine, cette hunière une freri à destruire que les zones écients plus rappochées de mois, se ne faifoint pas corpa avec la maffe des mages ballottes par desvens auprès des montagnes.

Ce phénomène brilla depuis huit heures cinq minutes julqi'à huit heures dix-lept minutes. A cet inflant un comp de vent du fiui fit changer la direction des nuages, les porte plus près de la grande chaîne des montagnes, & l'orage éloigna de Beziers.

Il y a route apparence que ce zones foient un fimple ama de vapeure tellemant charges de l'élocitatie, qu'elles les rendient transfrarentes & phofboriques. Ce qu'il prouve, c'ell que trois fois la foudre en eft partie, d'unité la trainée limineure qui formoit l'éclair a pare d'un diamètre plus que double de celui des éclairs ordinaires. Le rapprochement des objets pouvoir, il eft vari, avoir part dans ceroijet d'ordique. Je fuit, inoté à croise que cas nons étoiem des corps détachés & ne re-

Je tils tondé à croire que ces zones étoient des corps détachés & ne tenolent pas à la maffe des autres nunges, puifqu'on diffinguoit parderrière effes les montagnes lorfipe les éclairs s'élançoient de la grande maffe s'enfin, lorfigue la foudre partit de ces zones, il n'y ent point d'exploiton.

J'ignore fi un femblable phénomène a été obfervé ailleurs; mais je n'ai rien lu qui puisfe lui être comparé. Interactive comment

Printer-friendly version

Discussion paper

Fig. 1.

