

Historical Aurora Borealis Observations in medieval Anatolia (AD 1-1453): Implications for the past solar activity

Nafiz MADEN^{a,1}

^a Department of Geophysics, Gümüşhane University, TR-29100 Gümüşhane, Turkey

Abstract: In this paper, it is reviewed the relationships between the aurora observations, past solar activity and climatic change in Anatolia during medieval period. This purpose, it is presented two historical aurora catalogs for Anatolia and Middle East regions at various dates by using historical texts, chronicles and other auroral records. Available catalogs in literature are covered records observed in the Europe, Japan, Russia and Middle East. There is no study dealing only with the historical aurora observations recorded in Anatolia. The data of the catalog support that there is a considerable relationship between the aurora activity and past strong solar activity. High aurora activity during the years around 1100 in Anatolia and Middle East is quite consistent with the past solar variability and planetary climatic changes drastically affecting on the economy and human events.

Keywords: Historical aurora records; Solar activity; Climatic changes; Anatolia.

¹ Corresponding author. Tel.: +90 456 233 74 25; fax: +90 456 233 74 27. E-mail: nmaden@gumushane.edu.tr (N. MADEN).

23 **1. Introduction**

24 A number of researchers presented the low and middle-latitude aurora catalogs
25 (Table 1) from Europe (Mairan, 1733; Frobessius 1739; Fritz, 1873; Schove, 1948; Link,
26 1962; Dall'Olmo, 1979; Stothers, 1979; Krivsky and Pejml, 1988; Vaquero et al., 2010;
27 Scafetta and Willson, 2013), Arabic countries (Basurah, 2006), Japan (Matsushita, 1956;
28 Nakazawa et al., 2004; Kataoka et al., 2017), and China (Schove and Ho, 1959;
29 Keimatsu, 1976; Hayakawa et al., 2015; Kataoka and Iwashashi, 2017). Aurorae are the
30 most majestic luminous phenomenon observed in the sky. The aurora observations were
31 described as "sign", "a fiery shining sign", "a very fabulous sign", "red sky", "a fiery red
32 sky", "sky fire", "a great fire", "a fiery cloud", "a frightful and strange omen", "a fire-like
33 omen", "a bloody spear light", "blaze of light", "a sunlight light". The form of aurorae was
34 defined as "luminous column".

35 The historical aurora catalogs have been used to recognize the past solar activities
36 (Siscoe, 1980; Silverman, 1992; Schröder, 1992; Schröder 1994; Basurah, 2006;
37 Vazquez et al., 2006; Hayakawa et al., 2015), Earth's climate change (Pang and Yau,
38 2002; Schröder, 2004; Gallet et al., 2005; Bard and Frank, 2006; Scafetta, 2012) and
39 perception of human civilizations (Schröder, 2004; Gallet et al., 2006; Silverman, 2006).
40 The state of the geomagnetic field and the form of magnetosphere extremely control the
41 location of auroral zone (Korte and Stulze, 2016). The visibility of the aurorae at low
42 latitudes is very scarce and closely connected with the strong geomagnetic storms related
43 to the high-speed solar wind or interplanetary transients (Eather, 1980; Basurah, 2006;
44 Vazquez et al., 2006).

45 Mairan (1733) presented that the first scientific monography covers a list of 229
46 historical aurorae during the period of 502-1731. In 1852, Wolf noticed that the aurorae

47 match with periods of high sunspot number, according to the historical aurora catalog
48 including more than 6300 records (Wolf, 1857). Fritz (1873), who listed 77 European
49 Aurora records during 1707-1708, published the historical auroral catalog and separated
50 auroral sightings into five categories based on the latitude and longitude (Schröder, 1994).
51 Link (1962) published a useful aurora catalog seen in European countries based on eight
52 previous catalogs compiled by Frobessius (1739), Mairan (1754), Schoning (1760), Boué
53 (1856), Wolf (1857), Lovering (1868), Fritz (1873) and Seydl (1954).

54 Vaquero et al. (2010) declared a set of auroral observation of Francisco Salva
55 Campillo who recorded in Barcelona during 1780-1825. This catalog represents a sudden
56 drop in the number of annual auroral observations at about 1793 owing to the secular
57 minimum in solar activity (Vaquero et al., 2010). Scafetta and Willson (2013) studied the
58 historical Hungarian auroral records covering 438 years. They found that the maxima of
59 the auroral observations comply with the maxima in the sunspot records and there is a
60 positive correlation amidst the auroral records, the solar and climate activities.

61 Neuhäuser and Neuhäuser (2015) are implemented five criteria of likeliness for
62 aurora catalogs as night-time (darkness, sunset, sunrise), non-southern directions
63 (northern, NE, NW, E-W, W-E), color (red, reddish, fiery, bloody, green, black), dynamics
64 (fire, fiery), and repetition. One could decide whether an observation is aurorae by
65 considering its color, brightness, dynamics, duration, geomagnetic latitude. The
66 observation is classified as potential (N=0), possible (N=1), very possible (N=2), probable
67 (N=3), very probable (N=4), or certain (N=5) according to the criteria number (N) satisfied
68 (Neuhäuser and Neuhäuser, 2015). However, Stephenson et al. (2019) showed that these
69 criteria may be adequate for normal aurorae, which cannot be classified as extreme
70 events associated with extreme magnetic storms. Korte and Stolze (2016) showed that

71 the intensity and tilt of the geomagnetic field and high solar activity are closely related to
72 the Aurora occurrence.

73 The available catalogs described above present a number of records covering
74 Europe, Japan, China, Russia and Middle East. There is no study dealing only with the
75 historical aurora observations recorded in Anatolia. Anatolia have not been studied until
76 now with respect to historical-climatological data and aurora observations. The goal of this
77 study is to compile a historical Anatolian Aurora catalog (hAAC) during medieval period
78 by scanning the available sources and catalogs in literature. The catalog could be used to
79 analyze the past solar activity and earth climatic changes impacting on the economy and
80 human events. This research may also contribute to the understanding of public
81 perception of the historical auroras.

82

83 **2. Historical Anatolian Aurora Catalog (hAAC) through medieval period**

84 It is propounded a historical aurora catalog observed only in Anatolia during
85 medieval period collected from Link (1962), Botley (1964), Baldwin (1969), Newton
86 (1972), Stothers (1979), Eather (1980), Melissinos, (1980), Silverman (1998), Dall'Olmo
87 (1979), Andreasyan (2000), Little (2007), Silverman (2006), Neuhäuser and Neuhäuser
88 (2015) resources. In this catalogue, 23 different historical aurora records observed in
89 Anatolia are presented during medieval period in Table 2. The location map of the
90 historical Anatolian observations is given in Figure 1. A number of Anatolian aurora
91 observations are summarized in Table 3. Another collected ancient aurora catalog
92 consisting 45 auroral observations is shown in Table 4 for the Middle East region during
93 the same period using Islamic historical texts, Arabic chronicles and other auroral records
94 given in Table 1. These two catalogues are plotted in Figure 2 and evaluated altogether.

95 The historical Anatolian and Middle East aurora records overlap through medieval period
96 especially between 1097 and 1129 years (Fig. 3). Also, Chinese and European aurora
97 observations are in harmony with each other in this period (Siscoe, 1980).

98 In Anatolia, the first auroral observation was done in Constantinople at 333
99 (Stothers, 1979). Stothers (1979) described these observations as a sky fire according to
100 the works of Aurelius Victor (320-390), who was a historian and politician of the Roman
101 Empire. On the other hand, Eather (1980) described an Aurora observation over
102 Constantinople at about 360 BC during the siege on Byzantium by Philip of Macedonia.

103 Little (2007) described an aurora observation record in Constantinople at 396: "A
104 fiery cloud was observed from the East while the city darkened. At first, it was small, but
105 later gradually grew and moved towards the city. At last, it terribly enlarged and poised
106 over the entire city. A terrifying flame appeared to hang down. All people stacked to the
107 church, and the place could not receive huge mass".

108 According to the Link (1962) and Hayakawa et al., 2017, an aurora appeared in
109 Asia Minor on 22 August 502, Thursday. This aurora was also observed both in Edessa
110 (Botley, 1964) and Palestine after an earthquake (Russell, 1985) based on to the
111 Chronicle of Joshua the Stylite and Chronicle of Zuqnin. Joshua the Stylite described it:
112 "On the 22rd of August this year, on the night preceding Friday, a great fire appeared to
113 us blazing in the northern quarter the all night. It was believed that the whole earth was
114 going to be devastated that night by a fire storm. However, the mercy of our Lord
115 preserved us without damage". This appearance of the aurora borealis was also reported
116 in Chronicon Edessenum without apocalyptic detail (Trombley and Watt, 2000).

117 According to the Historia Ecclesiastica of Ptolomaeus Lucensis there was an
118 aurora sighting at a night of 633 in Constantinople (Dall'Olmo, 1979): "A bloody sign

119 appearing just at that time was sighted. A bloodstained spear and a sharp light were
120 observed on the sky for nearly all night". Theophanes (758/760-817), a Byzantine monk,
121 theologian, and chronicler, reported an observation in 667 winter: "There was a sign which
122 appeared in the sky in the same winter". Theophanes reported another observation in
123 675-676: "This year a sign was seen in the sky on a Sabbath day" (Turtledove, 1982).

124 Theophanes recorded three aurora events for 734, 743 June and 744 in
125 Constantinople. The first aurora observation was reported in 734: "A fiery sign shining like
126 a burning brand appeared in the sky in Constantinople". The second aurora observation
127 was recorded by Theophanes in June of 743: "In the northern sky of Constantinople, a
128 sign was observed in the month of June" (Turtledove, 1982). The last aurora record was
129 observed in Constantinople for 744: "In the northern sky, a sign seemed this year, and
130 dust fell in several places" (Turtledove, 1982; Neuhäuser and Neuhäuser, 2015).

131 Harrak (1999) listed two aurorae records observed near Amida in the early 770s
132 based on the Chronicle of Zuqnin. In the Chronicle of Zuqnin, the first observation was
133 recorded in 771/772, Amida (Turkey): "Another sign was seen in the northern side, and its
134 view gave evidence about the menace of God against us. It appeared at reaping time,
135 while wrapping the whole northern side of the sky from west to east end. It was look like
136 a green sceptre, a red one, a yellow one, and a black one. It was ascending from the
137 ground and changing into 70 shapes, while one sceptre was emerging and another
138 disappearing". The second observation was recorded in the Chronicle of Zuqnin in 773,
139 Amida (Turkey): "In the month of June, on a Friday, another sign that was seen a year
140 ago in the northern region was appeared again this year. It was on Fridays that it used to
141 appear during these three consecutive years, stretching itself out from the eastern side to
142 the western side. The sign would change into many shapes in such a way that as soon as

143 a green ray vanished, a red one would appear, and as soon as the yellow one vanished,
144 a green would appear, and as soon as this one vanished, a black one would appear"
145 (Harbak, 1999; Neuhäuser and Neuhäuser, 2015). These two observations listed by
146 Harbak (1999) and Neuhäuser and Neuhäuser (2015) based on the Chronicle of Zuqnin
147 were also cited by Dall'Olmo (1979) according to the *Chronique de Denys de Tell-Mahré*
148 (Chabot, 1895) with different dating. In Constantinople, another aurora observation was
149 recorded in 988: "A luminous star and fiery pillars seen in the northern region of the sky
150 for some nights. They frightened the people who saw them." (Dall'Olmo, 1979).

151 Matthew of Edessa, who wrote a chronicle, described the events that occurred
152 between the years 952 and 1136, and reported four aurora observations around the year
153 1100 (Andreasyan, 2000). Matthew of Edessa reported the first aurora observation in the
154 Armenian year 546 (25.02.1097–24.02.1098): "In this year, an odd and horrible signs were
155 observed in the the northern side of the sky. No one had ever seen such an amazing
156 omen so far. In the month of November, the sky kindled and reddened though the air was
157 clear and quiet. The bloody sky was covered with stacks as if clustered on top of one
158 another becoming colorful. The stacks were set to slip through in an easterly direction,
159 dispersed after having gathered, and enveloped the large amount of the sky. Then, the
160 dark redness such an amazing degree reached up to the middle of the sky vault. The
161 savants and sages interpreted this phenomenon that, it was a sign of bloodshed. Actually,
162 terrible events and disasters we included as a short story in our book were soon to be
163 fulfilled."

164 Krey (1921) described an aurora observation during the siege of Antioch on the
165 account of eyewitnesses and participants in the first crusade: "A great earthquake
166 occurred on the third day before the Kalends of January (30 December 1097), and a very

167 fabulous sign was noticed in the sky. Northern part of the sky was so red that it appeared
168 as if sun rose to inform the day in the first sight of the night". This observation was also
169 described by Baldwin (1969): "There was an earthquake on December 30th, and a
170 frightening display of the aurora borealis next evening, and in this way God chastised his
171 army, so that we were intent upon the light which was rising in the darkness, yet the minds
172 of some were so blind and abandoned that they were recalled neither from luxury nor
173 robbery. At this time the Bishop prescribed a fast of three days and urged prayers and
174 alms, together with a procession, upon the people; moreover, he commanded the priests
175 to devote themselves to masses and prayers, the clerics to psalms". On the other hand,
176 another aurora was observed on 3 June 1098 at Antioch based on the Link (1962) catalog
177 as a fiery red sky (Silverman, 2006).

178 The Matthew of Edessa recorded second aurora observation in the Armenian year
179 547 (25.02.1098–24.02.1099). "In the same year, a new sign appeared in the northern
180 part of the sky. At the fourth hour of the night, the sky appeared more inflamed than before,
181 and a dark red color. This phenomenon lasted from the evening until the fourth hour of
182 the night. Such a terrible omen had never been seen so far. This omen raised upwards
183 gradually and covered the northern portion of the sky with the lines reaching the hills. All
184 stars took a fiery color. This phenomenon was an omen of rage and catastrophe"
185 (Andreasyan, 2000). Botley (1964) reported an auroral observation in Antioch as a blaze
186 of light girdled Pole. Link (1962) dated this observation on September 27, 1098.

187 In the Armenian year 548 (25.02.1099–24.02.1100) Matthew reported another
188 aurora observation: "A fiery sign of dark red color appeared in the sky in this year. This
189 omen heading from the northern to the eastern part of the sky appeared until the seventh
190 hour of the night and then became black. It was said that this phenomenon was a sign of

191 bloodshed of Christians. These predictions were truly realized. No favorable omen did not
192 appear since the day when the Franks began their expedition. All omens, however,
193 marked to realize the destruction, death, slaughter, famine and other diverse disasters”
194 (Andreasyan, 2000).

195 Matthew recorded the last aurora observation in the Armenian year 549
196 (25.02.1100–24.02.1101): “The northern part of the sky flushed red for the fourth time in
197 this year. The fiery red omen appeared more horrific than the previous one and
198 subsequently changed into black. This fourth appearance coincided with a lunar eclipse.
199 This phenomenon was a sign of the celestial wrath of God over the Christians as
200 previously said by the prophet Jeremiah with these words: “His wrath will blaze up from
201 the northern part of the sky. Indeed, several misfortunes occurred as we never could have
202 expected” (Andreasyan, 2000).

203 Dall'Olmo (1979) reported an aurora observation based on the Chronicle of Michael
204 the Syrian translated into French by Chabot (1968): “In the year 1108, a light like the
205 sunlight was seen in the middle of the night, and remained about three hours in Djihan
206 region near Adana”. Dall'Olmo (1979) was also cited 12 auroral records observed
207 probably in the Middle East from 745 to 1141 (Table 4) according to the Chronicle of
208 Michael the Syrian (Chabot, 1968).

209 On December 16, 1117, an aurora was recorded in Asia Minor (Link, 1962). In the
210 same date, two observations were also reported in the Middle East (Newton, 1972) and
211 in Palestine (Botley, 1964). These two observations could be same event. Link (1962)
212 described other observations in Asia Minor in the year 1119. This event might be the same
213 record observed in Armenia (Botley, 1964) given in Table 4.

214 Priest Grigor, who continued the Matthew's Chronicle and recorded events for the
215 years 1136/37-1162/63, added one aurora observation in about the year 1143. In the
216 Armenian year 592 (14.02.1143-13.02.1144) Priest Grigor described the aurora
217 observation: "On Holy Thursday (1 April 1143), an omen forming of a luminous column
218 appeared in the northern portion of the sky. This omen was visible for eight days. Three
219 sovereigns died after the appearance of this phenomenon" (Andreasyan, 2000).

220

221 **3. Results and Discussions**

222 The main purpose of this study is to present an aurora catalog for the Anatolia
223 during the medieval period. Twenty-three different historical aurora records are presented
224 during the medieval period in Anatolia (Table 2). Another aurora catalog containing 45
225 records collected from different sources is also given (Le Strange, 1890; Link, 1962;
226 Botley, 1964; Newton, 1972; Dall'Olmo, 1979; Silverman, 1998; Basurah, 2006) for the
227 Middle East region (Table 4). The aurorae were generally seen in the northern and eastern
228 part of the sky. The color of the aurora observations was red, green, yellow and black
229 depending on the height and relative concentrations of the nitrogen and oxygen
230 compounds in the atmosphere (Eather, 1980).

231 The aurora records strongly correlated to high solar activity (Siscoe, 1980) provide
232 some information about the Sun-Earth interaction as previously proved by Scafetta
233 (2012). They are the longest direct observational records available for studying solar and
234 space weather dynamics. Stronger solar dynamics were realized in aurorae with color
235 green-yellow-red as seen in 772 and 773 in Amida. Miyake et al. (2012) and Usoskin et
236 al. (2013) confirmed the 770s high solar events presenting ^{14}C measurements from the
237 annual rings of the cedar trees in Japan and inappropriate carbon cycle model in German

238 oak, respectively. The auroral records have also proven itself to be a valuable data source
239 for the investigation of the secular variation of solar activity. Paleomagnetic researchs
240 demonstrate that the recent dipole strength was nearly 50% weaker than it was 2500
241 years ago (Raspopov et al., 2003). Siscoe and Siebert (2002) indicated that the dipole
242 strength was 1.5 times as large as that of the present value. The position of the
243 geomagnetic latitude and dipole moment might be the reason of observing aurorae in
244 Anatolia so frequently. The average dipole moment for 750 and 1250 are $8.85 \cdot 10^{22} \text{ Am}^2$
245 and $8.90 \cdot 10^{22} \text{ Am}^2$ slightly higher than the present value of $7.78 \cdot 10^{22} \text{ Am}^2$ (Korte and
246 Constable, 2005; Gallet et al., 2005). According to the Kawai et al. (1965) the axis of
247 geomagnetic dipole could have inclined towards Asia at around the 11th-12th centuries. In
248 addition, the possibility of auroral occurrence at low latitudes could demonstrate changes
249 in the location of the North magnetic pole (Silverman, 1998).

250 The position of the magnetic poles is the most important factor defining whether
251 the aurora was observed at a geographic region. Palaeomagnetic data provides similar
252 longitude values (85° N , 115° E) for the north geomagnetic pole (Merrill and McElhinny,
253 1983). The positions of the north magnetic pole have changed from 10° N to 358° N in
254 longitude and between 79° E and 88° E in latitude over the past 2500 years (Ohno and
255 Hamano, 1992). During the interval of 1127–1129, the north geomagnetic pole was
256 located at a geographic latitude of 80° N , and geographic longitudes including East Asia
257 (Merrill and McElhinny, 1983; Constable et al., 2000). According to the Fukushima (1994),
258 the north magnetic pole was located at 81° N in the eastern hemisphere near East Asia
259 (100° E to 130° E) in the medieval period. The north geomagnetic pole of dipole axis

260 computed from the average spherical harmonic models were 84.8° N and 103.8° E in
261 1100 (Constable et al., 2000).

262 The geomagnetic latitude of Amida (Turkey) in the late 8th century to be about 50.1°
263 N (Neuhäuser and Neuhäuser, 2015) based on the Holocene geomagnetic field (Nilsson
264 et al., 2014) and 45° N (Hayakawa et al., 2017) based on the location of the North
265 Geomagnetic Pole over the past 2000 years (Merrill and McElhinny, 1983). According to
266 the Silverman (2006), the geomagnetic latitude of Edessa and Antioch was 41° N and 40°
267 N, respectively. Strong geomagnetic storms, indicating strong solar activity around 770
268 and 1100 should have been exist in Amida (45° N), Edessa (41° N) and Antioch (40°).

269 This study could also be significant constraints for exploration of solar activity on
270 Earth's atmosphere and climate during the historical periods previously proved by Bard
271 and Frank (2006). According to the Bard and Frank (2006) solar fluctuations caused
272 climatic changes called Medieval Warm Period (900–1400). The Maunder Minimum
273 (1645-1715) is depicted by a solar activity reduction, as well as a sunspots scarcity. The
274 Medieval Climate Anomaly characterizing by warmer and drier climate conditions
275 generally related to reasonably prolonged solar activity during the 12th and 13th centuries
276 (Jirikowic and Damon, 1994). Damon and Jirikowic (1992) estimated that the rise of global
277 temperature maxima stays below 0.8°C and anomalously high temperatures pursue
278 during the 12th and 13th centuries. Sharma (2002) revisited the issue and proposed that
279 very large solar variations have modulated climate over the past 200 millennia. Gallet et
280 al. (2006) demonstrated that fluctuations in the geomagnetic field might trigger significant
281 climate change impacting on some major societal events in the Middle East at longer time.
282 Also, climate change was a significant component to indicate the Byzantium socio-

283 economic instability during the Medieval Climate Anomaly. The fall of Constantinople in
284 AD 1204 coincides with a lowest Auroral acitivity in a moderately wet climate condition.
285 The moderately wet climate condition and high aurora activity around 1100 might be more
286 likely to cause the socio-economic growth in Anatolia. Xoplaki et al. (2016) examine the
287 relationship between the climate change and socio-economic development in Byzantine
288 Anatolia. An inverse relationship amidst the aurora records, severe winter and famine is
289 estimated during the years of 1100 in Anatolia. The high aurora activity could be reason
290 of temperature rise during the medieval period in Anatolia. A new low sunspot number
291 and lower aurora activity, which occurring in the period between 2014 and 2025 (Li et al.,
292 2018), might have led to a temporary change in natural environment influencing the
293 general public's attitudes and socio-economic factors. Also, resource scarcity and
294 disparities could also lead to social tensions in the communities in the future.

295 Haldon et al. (2014) subdivided Medieval into four climatic phases as dry (270-
296 540), very wet (540-750), moderately dry (750-950) and moderately wet (950-1400)
297 depending on archaeological, environmental, climate, high resolution pollen and stable
298 isotope data from sites in central and northwestern Turkey. However, this subdivision
299 should be revised as dry (0-560), very wet (560-725), moderately dry (725-990) and
300 moderately wet (990-1400) as given in Table 5 by using Anatolian and Middle Eastern
301 aurora observations besides historical-climatological data. Affective cold winter, wet
302 climate conditions, drought and famine could be occurred for Asia Minor and Middle East
303 region during 990-1400. It seems that the relatively high auroral activity during the years
304 around 1100 both in Anatolia and Middle East indicates that solar activity must have been
305 intense rather than moderate causing the climate warmer (Fig. 2). In this period, Islamic
306 world was converted into an enlightened center for science, education, medicine, and

307 philosophy as previously stated by Hamilton (1982). An important increase in agricultural
308 production and population seems to have occurred in Anatolia after the year of 1100
309 where the aurora observations are intense (Fig. 2). Vaquero and Trigo (2012) stated the
310 period from 1095 to 1204 as an average solar cycle length. Vaquero et al. (1997) found a
311 250-year cycle in naked eye sunspot observations related to intense solar activity at
312 around 1100 comparing with aurora events being observed at mid-latitudes during the
313 Medieval Climate Anomaly (Willis and Stephenson, 2001) and historical documents.
314 Miyahara et al. (2008) revealed that the impact of solar variations on climate change is
315 permanent investigating the sun-climate relationship using the ^{14}C content in tree-rings
316 during the Maunder Minimum and the Medieval Maximum Period. Bekli et al. (2017)
317 demonstrated that the naked-eye sun spot observations from 974 to 1278 and aurora
318 records from 965 to 1273 show multiple unusual peaks related to the high solar activity
319 at latitudes below 45° N by using Chinese and Korean historical sources. The high aurora
320 activity events associated with great magnetic storms occurred around the maximum
321 phase of solar cycles rather than around the minimum (Kataoka et al., 2017).

322 In the medieval period, the people thought that the aurora was a sign of anger of
323 God, menace, threat, apocalyptic, doomsday, misfortunes, war, slaughter and blodshed.
324 Little (2007) described an aurora observation record in Constantinople at 396: "All people
325 stacked to the church, and the place could not receive huge mass. But after that great
326 tribulation, when God had accredited His word, the cloud began to diminish and at last
327 disappeared. The people, freed from fear for a while, again heard that they must migrate,
328 because the whole city would be destroyed on the next Sabbath. The whole people left

329 the city with the Emperor; no one remained in his house. The city was saved. What shall
330 we say? adds Augustine. Was this the anger of God or rather His mercy”?

331 In the Chronicle of Zuqnin, an aurora observation recorded in 772, Amida (Turkey)
332 was described: “Another sign was seen in the northern side, and its view gave evidence
333 about the menace of God against us. For the intelligent person the sign indicated menace.
334 Many people said many things about it; some said it announced bloodshed, and others
335 said other things. But who knows the deeds of the Lord”?

336 Matthew of Edessa described the aurora phenomenon as a sign of rage,
337 catastrophe, and celestial wrath of God over the Christians and bloodshed of Christians.
338 Matthew of Edessa reported: “These predictions were truly realized. No favorable omen
339 did not appear since the day when the Franks began their expedition. All omens noticed
340 to realize the destruction, death, slaughter, famine and other diverse disasters”
341 (Andreasyan, 2000).

342

343 **4. Conclusions**

344 This study establishing the strong solar activity during medieval period reports the
345 aurora observations recorded both in Anatolia and Middle East region integrating
346 historical-climatological data. The following conclusions can be summarized as follows:

347 1. Historical Anatolian Aurora catalog (hAAc) containing 23 different aurora records
348 provide important information on variations in the geomagnetic field and auroral
349 activity during medieval period.

350 2. In Anatolia and Middle East, there was a relatively high auroral activity during the
351 years around 1100 is quite consistent with the naked-eye sunspot observations
352 related to solar activity as stated by Vaquero et al. (1997) and Bekli et al. (2017).

3. The historical Anatolian Aurora catalog exceptionally promote that there is a remarkable correlation between the past solar activity and aurora activity.
4. The solar activity, intensity of dipole moment and position of the geomagnetic pole might be the most important factors observing aurorae in Anatolia and Middle East regions during medieval period.
5. In the Medieval period, four climatic phases portrayed by Haldon et al. (2014) is revised as dry (0-560), very wet (560-725), moderately dry (725-990) and moderately wet (990-1400) depending on aurora observations besides historical-climatological data.
6. People in medieval Anatolia were believed that the aurora was a sign of celestial wrath of God, menace, threat, apocalyptic, doomsday, misfortunes, war, slaughter, rage, catastrophe and bloodshed.
7. The high and low auroral events associated with solar activity variations provide substantial use of knowledge to design and alleviate the space weather hazards in future.

5. Acknowledgements

I would like to thank Elif KARSLI (KTU), Alam KHAN (GU), Dr. José Valentin BAGESTON and anonymous referees for their thorough critical and constructive comments. The author is grateful to Dr. Igo PAULINO for his advice to improve the quality of this manuscript.

376 **6. References**

377 Andreasyan, H.D.: Urfalı Mateos vekayinamesi (952-1136) ve Papaz Grigor'un

378 zeyli (1136-1162), Türk Tarih Kurumu, Ankara (in Turkish). 2000.

379 Baldwin, M.W.: A History of the Crusades: The First Hundred Years, University of

380 Pennsylvania Press, 1969.

381 Bard, E. and Frank, M.: Climate change and solar variability: What's new under the

382 sun, Earth and Planetary Science Letters, 248(1), 1-14. 2006

383 Basurah, H. M.: Records of aurora in the Islamic chronicles during 9th–16th

384 centuries. Journal of Atmospheric and Solar-Terrestrial Physics, 68(8), 937-941, 2006.

385 Bekli, M.R., Zougab, N., Belabbas, A., Chadou, I.: Non-parametric Data Analysis

386 of Low-latitude Auroras and Naked-eye Sunspots in the Medieval Epoch, Solar Physics

387 292:52, 2017.

388 Botley, C.M.: Aurora in S.W. Asia 1097-1300. J. British Astr. Assoc. 74, 293-296,

389 1964.

390 Chabot, J.B.: Chronique de Michel le Syrien, (French translation accompanied by

391 the original Syrian text), vols. 1-4, photo-printed edition, Culture and Civilisation, Brussels.

392 1968.

393 Constable, C. G., Johnson, C. L., and Lund, S. P.: Global geomagnetic field models

394 for the past 3000 years: transient or permanent flux lobes? Phil. Trans. R. Soc. Lond., A

395 358, 991-1008, 2000.

396 Dall'Olmo, U.: An additional list of auroras from European sources from 450 to 1466

397 A.D., Journal of Geophysical Research, 84, 1525-1535, 1979.

398 Damon, P.E. and Jirikowic, J.L.: Solar Forcing of Global Climate Change?: In
399 Taylor, R.E., Long, A., and Kra, R. (eds.), *Four Decades of Radiocarbon*, Springer-Verlag,
400 New York, 117 pp., 1992.

401 Eather, R.H.: Majestic light: The Aurora in Science, History and the Arts, AGU,
402 Washington D.C., 1980.

403 Eddy, J.A.: The Maunder Minimum, *Science* 192, 1189–1202, 1976.

404 Fritz. H.: Verzeichnis beobachteter Polarlichter, C. Gerold's Sohns, Vienna, 1873.

405 Frobesius, J.N.: *Luminis Atque Aurorae Borealis Spectaculorum Recensio*
406 Chronologica, Helmstadt, Germany, 1739.

407 Gallet, Y., Genevey, A., and Fluteau, F.: Does Earth's magnetic field secular
408 variation control centennial climate change? *Earth and Planetary Science Letters*, 236(1),
409 339-347, 2005.

410 Gallet, Y., Genevey, A., Le Goff, M., Fluteau, F., and Eshraghi, S.A.: Possible
411 impact of the Earth's magnetic field on the history of ancient civilizations. *Earth and*
412 *Planetary Science Letters*, 246(1), 17-26, 2006.

413 Haldon, J., Roberts, N., Izdebski, A., Fleitmann, D., McCormick, M., Cassis, M.,
414 Doonan, O., Eastwood, W., Elton, H., Ladstätter, S., Manning, S., Newhard, J., Nicoll, K.,
415 Telelis, I., and Xoplaki, E.: The Climate and Environment of Byzantine Anatolia: Integrating
416 Science, History, and Archaeology, *Journal of Interdisciplinary History*, XLV (2), 113–161,
417 2014.

418 Hamilton, A.R.G.: *Studies on the civilization of Islam*. United States. Princeton
419 University Press, 1982.

420 Harrak, A.: The Chronicle of Zuqnīn, Parts III and IV: AD 488-775: Translated from
421 Syriac with Notes and Introduction, 36, 404p., PIMS, 1999.

422 Hayakawa, H., Tamazawa, H., Kawamura, A. D., and Isobe, H.: Records of sunspot
423 and aurora during CE 960–1279 in the Chinese chronicle of the Sòng dynasty. *Earth,*
424 *Planets and Space*, 67(1), 1-14, 2015.

425 Hayakawa, H., Mitsuma, Y., Fujiwara, Y., Kawamura, A. D., Kataoka, R., Ebihara,
426 Y., Kosaka, S., Iwahashi, K., Tamazawa, H., and Isobe, H.: The earliest drawings of
427 datable auroras and a two-tail comet from the Syriac Chronicle of Zūqnīn. *Publications of*
428 *the Astronomical Society of Japan*, 69(2), 2017.

429 Jirikowic, J.L., Damon, P.E.: The medieval solar activity maximum, *Climatic*
430 *Change* 26(2), 309–316, 1994.

431 Kataoka, R. and Iwahashi, K.: Inclined zenith aurora over Kyoto on 17 September
432 1770: Graphical evidence of extreme magnetic storm, *Space Weather*, 15, 1314-1320,
433 2017.

434 Kataoka, R., Isobe, H., Hayakawa, H., Tamazawa, H., Kawamura, A.D., Miyahara,
435 H., Iwahashi, K., Yamamoto, K., Takei, M., Terashima, T., Suzuki, H., Fujiwara, Y.,
436 Nakamura, T.: Historical space weather monitoring of prolonged aurora activities in Japan
437 and in China, *Space Weather*, 15, 392-402, 2017.

438 Kawai, N., Hirooka, K. and Sasajima, S.: Counterclockwise rotation of the
439 geomagnetic dipole axis revealed in the world-wide archaeo-secular variations, *Proc.*
440 *Japan Acad.*, 41, 398-403, 1965.

441 Keimatsu, M.: A chronology of aurorae and sunspots observed in China, Korea and
442 Japan, *Ann. Sci.*, 13, 1-32, 1976.

443 Korte, M., and Constable, C.G.: The geomagnetic dipole moment over the last 7000
444 years-new results from a global model. *Earth and Planetary Science Letters*, 236(1), 348-
445 358, 2005.

446 Korte, M. and Stolze, S.: Variations in mid-latitude auroral activity during the
447 Holocene, *Archaeometry*, 58 (1), 159-176, 2016.

448 Krey, A.C.: *The First Crusade: The Accounts of Eyewitnesses and Participants*,
449 Princeton, 139-142, 1921.

450 Krivsky, L., and Pejml, K.: Solar activity aurorae and climate in Central Europe in
451 the last 1000 years. *Bulletin of the Astronomical Institute of the Czechoslovak Academy*
452 of Sciences No 75, 1988.

453 Le Strange, G.: *Palestine under the Moslems*. Houghton, Mifflin and Company,
454 Boston and New York, 1890.

455 Li, F.Y., Kong, D.F., Xie, J.L., Xiang, N.B., Xu, J.C.: Solar cycle characteristics and
456 their application in the prediction of cycle 25. *Journal of Atmospheric and Solar-Terrestrial*
457 *Physics*, 181, 110-115, 2018.

458 Link, F.: *Observations et catalogue des aurores boréales apparues en Occident*
459 *de-626 à 1600*. *Geofys. Sb.* X, 297–392, 1962.

460 Little, L.K.: *Plague and the end of antiquity: the pandemic of 541-750*. Cambridge
461 University Press, UK, 2007.

462 Lovering, J.: *On the periodicity of the aurora Borealis*, *Mem. Amer. Acad. Arts Sci.*,
463 X., 1868.

464 Mairan, J.J.: *Traite physique et historique de l'aurore borale*. Paris, 1733.

465 Mairan, J.J.: de Ort, *Traite Physique et Historique de l'Aurore Boreale*, Imprimerie
466 Royale, Paris, 1754.

467 Matsushita, S.: *Ancient aurorae seen in Japan*, *J. Geophys. Res.*, 61, 297-302,
468 1956.

469 Merrill, R.T. and McElhinny, M.W.: *The Earth's Magnetic Field: Its History, Origin*
470 and Planetary Perspective, Academic Press, London, 1983.

471 Miyahara, H., Yokoyama, Y., Masuda, K.: Possible link between multi-decadal
472 climate cycles and periodic reversals of solar magnetic field polarity, *Earth and Planetary*
473 *Science Letters*, 272, 290-295, 2008.

474 Miyake, F., Nagaya, K., Masuda, K., and Nakamura, T.: A signature of cosmic-ray
475 increase in AD 774-775 from tree rings in Japan, *Natura* 486 (7402), 240, 2012.

476 Nakazawa, Y., Okada, T. and Shiokawa, K.: Understanding the "SEKKI"
477 phenomena in Japanese historical literatures based on the modern science of low-latitude
478 aurora. *Earth, planets and space*, 56(12), e41-e44, 2004.

479 Neuhäuser, R. and Neuhäuser, D.L.: Solar activity around AD 775 from aurorae
480 and radiocarbon. *Astronomische Nachrichten*, 336, 225–248, 2015.

481 Newton, R.R.: *Medieval Chronicles and the Rotation of the Earth*, the Johns
482 Hopkins University Press, Baltimore, 1972.

483 Nilsson, A., Holme, R., Korte, M., Suttie, N. and Hill, M.: Reconstructing Holocene
484 geomagnetic field variation: new methods, models and implications. - *Geophysical Journal*
485 *International*, 198(1), 229-248, 2014.

486 Pang, K.D., and Yau, K.K.: Ancient observations link changes in Sun's brightness
487 and Earth's climate. *Eos, Transactions American Geophysical Union*, 83(43), 481-490,
488 2002.

489 Russell, K.W.: The earthquake chronology of Palestine and northwest Arabia from
490 the 2nd through the mid-8th century AD. *Bulletin of the American Schools of Oriental*
491 *Research*, 37-59, 1985.

492 Scafetta, N.: A shared frequency set between the historical mid-latitude aurora
493 records and the global surface temperature. *Journal of Atmospheric and Solar–*
494 *Terrestrial Physics* 74, 145–163, 2012.

495 Scafetta, N., and Willson, R.C.: Planetary harmonics in the historical Hungarian
496 aurora record (1523–1960). *Planetary and Space Science*, 78, 38-44, 2013

497 Schonning, G.: Nordlyset Aelde. *Skrift. Kiobenh. Selsk.* 8, 1760.

498 Schove, D.J.: Sunspot epochs 188 A. D. to 1610 A. D, *Popular Astronomy*, 56, 247–
499 251, 1948.

500 Schove D.J. and Ho P.Y.: Chinese aurorae: AD 1048-1070, *J. British. Astr. Soc.*
501 69, 295-304, 1959.

502 Schröder, W.: On the Existence of the 11-Year Cycle in Solar and Auroral Activity
503 before and during the So-Called Maunder Minimum. *Journal of geomagnetism and*
504 *geoelectricity*, 44(2), 119-128, 1992.

505 Schröder, W.: Aurorae during the so-called Spoerer minimum. *Solar physics*,
506 151(1), 199-201, 1994.

507 Schröder, W.: A note on auroras during the so-called Maunder-Minimum. *Acta
508 Geodaetica et Geophysica Hungarica*, 39(4), 355-358, 2004.

509 Sharma, M.: Variations in solar magnetic activity during the last 200,000 years: is
510 there a Sun–climate connection? *Earth Planet. Sci. Lett.* 199, 459–472, 2002.

511 Shiokawa, K., Ogawa, T., and Kamide, Y.: Low-latitude auroras observed in Japan:
512 1999–2004, *Journal of Geophysical Research: Space Physics*, 110(A5), 2005.

513 Silverman, S.M.: Secular variation of the aurora for the past 500 years, *Reviews of
514 Geophysics*, 30, 333-351, 1992.

515 Silverman, S.: Early auroral observations, *Journal of Atmospheric and Solar–*
516 *Terrestrial Physics*, 60(10), 997-1006, 1998.

517 Silverman, S.M.: Comparison of the aurora of September 1/2, 1859 with other great
518 auroras. *Advances in Space Research*, 38(2), 136-144, 2006.

519 Siscoe, G.L.: Evidence in the auroral record for secular solar variability, *Geophys.*,
520 78,647-658, 1980.

521 Stephenson, F.R., Willis, D.M., Hayakawa, H., Ebihara, Y., Scott, C.J., Julia
522 Wilkinson, J., Matthew N. Wild, M.N.: Do the Chinese Astronomical Records Dated AD
523 776 January 12/13 Describe an Auroral Display or a Lunar Halo? A Critical Re-
524 examination, *Solar Physics*, 294: 36, 2019.

525 Stothers, R.B.: Solar cycle during classical antiquity, *Astron. Astrophys.*, 77, 121-
526 127, 1979.

527 Seydl, A.: A list of 402 northern lights observed in Bohemia, Moravia and Slovakia
528 from 1013 to 1951, *Geofys. Sb.*, 17, 159, 1954.

529 Trombley, F.R. and Watt, J.W.: *The chronicle of pseudo-Joshua the Stylite*, 32,
530 Liverpool University Press, UK, 2000.

531 Turtledove, H.: *The Chronicle of Theophanes: Anni Mundi 6095-6305 (AD 602-813)*. University of Pennsylvania Press, USA, 1982.

533 Usoskin, I.G., Kromer, B., Ludlow, F., Beer, J., Fiedrich, M., Kovaltsov, G.A.,
534 Solanki, S.K. and Wacker, L.: The AD 775 cosmic event revisited: the Sun is to blame,
535 *Astronomy & Astrophysics* 552, L3, 2013.

536 Vaquero, J.M., Gallego, M.C. and Garcia, J.A.: A 250-year cycle in naked-eye
537 observations of sunspots, *Geophysical Research Letters*, 29 (20), 1997,
538 doi:10.1029/2002GL014782, 2002.

539 Vaquero, J.M., Gallego, M.C., Barriendos, M., Rama, E., and Sanchez-Lorenzo,
540 A.: Francisco Salvá's auroral observations from Barcelona during 1780–1825. *Advances*
541 in Space Research, 45(11), 1388-1392, 2010.

542 Vaquero, J.M., Trigo, R.M.: A Note on Solar Cycle Length during the Medieval
543 Climate Anomaly, *Solar Physics* 279, 289-294, 2012.

544 Vazquez, M., Vaquero, J.M., Curto, J.J.: On the connection between solar activity
545 and low-latitude aurorae in the period 1715–1860. *Solar Physics*, 238, 405–420, 2006.

546 Willis, D. M., Stephenson, F. R.: Solar and auroral evidence for an intense recurrent
547 geomagnetic storm during December in AD 1128, *Annales Geophysicae*, 19, 289-302,
548 2001.

549 Wolf, R.: Nordlichtcatalog, *Vierteljahrsschro Naturforsch. Ges. Zuerich*, 2, 353,
550 1857.

551 Xoplaki, E., Fleitmann, D., Luterbacher, J., Wagner, S., Haldon, J.F., Zorita, E.,
552 Telelis, I., Toreti, A., Izdebski, A., The Medieval Climate Anomaly and Byzantium: a review
553 of the evidence on climatic fluctuations, economic performance and societal change,
554 *Quat. Sci. Rev.* 136, 229-252, 2016.

555

556

557

558

559

560

561

562

563 **TABLES CAPTIONS:**

564 **Table 1.** Historical Aurora catalogs compiled by different authors.

565 **Table 2.** Historical Anatolian Aurora catalogs during medieval period compiled in this
566 study.

567 **Table 3.** The number of historical aurora records observed in Anatolia.

568 **Table 4.** Ancient aurora observations recorded in Middle East region during medieval
569 period.

570 **Table 5.** Summary of Ancient climate change based on the aurora observations and
571 meterological data in Anatolia during medieval period.

572

573 **FIGURE CAPTIONS:**

574 **Figure 1.** The location map of the historical Anatolian records during medieval period.
575 Byzantine Empire map: <https://www.britannica.com/place/Byzantine-Empire>,
576 last access: 12 November 2019.

577 **Figure 2.** Comparison of historical aurora observations with climate change and
578 climatological data in Anatolia and neigbouring regions. The upper panel shows
579 the historical data climatic subdivisions, the middle panel shows the aurora
580 observations in Anatolia and Middle East regions and the lower panel shows the
581 land use and population in Anatolia. Historical-climatological and land use data
582 are taken from Haldon et al. (2014).

583 **Figure 3.** The number of aurorae records per century observed in the Anatolia and in
584 Middle East.

585

586 **TABLES**587 **Table 1.**

Sources	Number of Observations	Region	Period
Link, 1962	385	Europe	626 B.C. to 1600 A.D.
Link, 1964	209	Europe	1600-1700 A.D.
Stothers, 1979	67	Greece and Italy	480 B.C. to 333 A.D.
Newton, 1972	65	Europe	450-1263 A.D.
Dall'Olmo, 1979	61	Europe	450-1461 A.D.
Keimatsu, 1976	260	China, Korea, and Japan	687 B.C. to 1600 A.D.
Matsushita, 1956	18	Japan	620-1909 A.D.
Basurah, 2006	18	Arabia, North Africa, Spain	800-1600 A.D.
This Study	23	Anatolia	1-1453 A.D.
This Study	45	Middle East	1-1453 A.D.

588

589

590

591

Table 2.

#	Date	Location	Description	References
1	333	Constantinople	Sky fire.	Stothers, 1979
2	396	Constantinople	A fiery cloud was seen from the East.	Little, 2007
3	22 Ağustos 502, Thursday	Edessa	A great fire appeared to us blazing in the northern quarter the whole night.	Link, 1962 Botley, 1964 Hayakawa et al., 2017
4	633	Constantinople	A bloody spear and a light of the sky were sighted for nearly the all night.	Dall'Olmo, 1979
5	668	Constantinople	There was a sign appeared in the sky in the same winter.	Turtledove, 1982
6	675	Constantinople	In this year, a sign was seen in the sky on a Sabbath day.	Turtledove, 1982
7	734	Constantinople	There was a sign in the sky which shone like a burning brand.	Turtledove, 1982
8	June 743	Constantinople	In June, a sign appeared on the northern sky.	Turtledove, 1982
9	744	Constantinople	This year, a sign appeared on the northern sky.	Turtledove, 1982
10	771/772	Amida	Another sign appeared in the northern side.	Harrak, 1999 Hayakawa et al., 2017
11	June 773, Friday	Amida	The sign that was seen a year ago in the northern region was seen again in this year, in the month of June, on a Friday.	Neuhäuser and Neuhäuser, 2015 Harrak, 1999
12	988	Constantinople	Frightened fiery pillars seen in the northern region for some nights.	Dall'Olmo, 1979
13	21 November 1097, Monday	Edessa	A frightful and strange omen appeared in the northern portion of the sky.	Link, 1962 Silverman, 2006 Andreasyan, 2000 Botley, 1964
14	30 December 1097, Friday	Antioch	A very fabulous sign was watched in the sky.	Silverman, 1998 Baldwin, 1969 Botley 1964 Kery, 1921

15	3 June 1098, Saturday	Antioch	A fiery red sky was seen.	Link, 1962 Silverman, 2006 Botley 1964
----	-----------------------	---------	---------------------------	--

593
594

Table 2 continued.

16	27 September 1098, Monday (10:00)	Edessa	A second omen appeared in the northern portion of the sky at the fourth hour of the night the sky flared up more than it had before and turned a deep red color.	Andreasyan, 2000 Link, 1962
17	27 September 1098, Monday	Antioch	Blaze of light girdled Pole.	Link, 1962 Botley, 1964
18	1099	Edessa	A fire-like omen of a very deep red color appeared in the sky.	Andreasyan, 2000 Link, 1962 Silverman, 2006
19	18 November 1100, Sunday	Edessa	The northern portion of the sky reddened, appearing more frightful and wondrous than the previous phenomenon.	Andreasyan, 2000 Silverman, 2006 Link, 1962
20	1108	Adana	A light like the sunlight was seen in the middle of the night and remained about three hours in Djihan.	Chabot, 1968 Dall'Olmo, 1979
21	16 December 1117, Monday	Asia Minor		Link, 1962 Newton, 1972
22	1119	Asia Minor		Link, 1962
23	1 April 1143, Thursday	Edessa	A sign appeared in the sky from the north in the form of a luminous column	Andreasyan, 2000

595
596
597
598
599

600 **Table 3.**

#	City	Latitude [Degree, N]	Longitude [Degree, E]	Numbers of observation
1	Constantinople	41.03	28.99	9
2	Edessa	37.17	38.79	6
3	Amida	37.93	40.21	2
4	Antioch	36.2	36.16	3
5	Adana	36.99	35.34	1
6	Asia Minor	39.93	32.85	2
Total				23

601

602

603

604

605

606

607

608

Table 4.

#	Date	Place	Descriptions	References
1	65	Jerusalem		Botley, 1964
2	66	Jerusalem		Botley, 1964
3	400	Byzantium		Link, 1962
4	402	Byzantium		Link, 1962
5	473	Byzantium		Link, 1962
6	474	Byzantium		Link, 1962
7	502 Agust 22	Palestine	A great fire appeared to us blazing in the northern quarter the whole night	Botley, 1964
8	743 June	Syria	A mighty sign appeared in the heavens like columns of fire blazing in June	Chabot, 1968
9	743 September	Middle East	Another sign appeared in September like a flame of fire and spread from the East to the West	Cook, 2001
10	745 January	Middle East	In the middle of the sky, a large column of fire appeared during the night	Chabot, 1968
11	793 May 11-17	Iraq	There occurred a violent wind and overshadowing of the heavens and a redness in the sky, on the night of Sunday	Basworth, 1989
12	817 October 29	Iraq	A reddish glow appeared in the sky and stayed until late at night like a two red columns	Basurah, 2006
13	840 September 24	Middle East	A fiery cloud appeared in the northern part of the sky, moving from east to West.	Dall'Olmo, 1979
14	931 November 9	Baghdad	An intense red glow appeared in the city of Al-Salam (Baghdad)	Basurah, 2006
15	939 October 17	Syria	An intense red glow appeared in the atmosphere coming from North and West	Basurah, 2006
16	1050 Agust 5	Middle East	Through which light shone out broad and glittering, and then became extinguished	Le Strange, 1890
17	1097	Palestine		Botley, 1964
18	1100	Palestine		Botley, 1964
19	1102	Palestine		Botley, 1964

20	1106	Syria		Botley, 1964
21	1110	Syria		Botley, 1964
22	1117 December 16	Palestine		Newton, 1972 Botley, 1964
23	1119	Armenia		Botley, 1964
24	1121 May, Monday	Syria	There appeared a full arc, which had not been observed for many generations	Botley, 1964
25	1129 January	Middle East	A fire appeared in the northern region. A sort of pillar was stretched toward the south.	Dall'Olmo, 1979
26	1129 March	Middle East	A fire appeared in the northern region. A sort of pillar was stretched toward the south.	Dall'Olmo, 1979

Table 4. continued

27	1129 April	Middle East	A fire appeared in the northern region. A sort of pillar was stretched toward the south.	Dall'Olmo, 1979
28	1130 November	Middle East	A burning fire was seen in the northern region	Dall'Olmo, 1979
29	1135 July 21	Middle East	A light like a torch moved from east to West. The light of the moon and of the stars was obscured. A frightful noise followed	Dall'Olmo, 1979
30	1138 October	Syria	A red sign was seen in the northern part of the sky	Botley, 1964
31	1140 June 22	Syria	Red lances were seen in the northern region.	Botley, 1964
32	1141 August	Middle East	Rays of fire were observed in the northern region.	Dall'Olmo, 1979
33	1141 September	Syria	A brightness as bright as the sun broke out in the northeast. It shone as if the sky were on fire.	Botley, 1964
34	1149	Syria		Botley, 1964
35	1150	Palestine		Botley, 1964
36	1176 September 6 - October 5	Syria	An intense red light appeared in the sky from the East	Basurah, 2006
	1179 May 7	Syria	The sky became cloudy and pillars of fire appeared at the horizon	Basurah, 2006
38	1182	Byzantium		Link, 1962

39	1187 July	Tiberias, Israel		Botley, 1964
40	1223 October 26	Syria	We saw from Bani Helal Mountain (toward the North direction) a hugelight over Gassune; we thought that Damascus was on fire.	Basurah, 2006
41	1264 July 20–30	Syria	Bright glowing columns appeared toward North-West	Basurah, 2006
42	1370 November 27	Jerusalem	A great reddish glow appeared in the sky of Jerusalem	Basurah, 2006
43	1370 November 27	Damascus	A great reddish glow appeared in the sky of Damascus	Basurah, 2006
44	1370 November 27	Homs	A great reddish glow appeared in the sky of Homs	Basurah, 2006
45	1370 November 27	Aleppo	A great reddish glow appeared in the sky of Aleppo	Basurah, 2006

612

613

614 **Table 5.**

Medieval Period		Climate
Haldon et al. (2014)	This Study	
270-540	0-560	Dry
540-750	560-725	Very wet
750-950	725-990	Moderately dry
950-1400	990-1400	Moderately wet

615

616

617

618

619

620

621

622

623

624

625

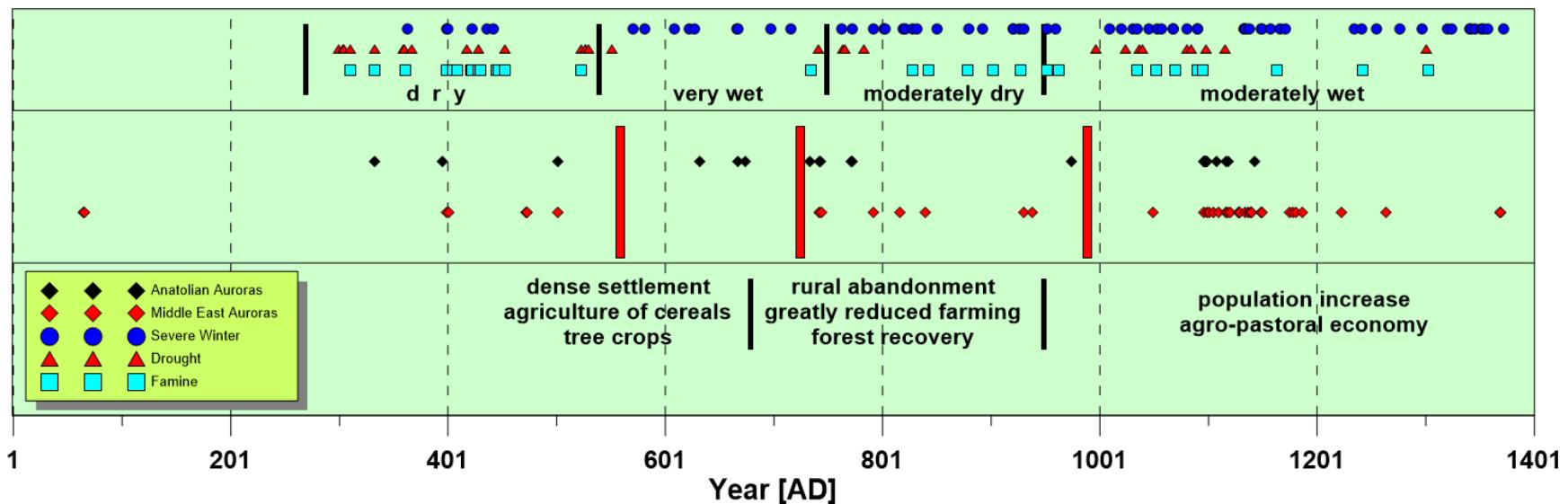
626

627

628

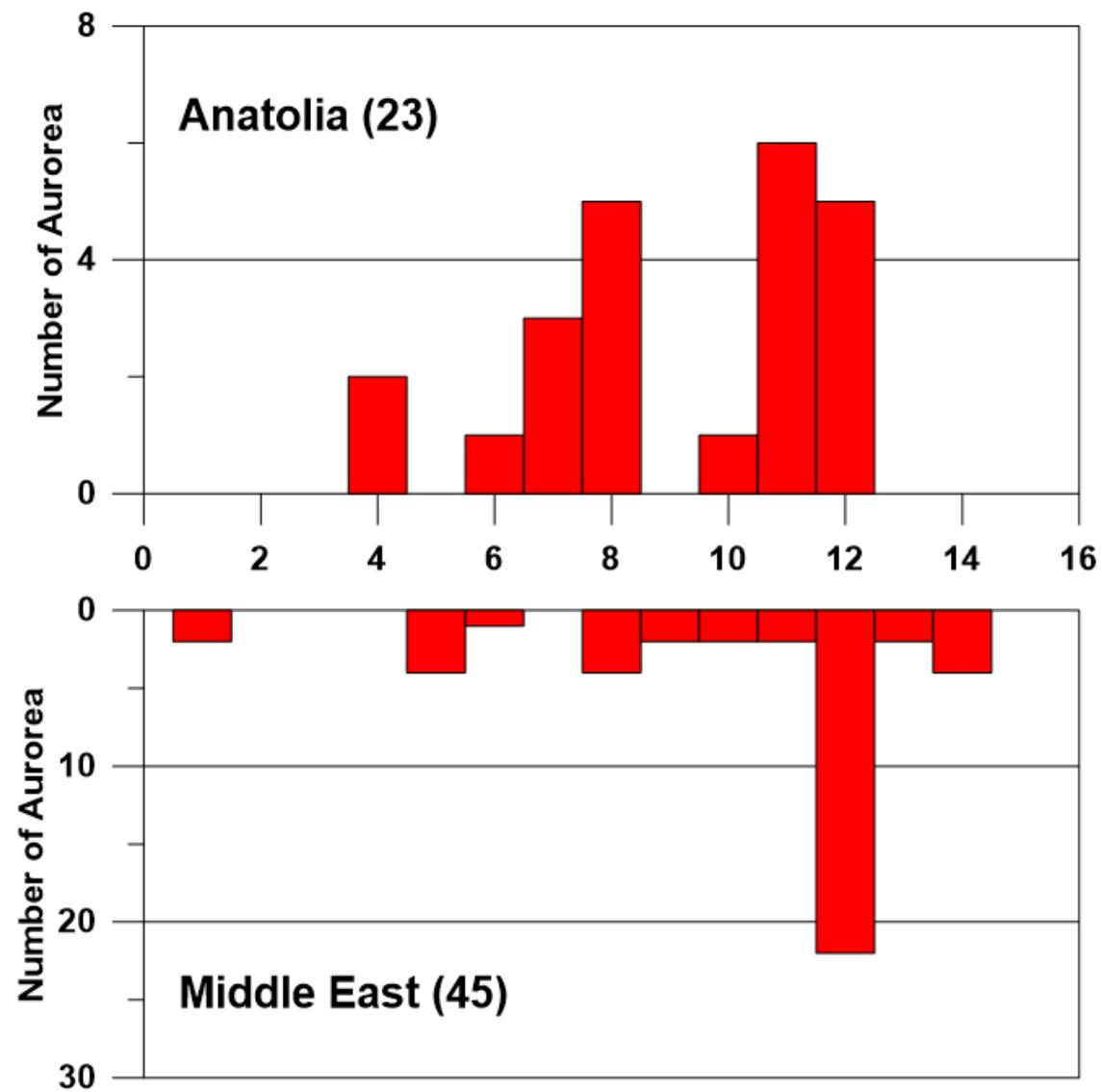
629

630


631 **Figures**

632

633 **Figure 1.**


634

635

636 **Figure 2.**

637

638

639 **Figure 3.**