

Historical Aurora Borealis catalog for Anatolia and Constantinople (hABcAC) during the Byzantine period: Implications for the past solar activity

Nafiz MADEN^{a,1}

^a Department of Geophysics, Gümüşhane University, TR-29100 Gümüşhane, Turkey

Abstract: Herein, Anatolian aurora has been reviewed based on the existing catalogs to establish a relationship between the aurora observations and past solar activity during the medieval period. For this purpose, historical aurora catalogs for Constantinople and Anatolia are compiled based on the existing catalogs and compared with those in the East regions. The available catalogs in literature are covered records observed in Europe, Japan, China, Russia and Middle East. There is no study dealing only with historical aurora observations recorded in Anatolia and Constantinople. The data of catalog support that there is a considerable relationship between the aurora activity and past strong solar activity. High auroral activity around the extreme solar particle storm in 4/775 and the medieval grand maximum in 1100s in Anatolia and Middle East is quite consistent with the past solar variability reported in other scientific literature.

Keywords: Historical aurora record; Solar activity; Anatolia; Constantinople.

¹ Corresponding author. Tel.: +90 456 233 74 25; fax: +90 456 233 74 27. E-mail: nmaden@gumushane.edu.tr (N. MADEN).

23 **1. Introduction**

24 A number of researchers presented the low and middle-latitude aurora catalogs
25 (Table 1) from Europe (Mairan, 1733; Frobessius 1739; Fritz, 1873; Schove, 1948; Link,
26 1962; Dall'Olmo, 1979; Stothers, 1979; Krivsky and Pejml, 1988; Vaquero et al., 2010;
27 Scafetta and Willson, 2013), Arabic countries (Basurah, 2006), Japan (Matsushita, 1956;
28 Nakazawa et al., 2004; Kataoka et al., 2017), and China (Schove and Ho, 1959;
29 Keimatsu, 1976; Hayakawa et al., 2015; Kataoka and Iwashashi, 2017). Aurorae are the
30 most majestic luminous phenomenon observed in the sky. The aurora observations were
31 described as "sign", "a fiery shining sign", "a very fabulous sign", "red sky", "a fiery red
32 sky", "sky fire", "a great fire", "a fiery cloud", "a frightful and strange omen", "a fire-like
33 omen", "a bloody spear light", "blaze of light", "a sunlight light". The form of aurorae was
34 defined as "luminous column".

35 The historical aurora catalogs have been used to recognize the past solar activities
36 (Siscoe, 1980; Silverman, 1992; Schröder, 1992; Schröder 1994; Basurah, 2006;
37 Vazquez et al., 2006; Hayakawa et al., 2015), Earth's climate change (Pang and Yau,
38 2002; Schröder, 2004; Gallet et al., 2005; Bard and Frank, 2006; Scafetta, 2012) and
39 perception of human civilizations (Schröder, 2004; Gallet et al., 2006; Silverman, 2006).
40 Korte and Stolze (2016) showed that the intensity and tilt of the geomagnetic field and
41 high solar activity are closely related to the Aurora occurrence. The state of the
42 geomagnetic field and the form of magnetosphere extremely control the location of auroral
43 zone (Korte and Stulze, 2016). The visibility of the aurorae at low latitudes is very scarce
44 and closely connected with the strong geomagnetic storms related to the high-speed solar
45 wind or interplanetary transients (Eather, 1980; Basurah, 2006; Vazquez et al., 2006).

46 Mairan (1733) presented that the first scientific monography covers a list of 229
47 historical aurorae during the period of 502-1731. In 1852, Wolf noticed that the aurorae
48 match with periods of high sunspot number, according to the historical aurora catalog
49 including more than 6300 records (Wolf, 1857). Fritz (1873), who listed 77 European
50 Aurora records during 1707-1708, published the historical auroral catalog and separated
51 auroral sightings into five categories based on the latitude and longitude (Schröder, 1994).
52 Link (1962) published a useful aurora catalog seen in European countries based on eight
53 previous catalogs compiled by Frobessius (1739), Mairan (1754), Schoning (1760), Boué
54 (1856), Wolf (1857), Lovering (1868), Fritz (1873) and Seydl (1954).

55 Vaquero et al. (2010) declared a set of auroral observation of Francisco Salva
56 Campillo who recorded in Barcelona during 1780-1825. This catalog represents a sudden
57 drop in the number of annual auroral observations at about 1793 owing to the secular
58 minimum in solar activity (Vaquero et al., 2010). Scafetta and Willson (2013) studied the
59 historical Hungarian auroral records covering 438 years. They found that the maxima of
60 the auroral observations comply with the maxima in the sunspot records and there is a
61 positive correlation between the auroral records and the solar activities.

62 Neuhäuser and Neuhäuser (2015) are implemented five criteria of likeliness for
63 aurora catalogs as night-time (darkness, sunset, sunrise), non-southern directions
64 (northern, NE, NW, E-W, W-E), color (red, reddish, fiery, bloody, green, black), dynamics
65 (fire, fiery), and repetition. However, these criteria directly contradicted auroral behaviour
66 during the extreme space weather events, as overhead aurora can extend down to $\sim 25^\circ$
67 in magnetic latitude (vs $40-50^\circ$ in Anatolia) and the whitish aurora appears more
68 equatorial side (Kimball, 1960; Kataoka and Iwahashi, 2017; Kataoka et al., 2019;
69 Kataoka and Kazama, 2019). Indeed, Stephenson et al. (2019) rejected these criteria and

70 their analyses on the basis of multiple counter-examples during the extreme space
71 weather events and confirmed an enhanced solar activity around this epoch. Recently,
72 such candidate records of mid-latitude aurorae have been intensively investigated (e.g.,
73 Usoskin et al., 2013; Stephenson, 2015), due to the discovery of footprints of an extreme
74 solar particle storm in the cosmogenic isotopes around 774/775 (Miyake et al., 2012;
75 Usoskin et al., 2013; Mekhaldi et al., 2015). Their conclusion is consistent with the isotope
76 evidence for the extreme solar particle storm such as the detected ratio of Be^{10} and Cl^{36}
77 (Mekhaldi et al., 2015), latitudinal concentration of C^{14} concentration (Uusitalo et al.,
78 2018), and coincidental spikes of the multiple cosmogenic isotopes in both hemispheres
79 (Büntgen et al., 2018).

80 The goal of this study is to compile a historical aurora catalog based on the existing
81 catalogs, in order to analyse the past solar activity during the medieval period. This
82 research may also contribute to the understanding of public perception of the historical
83 auroras. Constantinople and Anatolia have only been peripherally discussed up to now
84 with regard to auroral observations.

85

86 **2. Historical Aurora Borealis catalog for Anatolia and Constantinople**
87 **(hABcAC) in the medieval period**

88 It is propounded a historical aurora catalog observed only in Anatolia and
89 Constantinople during medieval period collected from Link (1962), Botley (1964), Baldwin
90 (1969), Newton (1972), Stothers (1979), Eather (1980), Melissinos, (1980), Silverman
91 (1998), Dall'Olmo (1979), Andreasyan (2000), Little (2007), Silverman (2006), Neuhäuser
92 and Neuhäuser (2015) resources. In this catalogue, 21 different historical aurora
93 observations recorded in Anatolia and Constantinople during medieval period are

94 presented in Table 2. The location map of the historical aurora observations is given in
95 Figure 1 and summarized in Table 3. Another collected ancient aurora catalog consisting
96 40 auroral observations is shown in Table 4 for the Middle East region during the same
97 period using Islamic historical texts, Arabic chronicles and other auroral records given in
98 Table 1. These two catalogues are plotted in Figure 2 and evaluated altogether. The
99 Middle East aurora records and hABcAC overlap through medieval period especially
100 between 1097 and 1129 years (Fig. 3). Also, Chinese and European aurora observations
101 are in harmony with each other in this period (Siscoe, 1980).

102 In this catalog, the first auroral observation was observed in Constantinople at 333.
103 Stothers (1979) described these observations as a sky fire according to the works of
104 Aurelius Victor (320-390), who was a historian and politician of the Roman Empire. On
105 the other hand, Eather (1980) described an Aurora observation over Constantinople at
106 about 360 BC during the siege on Byzantium by Philip of Macedonia.

107 Little (2007) described an aurora observation record in Constantinople at 396: "A
108 fiery cloud was observed from the East while the city darkened. At first, it was small, but
109 later gradually grew and moved towards the city. At last, it terribly enlarged and poised
110 over the entire city. A terrifying flame appeared to hang down. All people stacked to the
111 church, and the place could not receive huge mass".

112 According to the Link (1962) and Hayakawa et al., 2017, an aurora appeared in
113 Asia Minor on 22 August 502, Thursday. This aurora was also observed both in Edessa
114 (Botley, 1964) and Palestine after an earthquake (Russell, 1985) based on to the
115 Chronicle of Joshua the Stylite and Chronicle of Zuqnin. Joshua the Stylite described it:
116 "On the 22nd of August this year, on the night preceding Friday, a great fire appeared to
117 us blazing in the northern quarter the all night. It was believed that the whole earth was

118 going to be devastated that night by a fire storm. However, the mercy of our Lord
119 preserved us without damage". This appearance of the aurora borealis was also reported
120 in *Chronicon Edessenum* without apocalyptic detail (Trombley and Watt, 2000).

121 According to the *Historia Ecclesiastica* of Ptolomeus Lucensis there was an
122 aurora sighting at a night of 633 in Constantinople (Dall'Olmo, 1979): "A bloody sign
123 appearing just at that time was sighted. A bloodstained spear and a sharp light were
124 observed on the sky for nearly all night". Theophanes (758/760-817), a Byzantine monk,
125 theologian, and chronicler, reported an observation in 667 winter: "There was a sign which
126 appeared in the sky in the same winter". Theophanes reported another observation in
127 675-676: "This year a sign was seen in the sky on a Sabbath day" (Turtledove, 1982).

128 Theophanes recorded three aurora events for 734, 743 June and 744 in
129 Constantinople. The first aurora observation was reported in 734: "A fiery sign shining like
130 a burning brand appeared in the sky in Constantinople". The second aurora observation
131 was recorded by Theophanes in June of 743: "In the northern sky of Constantinople, a
132 sign was observed in the month of June" (Turtledove, 1982). The last aurora record was
133 observed in Constantinople for 744: "In the northern sky, a sign seemed this year, and
134 dust fell in several places" (Turtledove, 1982; Neuhäuser and Neuhäuser, 2015).

135 Harrak (1999) and Hayakawa et al. (2017) listed two aurorae records observed
136 near Amida in the early 770s based on the Chronicle of Zuqnin. In the Chronicle of Zuqnin,
137 the first observation was recorded in 771/772, Amida: "Another sign was seen in the
138 northern side, and its view gave evidence about the menace of God against us. It
139 appeared at reaping time, while wrapping the whole northern side of the sky from west to
140 east end. It was look like a green sceptre, a red one, a yellow one, and a black one. It was
141 ascending from the ground and changing into 70 shapes, while one sceptre was emerging

142 and another disappearing". The second observation was recorded in the Chronicle of
143 Zuqnin in 773, Amida: "In the month of June, on a Friday, another sign that was seen a
144 year ago in the northern region was appeared again this year. It was on Fridays that it
145 used to appear during these three consecutive years, stretching itself out from the eastern
146 side to the western side. The sign would change into many shapes in such a way that as
147 soon as a green ray vanished, a red one would appear, and as soon as the yellow one
148 vanished, a green would appear, and as soon as this one vanished, a black one would
149 appear" (Harraf, 1999). These two observations listed by Harraf (1999) based on the
150 Chronicle of Zuqnin were also cited by Dall'Olmo (1979) according to the Chronique de
151 Denys de Tell-Mahré (Chabot, 1895) with different dating. In Constantinople, another
152 aurora observation was recorded in 988: "A luminous star and fiery pillars seen in the
153 northern region of the sky for some nights. They frightened the people who saw them."
154 (Dall'Olmo, 1979).

155 Matthew of Edessa, who wrote a chronicle, described the events that occurred
156 between the years 952 and 1136, and reported four aurora observations around the year
157 1100 (Andreasyan, 2000). Matthew of Edessa reported the first aurora observation in the
158 Armenian year 546 (25.02.1097–24.02.1098): "In this year, an odd and horrible signs were
159 observed in the the northern side of the sky. No one had ever seen such an amazing
160 omen so far. In the month of November, the sky kindled and reddened though the air was
161 clear and quiet. The bloody sky was covered with stacks as if clustered on top of one
162 another becoming colorful. The stacks were set to slip through in an easterly direction,
163 dispersed after having gathered, and enveloped the large amount of the sky. Then, the
164 dark redness such an amazing degree reached up to the middle of the sky vault. The
165 savants and sages interpreted this phenomenon that, it was a sign of bloodshed. Actually,

166 terrible events and disasters we included as a short story in our book were soon to be
167 fulfilled."

168 Krey (1921) described an aurora observation during the siege of Antioch on the
169 account of eyewitnesses and participants in the first crusade: "A great earthquake
170 occurred on the third day before the Kalends of January (30 December 1097), and a very
171 fabulous sign was noticed in the sky. Northern part of the sky was so red that it appeared
172 as if sun rose to inform the day in the first sight of the night". This observation was also
173 described by Baldwin (1969): "There was an earthquake on December 30th, and a
174 frightening display of the aurora borealis next evening, and in this way God chastised his
175 army, so that we were intent upon the light which was rising in the darkness, yet the minds
176 of some were so blind and abandoned that they were recalled neither from luxury nor
177 robbery. At this time the Bishop prescribed a fast of three days and urged prayers and
178 alms, together with a procession, upon the people; moreover, he commanded the priests
179 to devote themselves to masses and prayers, the clerics to psalms". On the other hand,
180 another aurora was observed on 3 June 1098 at Antioch based on the Link (1962) catalog
181 as a fiery red sky (Silverman, 2006).

182 The Matthew of Edessa recorded second aurora observation in the Armenian year
183 547 (25.02.1098–24.02.1099). "In the same year, a new sign appeared in the northern
184 part of the sky. At the fourth hour of the night, the sky appeared more inflamed than before,
185 and a dark red color. This phenomenon lasted from the evening until the fourth hour of
186 the night. Such a terrible omen had never been seen so far. This omen raised upwards
187 gradually and covered the northern portion of the sky with the lines reaching the hills. All
188 stars took a fiery color. This phenomenon was an omen of rage and catastrophe"

189 (Andreasyan, 2000). Botley (1964) reported an auroral observation in Antioch as a blaze
190 of light girdled Pole. Link (1962) dated this observation on September 27, 1098.

191 In the Armenian year 548 (25.02.1099–24.02.1100) Matthew reported another
192 aurora observation: “A fiery sign of dark red color appeared in the sky in this year. This
193 omen heading from the northern to the eastern part of the sky appeared until the seventh
194 hour of the night and then became black. It was said that this phenomenon was a sign of
195 bloodshed of Christians. These predictions were truly realized. No favorable omen did not
196 appear since the day when the Franks began their expedition. All omens, however,
197 marked to realize the destruction, death, slaughter, famine and other diverse disasters”
198 (Andreasyan, 2000).

199 Matthew recorded the last aurora observation in the Armenian year 549
200 (25.02.1100–24.02.1101): “The northern part of the sky flushed red for the fourth time in
201 this year. The fiery red omen appeared more horrific than the previous one and
202 subsequently changed into black. This fourth appearance coincided with a lunar eclipse.
203 This phenomenon was a sign of the celestial wrath of God over the Christians as
204 previously said by the prophet Jeremiah with these words: “His wrath will blaze up from
205 the northern part of the sky. Indeed, several misfortunes occurred as we never could have
206 expected” (Andreasyan, 2000).

207 Dall'Olmo (1979) reported an aurora observation based on the Chronicle of Michael
208 the Syrian translated into French by Chabot (1968): “In the year 1108, a light like the
209 sunlight was seen in the middle of the night, and remained about three hours in Djihan
210 region near Adana”. Dall'Olmo (1979) was also cited 12 auroral records observed
211 probably in the Middle East from 745 to 1141 (Table 4) according to the Chronicle of
212 Michael the Syrian (Chabot, 1968).

213 Priest Grigor, who continued the Matthew's Chronicle and recorded events for the
214 years 1136/37-1162/63, added one aurora observation in about the year 1143. In the
215 Armenian year 592 (14.02.1143-13.02.1144) Priest Grigor described the aurora
216 observation: "On Holy Thursday (1 April 1143), an omen forming of a luminous column
217 appeared in the northern portion of the sky. This omen was visible for eight days. Three
218 sovereigns died after the appearance of this phenomenon" (Andreasyan, 2000).

219
220 **3. Results and Discussions**

221 The main purpose of this study is to present an aurora catalog for the
222 Constantinople and Anatolia during the medieval period based on the existing catalogs.
223 Twenty-three different historical aurora records are presented in Constantinople and
224 Anatolia during the medieval period (Table 2). Another aurora catalog containing 40
225 records collected from different sources is also given (Le Strange, 1890; Link, 1962;
226 Botley, 1964; Newton, 1972; Dall'Olmo, 1979; Silverman, 1998; Basurah, 2006) for the
227 Middle East region (Table 4). The aurorae were generally seen in the northern and eastern
228 part of the sky. The color of the aurora observations was red, green, yellow and black
229 depending on the height and relative concentrations of the nitrogen and oxygen
230 compounds in the atmosphere (Eather, 1980).

231 The aurora records strongly correlated to high solar activity (Siscoe, 1980) provide
232 some information about the Sun-Earth interaction as previously proved by Scafetta
233 (2012). Stronger solar dynamics were realized in aurorae with color green-yellow-red as
234 seen in 772 and 773 in Amida. The low-latitude aurorae of 772-773 are interesting, as
235 being very close to the extreme solar event of 774/775 (Miyake et al., 2012; Usoskin et
236 al., 2013; Mekhaldi et al., 2015). Miyake et al. (2012) and Usoskin et al. (2013) confirmed

237 the 770s high solar events presenting ^{14}C measurements from the annual rings of the
238 cedar trees in Japan and inappropriate carbon cycle model in German oak, respectively.
239 These low-latitude aurorae are quite close from the extreme solar particle storm in
240 774/775 and support not the solar minimum (Neuhäuser and Neuhäuser, 2015) but high
241 solar activity (Usoskin et al., 2013; Mekhaldi et al., 2015; Stephenson et al., 2019). The
242 auroral records have also proven itself to be a valuable data source for the investigation
243 of the secular variation of solar activity.

244 Paleomagnetic researchs demonstrate that the recent dipole strength was nearly
245 50% weaker than it was 2500 years ago (Raspopov et al., 2003). Siscoe and Siebert
246 (2002) indicated that the dipole strength was 1.5 times as large as that of the present
247 value. The position of the geomagnetic latitude and dipole moment might be the reason
248 of observing aurorae in Constantinople and Anatolia so frequently. The average dipole
249 moment for 750 and 1250 are $8.85 \cdot 10^{22} \text{ Am}^2$ and $8.90 \cdot 10^{22} \text{ Am}^2$ slightly higher than the
250 present value of $7.78 \cdot 10^{22} \text{ Am}^2$ (Korte and Constable, 2005; Gallet et al., 2005). According
251 to the Kawai et al. (1965) the axis of geomagnetic dipole could have inclined towards Asia
252 at around the 11th-12th centuries. In addition, the possibility of auroral occurrence at low
253 latitudes could demonstrate changes in the location of the North magnetic pole
254 (Silverman, 1998).

255 The position of the magnetic poles is the most important factor defining whether
256 the aurora was observed at a geographic region. Palaeomagnetic data provides similar
257 longitude values (85° N , 115° E) for the north geomagnetic pole (Merrill and McElhinny,
258 1983). The positions of the north magnetic pole have changed from 10° N to 358° N in
259 longitude and between 79° E and 88° E in latitude over the past 2500 years (Ohno and

260 Hamano, 1992). During the interval of 1127–1129, the north geomagnetic pole was
261 located at a geographic latitude of 80° N, and geographic longitudes including East Asia
262 (Merrill and McElhinny, 1983; Constable et al., 2000). According to the Fukushima (1994),
263 the north magnetic pole was located at 81°N in the eastern hemisphere near East Asia
264 (100°E to 130°E) in the medieval period. The north geomagnetic pole of dipole axis
265 computed from the average spherical harmonic models were 84.8° N and 103.8° E in
266 1100 (Constable et al., 2000).

267 The geomagnetic latitude of Amida in the late 8th century to be about 50.1° N
268 (Neuhäuser and Neuhäuser, 2015) based on the Holocene geomagnetic field (Nilsson et
269 al., 2014) and 45° N (Hayakawa et al., 2017) based on the location of the North
270 Geomagnetic Pole over the past 2000 years (Merrill and McElhinny, 1983). According to
271 the Silverman (2006), the geomagnetic latitude of Edessa and Antioch was 41° N and 40°
272 N, respectively. Strong geomagnetic storms, indicating strong solar activity around 770
273 and 1100 should have been exist in Amida (45° N), Edessa (41° N) and Antioch (40°).

274 Bekli et al. (2017) demonstrated that the naked eye sunspot observations from 974
275 to 1278 and aurora records from 965 to 1273 show multiple unusual peaks related to the
276 high solar activitiy at latitudes below 45° N by using Chinese and Korean historical
277 sources. The high aurora activity events associated with great magnetic storms occurred
278 around the maximum phase of solar cycles rather than around the minimum (Kataoka et
279 al., 2017). Vaquero and Trigo (2012) stated the period from 1095 to 1204 as an average
280 solar cycle length, whereas this needs to be carefully compared with the reconstructed
281 solar cycles on the basis of cosmogenic isotopes (Miyahara et al., 2008; Kataoka et al.,
282 2017). Nevertheless, this period is characterised with numerous records of sunspots and

283 aurorae shown in Vaquero and Vazquez (2009) and supported by Anatolian reports
284 compiled in this article. This is highly consistent with an appearance of a gigantic sunspot
285 in 1128 that caused a serious geomagnetic storm (Willis and Stephenson, 2001).

286 In the medieval period, the people thought that the aurora was a sign of anger of
287 God, menace, threat, apocalyptic, doomsday, misfortunes, war, slaughter and bloodshed.
288 Little (2007) described an aurora observation record in Constantinople at 396: "All people
289 stacked to the church, and the place could not receive huge mass. But after that great
290 tribulation, when God had accredited His word, the cloud began to diminish and at last
291 disappeared. The people, freed from fear for a while, again heard that they must migrate,
292 because the whole city would be destroyed on the next Sabbath. The whole people left
293 the city with the Emperor; no one remained in his house. The city was saved. What shall
294 we say? adds Augustine. Was this the anger of God or rather His mercy"?

295 In the Chronicle of Zuqnin, an aurora observation recorded in 772, Amida was
296 described: "Another sign was seen in the northern side, and its view gave evidence about
297 the menace of God against us. For the intelligent person the sign indicated menace. Many
298 people said many things about it; some said it announced bloodshed, and others said
299 other things. But who knows the deeds of the Lord"?

300 Matthew of Edessa described the aurora phenomenon as a sign of rage,
301 catastrophe, and celestial wrath of God over the Christians and bloodshed of Christians.
302 Matthew of Edessa reported: "These predictions were truly realized. No favorable omen
303 did not appear since the day when the Franks began their expedition. All omens noticed
304 to realize the destruction, death, slaughter, famine and other diverse disasters"
305 (Andreasyan, 2000).

306

307 **4. Conclusions**

308 This study establishing the solar activity during medieval period reports the aurora
309 observations recorded in Constantinople, Anatolia and Middle East regions. The following
310 conclusions can be summarized as follows:

- 311 1. Historical Aurora catalog for Constantinople and Anatolia (hABcAC) containing 21
312 different aurora records provide important information on variations in the
313 geomagnetic field and auroral activity during medieval period.
- 314 2. The solar activity, intensity of dipole moment and position of the geomagnetic pole
315 might be the most important factors observing aurorae in Constantinople, Anatolia
316 and Middle East regions.
- 317 3. The historical Aurora catalogs exceptionally promote that there is a remarkable
318 correlation between the past solar activity and aurora.
- 319 4. In Constantinople, Anatolia and Middle East, there was a relatively high auroral
320 activity during the years around 1100 is quite consistent with the naked-eye
321 sunspot observations related to solar activity as stated by Vaquero et al. (1997) and
322 Bekli et al. (2017).
- 323 5. People were believed that the aurora was a sign of celestial wrath of God, menace,
324 threat, apocalyptic, doomsday, misfortunes, war, slaughter, rage, catastrophe and
325 bloodshed.
- 326 6. The high and low auroral events associated with solar activity variations provide
327 substantial use of knowledge to design and alleviate the space weather hazards in
328 future.

329

330

331 **5. Acknowledgements**

332 I would like to thank Elif KARSLI (KTU), Alam KHAN (GU), Dr. José Valentin
333 BAGESTON and anonymous referees for their thorough critical and constructive
334 comments.

335

336 **6. References**

337 Andreasyan, H.D.: Urfalı Mateos vekayinamesi (952-1136) ve Papaz Grigor'un
338 zeyli (1136-1162), Türk Tarih Kurumu, Ankara (in Turkish), 2000.

339 Baldwin, M.W.: A History of the Crusades: The First Hundred Years, University of
340 Pennsylvania Press, 1969.

341 Bard, E. and Frank, M.: Climate change and solar variability: What's new under the
342 sun, Earth and Planetary Science Letters, 248(1), 1-14, 2006.

343 Basurah, H. M.: Records of aurora in the Islamic chronicles during 9th–16th
344 centuries. Journal of Atmospheric and Solar-Terrestrial Physics, 68(8), 937-941, 2006.

345 Bekli, M.R., Zougab, N., Belabbas, A., Chadou, I.: Non-parametric Data Analysis
346 of Low-latitude Auroras and Naked-eye Sunspots in the Medieval Epoch, Solar Physics
347 292:52, 2017.

348 Botley, C.M.: Aurora in S.W. Asia 1097-1300. J. British Astr. Assoc. 74, 293-296,
349 1964.

350 Chabot, J.B.: Chronique de Michel le Syrien, (French translation accompanied by
351 the original Syrian text), vols. 1-4, photo-printed edition, Culture and Civilisation, Brussels.
352 1968.

- 376 datable auroras and a two-tail comet from the Syriac Chronicle of Zūqnīn. Publications of
377 the Astronomical Society of Japan, 69(2), 2017.
- 378 Kataoka, R. and Iwahashi, K.: Inclined zenith aurora over Kyoto on 17 September
379 1770: Graphical evidence of extreme magnetic storm, Space Weather, 15, 1314-1320,
380 2017.
- 381 Kataoka, R., Isobe, H., Hayakawa, H., Tamazawa, H., Kawamura, A.D., Miyahara,
382 H., Iwahashi, K., Yamamoto, K., Takei, M., Terashima, T., Suzuki, H., Fujiwara, Y. and
383 Nakamura, T.: Historical space weather monitoring of prolonged aurora activities in Japan
384 and in China, Space Weather, 15, 392-402, 2017.
- 385 Kataoka, R. and Kazama, S.: A watercolor painting of northern lights seen above
386 Japan on 11 February 1958. J. Space Weather Space Clim. 9, A28, 2019.
- 387 Kawai, N., Hirooka, K. and Sasajima, S.: Counterclockwise rotation of the
388 geomagnetic dipole axis revealed in the world-wide archaeo-secular variations, Proc.
389 Japan Acad., 41, 398-403, 1965.
- 390 Keimatsu, M.: A chronology of aurorae and sunspots observed in China, Korea and
391 Japan, Ann. Sci., 13, 1-32, 1976.
- 392 Kimball, D. S.: A Study of the Aurora of 1859. Geophysical Institute, 1960.
- 393 Korte, M. and Constable, C.G.: The geomagnetic dipole moment over the last 7000
394 years-new results from a global model. Earth and Planetary Science Letters, 236(1), 348-
395 358, 2005.
- 396 Korte, M. and Stolze, S.: Variations in mid-latitude auroral activity during the
397 Holocene, Archaeometry, 58 (1), 159-176, 2016.
- 398 Krey, A.C.: The First Crusade: The Accounts of Eyewitnesses and Participants,
399 Princeton, 139-142, 1921.

- 400 Krivsky, L., and Pejml, K.: Solar activity aurorae and climate in Central Europe in
401 the last 1000 years. Bulletin of the Astronomical Institute of the Czechoslovak Academy
402 of Sciences No 75, 1988.
- 403 Le Strange, G.: Palestine under the Moslems. Houghton, Mifflin and Company,
404 Boston and New York, 1890.
- 405 Link, F.: Observations et catalogue des aurores boréales apparues en Occident
406 de-626 à 1600. Geofys. Sb. X, 297–392, 1962.
- 407 Little, L.K.: Plague and the end of antiquity: the pandemic of 541-750. Cambridge
408 University Press, UK, 2007.
- 409 Lovering, J.: On the periodicity of the aurora Borealis, Mem. Amer. Acad. Arts Sci.,
410 X., 1868.
- 411 Mairan, J.J.: Traite physique et historique de l'aurore borale. Paris, 1733.
- 412 Mairan, J.J.: de Ort, Traite Physique et Historique de l'Aurore Boreale, Imprimerie
413 Royale, Paris, 1754.
- 414 Matsushita, S.: Ancient aurorae seen in Japan, J. Geophys. Res., 61, 297-302,
415 1956.
- 416 Mekhaldi, F., Muscheler, R., Adolphi, Ala Aldahan, A., Beer, J., McConnell, J. R.,
417 Possnert, G., Sigl, M., Svensson, A., Synal, H., Welten, K.C., Woodruff, T.E.:
418 Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and
419 993/4. Nat Commun 6, 8611, 2015.
- 420 Merrill, R.T. and McElhinny, M.W.: The Earth's Magnetic Field: Its History, Origin
421 and Planetary Perspective, Academic Press, London, 1983.

- 422 Miyahara, H., Yokoyama, Y., Masuda, K.: Possible link between multi-decadal
423 climate cycles and periodic reversals of solar magnetic field polarity, *Earth and Planetary*
424 *Science Letters*, 272, 290-295, 2008.
- 425 Miyake, F., Nagaya, K., Masuda, K., and Nakamura, T.: A signature of cosmic-ray
426 increase in AD 774-775 from tree rings in Japan, *Natura* 486 (7402), 240, 2012.
- 427 Nakazawa, Y., Okada, T. and Shiokawa, K.: Understanding the "SEKKI"
428 phenomena in Japanese historical literatures based on the modern science of low-latitude
429 aurora. *Earth, planets and space*, 56(12), e41-e44, 2004.
- 430 Neuhäuser, R. and Neuhäuser, D.L.: Solar activity around AD 775 from aurorae
431 and radiocarbon. *Astronomische Nachrichten*, 336, 225–248, 2015.
- 432 Newton, R.R.: *Medieval Chronicles and the Rotation of the Earth*, the Johns
433 Hopkins University Press, Baltimore, 1972.
- 434 Nilsson, A., Holme, R., Korte, M., Suttie, N. and Hill, M.: Reconstructing Holocene
435 geomagnetic field variation: new methods, models and implications. - *Geophysical Journal*
436 *International*, 198(1), 229-248, 2014.
- 437 Pang, K.D., and Yau, K.K.: Ancient observations link changes in Sun's brightness
438 and Earth's climate. *Eos, Transactions American Geophysical Union*, 83(43), 481-490,
439 2002.
- 440 Russell, K.W.: The earthquake chronology of Palestine and northwest Arabia from
441 the 2nd through the mid-8th century AD. *Bulletin of the American Schools of Oriental*
442 *Research*, 37-59, 1985.
- 443 Scafetta, N.: A shared frequency set between the historical mid-latitude aurora
444 records and the global surface temperature. *Journal of Atmospheric and Solar–*
445 *Terrestrial Physics* 74, 145–163, 2012.

- 446 Scafetta, N., and Willson, R.C.: Planetary harmonics in the historical Hungarian
447 aurora record (1523–1960). *Planetary and Space Science*, 78, 38-44, 2013
- 448 Schonning, G.: *Nordlyset Aelde. Skrift. Kiobenh. Selsk.* 8, 1760.
- 449 Schove, D.J.: Sunspot epochs 188 A. D. to 1610 A. D, *Popular Astronomy*, 56, 247-
450 251, 1948.
- 451 Schove D.J. and Ho P.Y.: Chinese aurorae: AD 1048-1070, *J. British. Astr. Soc.*
452 69, 295-304, 1959.
- 453 Schröder, W.: On the Existence of the 11-Year Cycle in Solar and Auroral Activity
454 before and during the So-Called Maunder Minimum. *Journal of geomagnetism and*
455 *geoelectricity*, 44(2), 119-128, 1992.
- 456 Schröder, W.: Aurorae during the so-called Spoerer minimum. *Solar physics*,
457 151(1), 199-201, 1994.
- 458 Schröder, W.: A note on auroras during the so-called Maunder-Minimum. *Acta
459 Geodaetica et Geophysica Hungarica*, 39(4), 355-358, 2004.
- 460 Silverman, S.M.: Secular variation of the aurora for the past 500 years, *Reviews of
461 Geophysics*, 30, 333-351, 1992.
- 462 Silverman, S.: Early auroral observations, *Journal of Atmospheric and Solar–
463 Terrestrial Physics*, 60(10), 997-1006, 1998.
- 464 Silverman, S.M.: Comparison of the aurora of September 1/2, 1859 with other great
465 auroras. *Advances in Space Research*, 38(2), 136-144, 2006.
- 466 Siscoe, G.L.: Evidence in the auroral record for secular solar variability, *Geophys.*,
467 78, 647-658, 1980.
- 468 Siscoe, G.L. and Siebert, K.D.: Solar–terrestrial effects possibly stronger in biblical
469 times, *Journal of Atmospheric and Solar-Terrestrial Physics*, 64(18), 1905-1909, 2002.

- 470 Stephenson, F.R.: Astronomical evidence relating to the observed 14C increases
471 in A.D. 774 – 715 and 993 – 994 as determined from tree rings. *Adv. Space Res.* 55(6),
472 1537, 2015
- 473 Stephenson, F.R., Willis, D.M., Hayakawa, H., Ebihara, Y., Scott, C.J., Julia
474 Wilkinson, J., Matthew N. Wild, M.N.: Do the Chinese Astronomical Records Dated AD
475 776 January 12/13 Describe an Auroral Display or a Lunar Halo? A Critical Re-
476 examination, *Solar Physics*, 294: 36, 2019.
- 477 Stothers, R.B.: Solar cycle during classical antiquity, *Astron. Astrophys.*, 77, 121-
478 127, 1979.
- 479 Seydl, A.: A list of 402 northern lights observed in Bohemia, Moravia and Slovakia
480 from 1013 to 1951, *Geofys. Sb.*, 17, 159, 1954.
- 481 Trombley, F.R. and Watt, J.W.: *The chronicle of pseudo-Joshua the Stylite*, 32,
482 Liverpool University Press, UK, 2000.
- 483 Turtledove, H.: *The Chronicle of Theophanes: Anni Mundi 6095-6305 (AD 602-
484 813)*. University of Pennsylvania Press, USA, 1982.
- 485 Usoskin, I.G., Kromer, B., Ludlow, F., Beer, J., Fiedrich, M., Kovaltsov, G.A.,
486 Solanki, S.K. and Wacker, L.: The AD 775 cosmic event revisited: the Sun is to blame,
487 *Astronomy & Astrophysics* 552, L3, 2013.
- 488 Uusitalo, J., Arppe, L., Hackman, S., Helama, Kovaltsov, G., Mielikäinen, K.,
489 Mäkinen, H., Nöjd, P., Palonen, V., Usoskin, I. and Oinonen, M.: Solar superstorm of AD
490 774 recorded subannually by Arctic tree rings. *Nat Commun* 9, 3495, 2018.
- 491 Vaquero, J.M., Gallego, M.C. and Garcia, J.A.: A 250-year cycle in naked-eye
492 observations of sunspots, *Geophysical Research Letters*, 29 (20), 1997,
493 doi:10.1029/2002GL014782, 2002.

- 494 Vaquero, J.M., Gallego, M.C., Barriendos, M., Rama, E. and Sanchez-Lorenzo, A.:
495 Francisco Salvá's auroral observations from Barcelona during 1780–1825. *Advances in*
496 *Space Research*, 45(11), 1388-1392, 2010.
- 497 Vaquero, J.M. and Trigo, R.M.: A Note on Solar Cycle Length during the Medieval
498 Climate Anomaly, *Solar Physics* 279, 289-294, 2012.
- 499 Vazquez, M., Vaquero, J.M. and Curto, J.J.: On the connection between solar
500 activity and low-latitude aurorae in the period 1715–1860. *Solar Physics*, 238, 405–420,
501 2006.
- 502 Willis, D. M. and Stephenson, F. R.: Solar and auroral evidence for an intense
503 recurrent geomagnetic storm during December in AD 1128, *Annales Geophysicae*, 19,
504 289-302, 2001.
- 505 Wolf, R.: Nordlichtcatalog, *Vierteljahrsschro Naturforsch. Ges. Zuerich*, 2, 353,
506 1857.
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517

518 **TABLES CAPTIONS:**

519 **Table 1.** Historical Aurora catalogs compiled by different authors.

520 **Table 2.** Historical Aurora catalogs during medieval period used in this study.

521 **Table 3.** The number of historical aurora records observed in Constantinople and Anatolia.

522 **Table 4.** Ancient aurora observations recorded in Middle East region during medieval
523 period.

524

525 **FIGURE CAPTIONS:**

526 **Figure 1.** The location map of the historical Aurora records during medieval period.

527 **Figure 2.** Plot of auroa observations recorded in Constantinople, Anatolia and Middle East
528 regions.

529 **Figure 3.** The number of aurorae records per century observed in Constantinople,
530 Anatolia, and Middle East.

531

532 **TABLES**533 **Table 1.**

Existing catalogs	Number of Observations	Region	Period
Link, 1962	385	Europe	626 B.C. to 1600 A.D.
Link, 1964	209	Europe	1600-1700 A.D.
Stothers, 1979	67	Greece and Italy	480 B.C. to 333 A.D.
Newton, 1972	65	Europe	450-1263 A.D.
Dall'Olmo, 1979	61	Europe	450-1461 A.D.
Keimatsu, 1976	260	China, Korea, and Japan	687 B.C. to 1600 A.D.
Matsushita, 1956	18	Japan	620-1909 A.D.
Basurah, 2006	18	Arabia, North Africa, Spain	800-1600 A.D.
This Study	21	Anatolia, Constantinople	1-1453 A.D.
This Study	40	Middle East	1-1453 A.D.

534

535

536

537

Table 2.

#	Date	Location	Description	References
1	333	Constantinople	Sky fire.	Stothers, 1979
2	396	Constantinople	A fiery cloud was seen from the East.	Little, 2007
3	22 Ağustos 502, Thursday	Edessa	A great fire appeared to us blazing in the northern quarter the whole night.	Link, 1962 Botley, 1964 Hayakawa et al., 2017
4	633	Constantinople	A bloody spear and a light of the sky were sighted for nearly the all night.	Dall'Olmo, 1979
5	668	Constantinople	There was a sign appeared in the sky in the same winter.	Turtledove, 1982
6	675	Constantinople	In this year, a sign was seen in the sky on a Sabbath day.	Turtledove, 1982
7	734	Constantinople	There was a sign in the sky which shone like a burning brand.	Turtledove, 1982
8	June 743	Constantinople	In June, a sign appeared on the northern sky.	Turtledove, 1982
9	744	Constantinople	This year, a sign appeared on the northern sky.	Turtledove, 1982
10	771/772	Amida	Another sign appeared in the northern side.	Harrak, 1999 Hayakawa et al., 2017
11	June 773, Friday	Amida	The sign that was seen a year ago in the northern region was seen again in this year, in the month of June, on a Friday.	Hayakawa et al., 2017 Harrak, 1999
12	988	Constantinople	Frightened fiery pillars seen in the northern region for some nights.	Dall'Olmo, 1979
13	21 November 1097, Monday	Edessa	A frightful and strange omen appeared in the northern portion of the sky.	Link, 1962 Silverman, 2006 Andreasyan, 2000 Botley, 1964
14	30 December 1097, Friday	Antioch	A very fabulous sign was watched in the sky.	Silverman, 1998 Baldwin, 1969 Botley 1964 Kery, 1921
15	3 June 1098, Saturday	Antioch	A fiery red sky was seen.	Link, 1962 Silverman, 2006 Botley 1964

Table 2 continued.

16	27 September 1098, Monday (10:00)	Edessa	A second omen appeared in the northern portion of the sky at the fourth hour of the night the sky flared up more than it had before and turned a deep red color.	Andreasyan, 2000 Link, 1962
17	27 September 1098, Monday	Antioch	Blaze of light girdled Pole.	Link, 1962 Botley, 1964
18	1099	Edessa	A fire-like omen of a very deep red color appeared in the sky.	Andreasyan, 2000 Link, 1962 Silverman, 2006
19	18 November 1100, Sunday	Edessa	The northern portion of the sky reddened, appearing more frightful and wondrous than the previous phenomenon.	Andreasyan, 2000 Silverman, 2006 Link, 1962
20	1108	Adana	A light like the sunlight was seen in the middle of the night and remained about three hours in Djihan.	Chabot, 1968 Dall'Olmo, 1979
21	1 April 1143, Thursday	Edessa	A sign appeared in the sky from the north in the form of a luminous column	Andreasyan, 2000

549 **Table 3.**

#	City	Latitude [Degree, N]	Longitude [Degree, E]	Numbers of observation
1	Constantinople	41.03	28.99	9
2	Edessa	37.17	38.79	6
3	Amida	37.93	40.21	2
4	Antioch	36.2	36.16	3
5	Adana	36.99	35.34	1
Total				21

550

551

552

553

554

555

556

557

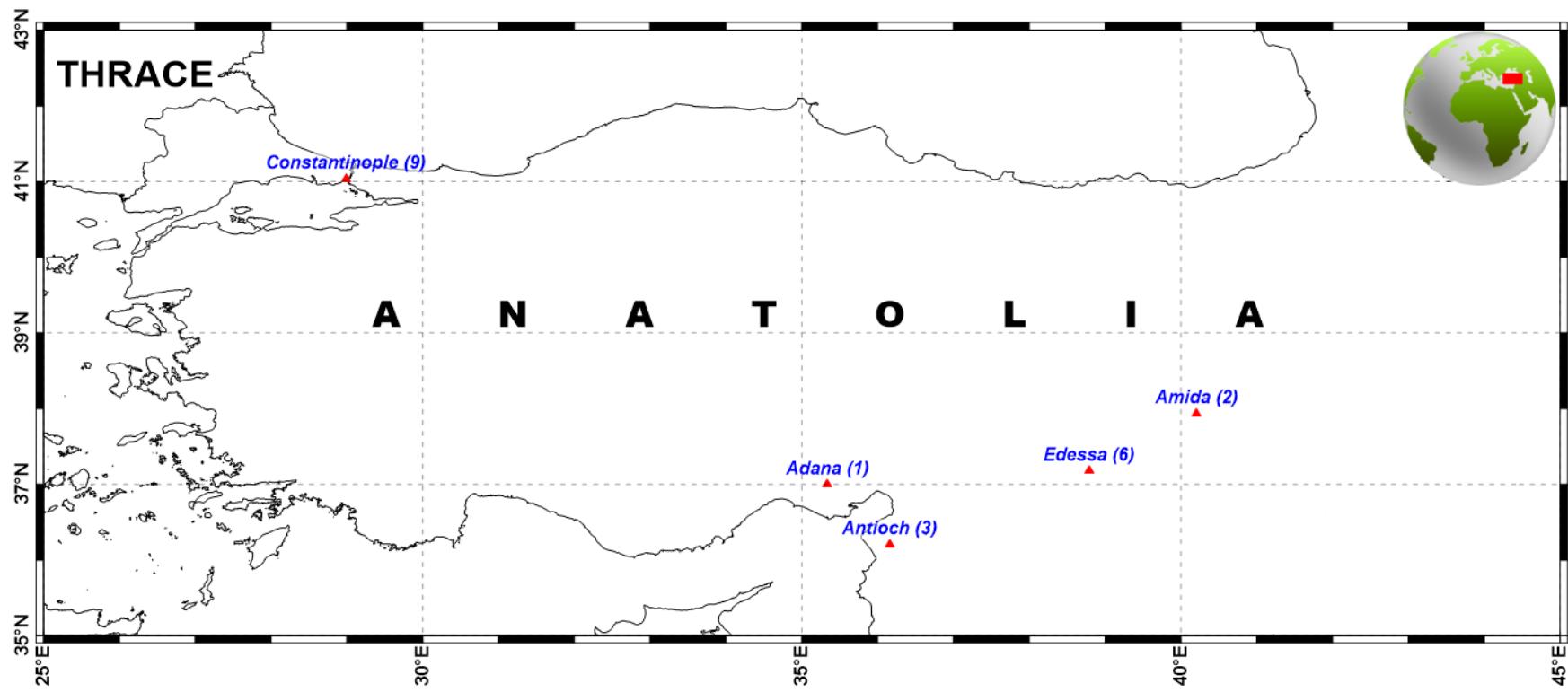
558

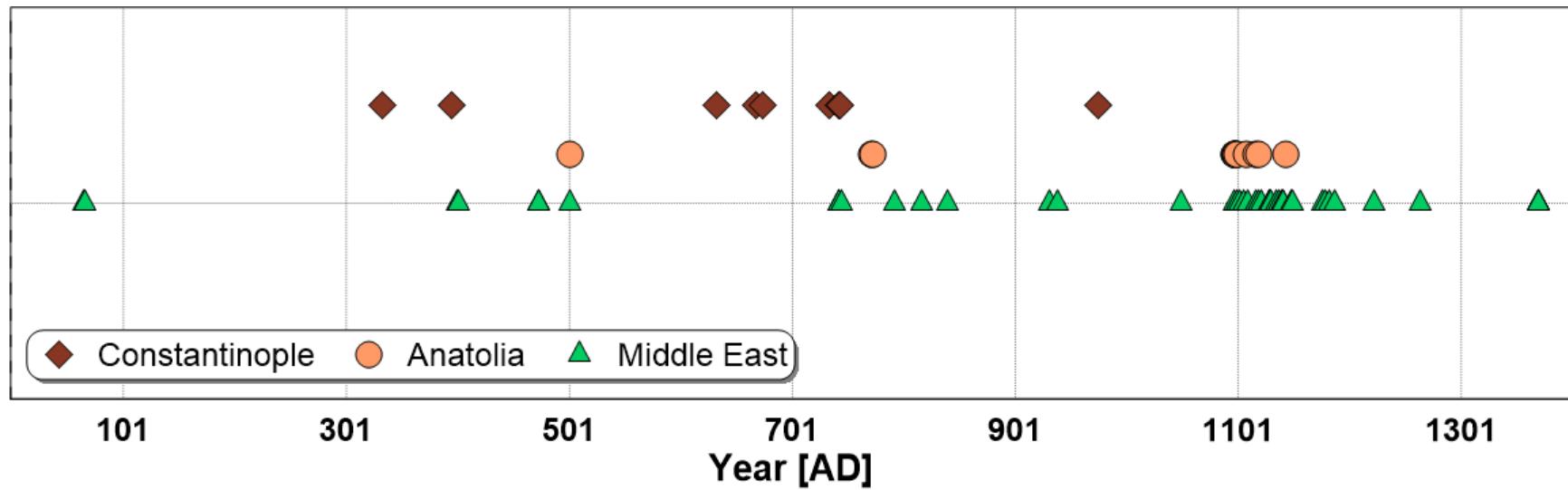
Table 4.

#	Date	Place	Descriptions	References
1	65	Jerusalem		Botley, 1964
2	66	Jerusalem		Botley, 1964
3	502 Agust 22	Palestine	A great fire appeared to us blazing in the northern quarter the whole night	Botley, 1964
4	743 June	Syria	A mighty sign appeared in the heavens like columns of fire blazing in June	Chabot, 1968
5	743 September	Middle East	Another sign appeared in September like a flame of fire and spread from the East to the West	Cook, 2001
6	745 January	Middle East	In the middle of the sky, a large column of fire appeared during the night	Chabot, 1968
7	793 May 11-17	Iraq	There occurred a violent wind and overshadowing of the heavens and a redness in the sky, on the night of Sunday	Basworth, 1989
8	817 October 29	Iraq	A reddish glow appeared in the sky and stayed until late at night like two red columns	Basurah, 2006
9	840 September 24	Middle East	A fiery cloud appeared in the northern part of the sky, moving from east to West.	Dall'Olmo, 1979
10	931 November 9	Baghdad	An intense red glow appeared in the city of Al-Salam (Baghdad)	Basurah, 2006
11	939 October 17	Syria	An intense red glow appeared in the atmosphere coming from North and West	Basurah, 2006
12	1050 Agust 5	Middle East	Through which light shone out broad and glittering, and then became extinguished	Le Strange, 1890
13	1097	Palestine		Botley, 1964
14	1100	Palestine		Botley, 1964
15	1102	Palestine		Botley, 1964
16	1106	Syria		Botley, 1964
17	1110	Syria		Botley, 1964
18	1117 December 16	Palestine		Newton, 1972 Botley, 1964
19	1119	Armenia		Botley, 1964
20	1121 May, Monday	Syria	There appeared a full arc, which had not been observed for many generations	Botley, 1964
21	1129 January	Middle East	A fire appeared in the northern region. A sort of pillar was stretched toward the south.	Dall'Olmo, 1979
22	1129 March	Middle East	A fire appeared in the northern region. A sort of pillar was stretched toward the south.	Dall'Olmo, 1979

561

Table 4 continued.

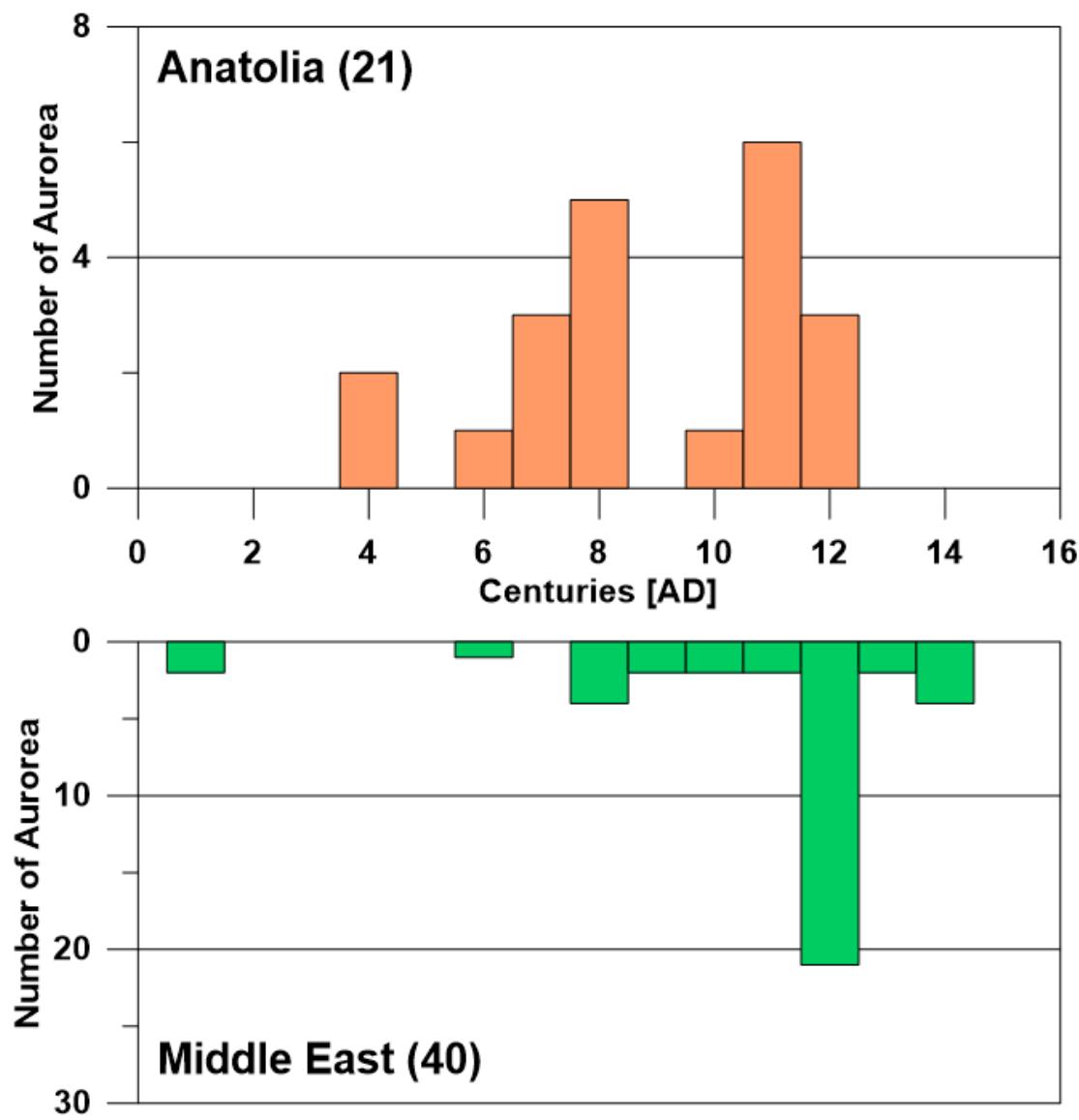

23	1129 April	Middle East	A fire appeared in the northern region. A sort of pillar was stretched toward the south.	Dall'Olmo, 1979
24	1130 November	Middle East	A burning fire was seen in the northern region	Dall'Olmo, 1979
25	1135 July 21	Middle East	A light like a torch moved from east to West. The light of the moon and of the stars was obscured. A frightful noise followed	Dall'Olmo, 1979
26	1138 October	Syria	A red sign was seen in the northern part of the sky	Botley, 1964
27	1140 June 22	Syria	Red lances were seen in the northern region.	Botley, 1964
28	1141 August	Middle East	Rays of fire were observed in the northern region.	Dall'Olmo, 1979
29	1141 September	Syria	A brightness as bright as the sun broke out in the northeast. It shone as if the sky were on fire.	Botley, 1964
30	1149	Syria		Botley, 1964
31	1150	Palestine		Botley, 1964
32	1176 September 6 - October 5	Syria	An intense red light appeared in the sky from the East	Basurah, 2006
33				
34	1179 May 7	Syria	The sky became cloudy and pillars of fire appeared at the horizon	Basurah, 2006
35	1187 July	Tiberias, Israel		Botley, 1964
36	1223 October 26	Syria	We saw from Bani Helal Mountain (toward the North direction) a hugelight over Gassune; we thought that Damascus was on fire.	Basurah, 2006
37	1264 July 20-30	Syria	Bright glowing columns appeared toward North-West	Basurah, 2006
	1370 November 27	Jerusalem	A great reddish glow appeared in the sky of Jerusalem	Basurah, 2006
38	1370 November 27	Damascus	A great reddish glow appeared in the sky of Damascus	Basurah, 2006
39	1370 November 27	Homs	A great reddish glow appeared in the sky of Homs	Basurah, 2006
40	1370 November 27	Aleppo	A great reddish glow appeared in the sky of Aleppo	Basurah, 2006


562

563

564

565



569

570 **Figure 2.**

571

572

573 **Figure 3.**