

Historical Aurora Borealis Observations in Anatolia during medieval period (AD1453): Implications for the past solar activity

Nafiz MADEN^{a,1}

^a Department of Geophysics, Gümüşhane University, TR-29100 Gümüşhane, Turkey

Abstract: In this paper, it is reviewed the relationships between the aurora observations, past solar activity and climatic change in Anatolia during medieval period. This purpose, it is presented two historical aurora catalogs for Anatolia and Middle regions at various dates **by** using historical texts, chronicles and other auroral records. The available catalogs in literature are covered records observed in the Europe, China, Russia and Middle East. There is no study dealing only with the historical aurora observations recorded in Anatolia. The data of the catalog support that there is a considerable relationship between the aurora activity and past strong solar activity. **High** aurora activity during the years around 1100 in Anatolia and Middle East is quite consistent with the past solar variability and planetary climatic changes drastically acting on the economy and human events.

Keywords: Historical aurora records; Solar activity; Climatic changes; Anatolia.

¹ Corresponding author. Tel.: +90 456 233 74 25; fax: +90 456 233 74 27. E-mail: nmaden@gumushane.edu.tr (N. MADEN).

23 **1. Introduction**

24 A number of researchers presented the low and middle-latitude aurora catalogs
25 (Table 1) from Europe (Mairan, 1733; Frobessius 1739; Fritz, 1873; Schove, 1948; Link,
26 1962; Dall'Olmo, 1979; Stothers, 1979; Krivsky and Pejml, 1988; Vaquero et al., 2010;
27 Scafetta and Willson, 2013), Arabic countries (Basurah, 2006), Japan (Matsushita, 1956;
28 Nakazawa et al., 2004; **Kataoka et al., 2017**), and China (Schove and Ho, 1959;
29 Keimatsu, 1976; Hayakawa et al., 2015; **Kataoka and Iwahashi, 2017**). Aurorae are the
30 most majestic luminous phenomenon observed in the sky. **The aurora observations**
31 **were described as “sign”, “a fiery shining sign”, “a very fabulous sign”, “red sky”, “a fiery**
32 **red sky”, “sky fire”, “a great fire”, “a fiery cloud”, “a frightful and strange omen”, “a fire-like**
33 **omen”, “a bloody spear light”, “blaze of light”, “a sunlight light”. The form of aurorae was**
34 **defined as “luminous column”.**

35 The historical aurora catalogs have been used to recognize the past solar
36 activities (Siscoe, 1980; Silverman, 1992; Schröder, 1992; Schröder 1994; Basurah,
37 2006; Vazquez et al., 2006; Hayakawa et al., 2015), Earth's climate change (Pang and
38 Yau, 2002; Schröder, 2004; Gallet et al., 2005; Bard and Frank, 2006; Scafetta, 2012)
39 and perception of human civilizations (Schröder, 2004; Gallet et al., 2006; Silverman,
40 2006). The state of the geomagnetic field and the form of magnetosphere extremely
41 control the location of auroral zone (Korte and Stulze, 2016). The visibility of the aurorae
42 at low latitudes is very scarce and closely connected with the strong geomagnetic
43 storms related to the high-speed solar wind or interplanetary transients (Eather, 1980;
44 Basurah, 2006; Vazquez et al., 2006).

45 Mairan (1733) presented that the first scientific monography covers a list of 229
46 historical aurorae during the period of 502-1731. In 1852, Wolf noticed that the aurorae

47 match with periods of high sunspot number, according to the historical aurora catalog
48 including more than 6300 records (Wolf, 1857). Fritz (1873), who listed 77 European
49 Aurora records during 1707-1708, published the historical auroral catalog and separated
50 auroral sightings into five categories based on the latitude and longitude (Schröder,
51 1994). Link (1962) published a useful aurora catalog seen in European countries based
52 on eight previous catalogs compiled by Frobessius (1739), Mairan (1754), Schonning
53 (1760), Boué (1856), Wolf (1857), Lovering (1868), Fritz (1873) and Seydl (1954).

54 Vaquero et al. (2010) declared a set of auroral observation of Francisco Salva
55 Campillo who recorded in Barcelona during 1780-1825. This catalog represents a
56 sudden drop in the number of annual auroral observations at about 1793 owing to the
57 secular minimum in solar activity (Vaquero et al., 2010). Scafetta and Willson (2013)
58 studied the historical Hungarian auroral records covering 438 years. They found that the
59 maxima of the auroral observations **comply with** the maxima in the sunspot records and
60 there is a positive correlation amidst the auroral records, the solar and climate activities.
61 Korte and Stolze (2016) showed that the intensity and tilt of the geomagnetic field and
62 high solar activity are closely related to the Aurora occurrence.

63 The available catalogs described above present a number of records covering
64 Europe, Japan, China, Russia and Middle East. There is no study dealing only with the
65 historical aurora observations recorded in Anatolia. Anatolia have not been studied until
66 now with respect to **historical-climatological data** and aurora observations. The goal of
67 this study is to compile a historical Anatolian **Aurora catalog (hAAc)** during medieval
68 period by scanning the available sources and catalogs in literature. The catalog could be
69 used to analyze the past solar activity and **earth** climatic changes impacting on the

70 economy and human events. This research may also contribute to the understanding of
71 public perception of the historical auroras.

72

73 **2. Historical Anatolian Aurora Catalog (hAAc) through medieval period**

74 It is propounded a historical aurora catalog observed only in Anatolia during
75 medieval period collected from Link (1962), Botley (1964), Baldwin (1969), Newton
76 (1972), Stothers (1979), Eather (1980), Melissinos, (1980), Silverman (1998), Dall'Olmo
77 (1979), Andreasyan (2000), Little (2007), Silverman (2006), Neuhäuser and Neuhäuser
78 (2015) resources. In this catalogue, 23 different historical aurora records observed in
79 Anatolia are presented during medieval period in Table 2. The location map of the
80 historical Anatolian observations is given in Figure 1. A number of Anatolian aurora
81 observations are summarized in Table 3. Another collected ancient aurora catalog
82 consisting 45 auroral observations is shown in Table 4 for the Middle East region during
83 the same period using Islamic historical texts, Arabic chronicles and other auroral
84 records given in Table 1. These two catalogues are plotted in Figure 2 and evaluated
85 altogether. The historical Anatolian and Middle East aurora records overlap through
86 medieval period especially between 1097 and 1129 years (Figure 3). Also, Chinese and
87 European aurora observations are in harmony with each other in this period (Siscoe,
88 1980).

89 According to the **study** by Neuhäuser and Neuhäuser (2015), five criteria are
90 implemented to perform the aurora catalogs as night-time (darkness, sunset, sunrise),
91 non-southern directions (northern, NE, NW, E-W, W-E), color (red, reddish, fiery, bloody,
92 green, black), dynamics (fire, fiery), and repetition. **One could decide whether an**
93 **observation is strong aurorae** by considering its color, brightness, dynamics, duration,

94 geomagnetic latitude. The observation is classified as potential (N=0), possible (N=1),
95 very possible (N=2), probable (N=3), very probable (N=4), or certain (N=5) according to
96 the criteria number (N) satisfied (Neuhäuser and Neuhäuser, 2015).

97 In Anatolia, the first auroral observation was done in Constantinople at 333
98 (Stothers, 1979). Stothers (1979) described these observations as a sky fire (N=1)
99 according to the works of Aurelius Victor (320-390), who was a historian and politician of
100 the Roman Empire. On the other hand, Eather (1980) described an Aurora observation
101 over Constantinople at about 360 BC during the siege on Byzantium by Philip of
102 Macedonia.

103 Little (2007) described an aurora observation record in Constantinople at 396: "A
104 fiery cloud was observed from the East while the city darkened. At first, it was small, but
105 later gradually grew and moved towards the city. At last, it terribly enlarged and poised
106 over the entire city. A terrifying flame appeared to hang down. All people stacked to the
107 church, and the place could not receive huge mass" (N=3).

108 According to the Link (1962) and [Hayakawa et al., 2017](#), an aurora appeared in
109 Asia Minor on 22 August 502, Thursday. This aurora was also observed both in Edessa
110 (Botley, 1964) and Palestine after an earthquake (Russell, 1985) based on to the
111 Chronicle of Joshua the Stylite and [Chronicle of Zuqnin](#). Joshua the Stylite described it:
112 "On the 22nd of August this year, on the night preceding Friday, a great fire appeared to
113 us blazing in the northern quarter the all night. It was believed that the whole earth was
114 going to be devastated that night by a fire storm. However, the mercy of our Lord
115 preserved us without damage" (N=3). This appearance of the aurora borealis was also
116 reported in Chronicon Edessenum without apocalyptic detail (Trombley and Watt, 2000).

117 According to the Historia Ecclesiastica of Ptolomeus Lucensis there was an
118 aurora sighting at a night of 633 in Constantinople (Dall'Olmo, 1979): "A bloody sign
119 appearing just at that time was sighted. A bloodstained spear and a sharp light were
120 observed on the sky for nearly all night" (N=4). Theophanes (758/760-817), a Byzantine
121 monk, theologian, and chronicler, reported an observation in 667 winter: "There was a
122 sign which appeared in the sky in the same winter" (N=1). Theophanes reported another
123 observation in 675-676: "This year a sign was seen in the sky on a Sabbath day" (N=1;
124 Turtledove, 1982).

125 Theophanes recorded three aurora events for 734, 743 June and 744 in
126 Constantinople. The first aurora observation was reported in 734: "A fiery sign shining
127 like a burning brand appeared in the sky in Constantinople" (N=2). The second aurora
128 observation was recorded by Theophanes in June of 743: "In the northern sky of
129 Constantinople, a sign was observed in the month of June" (N=1; Turtledove, 1982). The
130 last aurora record was observed in Constantinople for 744: "In the northern sky, a sign
131 seemed this year, and dust fell in several places" (N=1; Turtledove, 1982; Neuhäuser
132 and Neuhäuser, 2015).

133 The low-latitude aurorae of 772-773 are interesting, as being very close to the
134 extreme solar event of 774/775 (Miyake et al., 2012; Usoskin et al., 2013; Mekhldi et al.,
135 2015). Harrak (1999) listed two aurorae records observed near Amida in the early 770s
136 based on the Chronicle of Zuqnin. In the Chronicle of Zuqnin, the first observation was
137 recorded in 771/772, Amida (Turkey): "Another sign was seen in the northern side, and
138 its view gave evidence about the menace of God against us. It appeared at reaping time,
139 while wrapping the whole northern side of the sky from west to east end. It was look like
140 a green sceptre, a red one, a yellow one, and a black one. It was ascending from the

141 ground and changing into 70 shapes, while one sceptre was emerging and another
142 disappearing" (N=3). The second observation was recorded in the Chronicle of Zuqnin in
143 773, Amida (Turkey): "In the month of June, on a Friday, another sign that was seen a
144 year ago in the northern region was appeared again this year. It was on Fridays that it
145 used to appear during these three consecutive years, stretching itself out from the
146 eastern side to the western side. The sign would change into many shapes in such a
147 way that as soon as a green ray vanished, a red one would appear, and as soon as the
148 yellow one vanished, a green would appear, and as soon as this one vanished, a black
149 one would appear" (N=3; Harrak, 1999; Neuhäuser and Neuhäuser, 2015). These two
150 observations listed by Harrak (1999) and Neuhäuser and Neuhäuser (2015) based on
151 the Chronicle of Zuqnin were also cited by Dall'Olmo (1979) according to the Chronique
152 de Denys de Tell-Mahré (Chabot, 1895) with different dating. Mekhaldi et al. (2015)
153 indicated that these two extreme events (774/775) were five times greater than any
154 other recorded solar storms with instruments. In Constantinople, another aurora
155 observation was recorded in 988: "A luminous star and fiery pillars seen in the northern
156 region of the sky for some nights. They frightened the people who saw them." (N=3;
157 Dall'Olmo, 1979).

158 Matthew of Edessa, who wrote a chronicle, described the events that occurred
159 between the years 952 and 1136, and reported four aurora observations around the
160 year 1100 (Andreasyan, 2000). Matthew of Edessa reported the first aurora observation
161 in the Armenian year 546 (25.02.1097–24.02.1098): "In this year, an odd and horrible
162 signs were observed in the the northern side of the sky. No one had ever seen such an
163 amazing omen so far. In the month of November, the sky kindled and reddened though
164 the air was clear and quiet. The bloody sky was covered with stacks as if clustered on

165 top of one another becoming colorful. The stacks were set to slip through in an easterly
166 direction, dispersed after having gathered, and enveloped the large amount of the sky.
167 Then, the dark redness such an amazing degree reached up to the middle of the sky
168 vault. The savants and sages interpreted this phenomenon that, it was a sign of
169 bloodshed. Actually, terrible events and disasters we included as a short story in our
170 book were soon to be fulfilled." (N=3).

171 Krey (1921) described an aurora observation during the siege of Antioch on the
172 account of eyewitnesses and participants in the first crusade: "A great earthquake
173 occurred on the third day before the Kalends of January (30 December 1097), and a
174 very fabulous sign was noticed in the sky. Northern part of the sky was so red that it
175 appeared as if sun rose to inform the day in the first sight of the night" (N=3). This
176 observation was also described by Baldwin (1969): "There was an earthquake on
177 December 30th, and a frightening display of the aurora borealis next evening, and in this
178 way God chastised his army, so that we were intent upon the light which was rising in
179 the darkness, yet the minds of some were so blind and abandoned that they were
180 recalled neither from luxury nor robbery. At this time the Bishop prescribed a fast of
181 three days and urged prayers and alms, together with a procession, upon the people;
182 moreover, he commanded the priests to devote themselves to masses and prayers, the
183 clerics to psalms". On the other hand, another aurora was observed on 3 June 1098 at
184 Antioch based on the Link (1962) catalog as a fiery red sky (N=2; Silverman, 2006).

185 The Matthew of Edessa recorded second aurora observation in the Armenian
186 year 547 (25.02.1098–24.02.1099). "In the same year, a new sign appeared in the
187 northern part of the sky. At the fourth hour of the night, the sky appeared more inflamed
188 than before, and a dark red color. This phenomenon lasted from the evening until the

189 fourth hour of the night. Such a terrible omen had never been seen so far. This omen
190 raised upwards gradually and covered the northern portion of the sky with the lines
191 reaching the hills. All stars took a fiery color. This phenomenon was an omen of rage
192 and catastrophe" (N=4; Andreasyan, 2000). Botley (1964) reported an auroral
193 observation in Antioch as a blaze of light girdled Pole (N=1). Link (1962) dated this
194 observation on September 27, 1098.

195 In the Armenian year 548 (25.02.1099–24.02.1100) Matthew reported another
196 aurora observation: "A fiery sign of dark red color appeared in the sky in this year. This
197 omen heading from the northern to the eastern part of the sky appeared until the
198 seventh hour of the night and then became black. It was said that this phenomenon was
199 a sign of bloodshed of Christians. These predictions were truly realized. No favorable
200 omen did not appear since the day when the Franks began their expedition. All omens,
201 however, marked to realize the destruction, death, slaughter, famine and other diverse
202 disasters" (N=3; Andreasyan, 2000).

203 Matthew recorded the last aurora observation in the Armenian year 549
204 (25.02.1100–24.02.1101): "The northern part of the sky flushed red for the fourth time in
205 this year. The fiery red omen appeared more horrific than the previous one and
206 subsequently changed into black. This fourth appearance coincided with a lunar eclipse.
207 This phenomenon was a sign of the celestial wrath of God over the Christians as
208 previously said by the prophet Jeremiah with these words: "His wrath will blaze up from
209 the northern part of the sky. Indeed, several misfortunes occurred as we never could
210 have expected" (N=3; Andreasyan, 2000).

211 Dall'Olmo (1979) reported an aurora observation based on the Chronicle of
212 Michael the Syrian translated into French by Chabot (1968): "In the year 1108, a light

213 like the sunlight was seen in the middle of the night, and remained about three hours in
214 Djihan region near Adana" (N=2). Dall'Olmo (1979) was also cited 12 auroral records
215 observed probably in the Middle East from 745 to 1141 (Table 4) according to the
216 Chronicle of Michael the Syrian (Chabot, 1968).

217 On December 16, 1117, an aurora was recorded in Asia Minor (Link, 1962). In the
218 same date, two observations were also reported in the Middle East (Newton, 1972) and
219 in Palestine (Botley, 1964). These two observations could be same event. Link (1962)
220 described other observations in Asia Minor in the year 1119. This event might be the
221 same record observed in Armenia (Botley, 1964) given in Table 4.

222 Priest Grigor, who continued the Matthew's Chronicle and recorded events for the
223 years 1136/37-1162/63, added one aurora observation in about the year 1143. In the
224 Armenian year 592 (14.02.1143-13.02.1144) Priest Grigor described the aurora
225 observation: "On Holy Thursday (1 April 1143), an omen forming of a luminous column
226 appeared in the northern portion of the sky. This omen was visible for eight days. Three
227 sovereigns died after the appearance of this phenomenon" (N=3; Andreasyan, 2000).

228

229 **3. Results and Discussions**

230 The main purpose of this study is to present an aurora catalog for the Anatolia
231 during the medieval period. 23 different historical aurora records are presented during
232 the medieval period in Anatolia (Table 2). Another aurora catalog containing 45 records
233 collected from different sources is also given (Le Strange, 1890; Link, 1962; Botley,
234 1964; Newton, 1972; Dall'Olmo, 1979; Silverman, 1998; Basurah, 2006) for the Middle
235 East region (Table 4). The aurorae were generally seen in the northern and eastern part
236 of the sky. The color of the aurora observations were red, green, yellow and black

237 depending on the height and relative concentrations of the nitrogen and oxygen
238 compounds in the atmosphere (Eather, 1980). The number N sort out only the
239 probability that an event could be an aurora or not. The possibility of the aurora could be
240 decided by regarding its duration geomagnetic latitude, color, brightness and dynamics.
241 Aurorae observations with $N \geq 3$ tend to be true.

242 The aurora records strongly correlated to high solar activity (Siscoe, 1980)
243 provide some information about the Sun-Earth interaction as previously proved by
244 Scafetta (2012). They are the longest direct observational records available for studying
245 solar and space weather dynamics. Stronger solar dynamics were realized in aurorae
246 with color green-yellow-red as seen in 772 and 773 in Amida. Miyake et al. (2012) and
247 Usoskin et al. (2013) confirmed the 770s high solar events presenting ^{14}C
248 measurements from the annual rings of the cedar trees in Japan and inappropriate
249 carbon cycle model in German oak, respectively. The auroral records have also proven
250 itself to be a valuable data source for the investigation of the secular variation of solar
251 activity. Paleomagnetic researchs demonstrate that the recent dipole strength was
252 nearly 50% weaker than it was 2500 years ago (Raspopov et al., 2003). Siscoe and
253 Siebert (2002) indicated that the dipole strength was 1.5 times as large as that of the
254 present value. The long-term variation of the geomagnetic latitude and dipole moment
255 might be the reason of observing aurorae in Anatolia. The average dipole moment for
256 750 and 1250 are $8.85 \cdot 10^{22} \text{ Am}^2$ and $8.90 \cdot 10^{22} \text{ Am}^2$ slightly higher than the present
257 value of $7.78 \cdot 10^{22} \text{ Am}^2$ (Korte and Constable, 2005; Gallet et al., 2005). According to the
258 Kawai et al. (1965) the axis of geomagnetic dipole could have inclined towards Asia at
259 around the 11th-12th centuries. In addition, the possibility of auroral occurrence at low

260 latitudes could demonstrate changes in the location of the North magnetic pole
261 (Silverman, 1998).

262 The position of the magnetic poles is the most important factor defining whether
263 the aurora was observed at a geographic region. Palaeomagnetic data provides similar
264 longitude values (85° N, 115° E) for the north geomagnetic pole (Merrill and McElhinny,
265 1983). The positions of the north magnetic pole have changed from 10° to 358° in
266 longitude and between 79° and 88° in latitude over the past 2500 years (Ohno and
267 Hamano, 1992). During the interval of 1127–1129, the north geomagnetic pole was
268 located at a geographic latitude of 80° N, and geographic longitudes including East Asia
269 (Merrill and McElhinny, 1983; Constable et al., 2000). According to the Fukushima
270 (1994), the north magnetic pole was located at 81°N in the eastern hemisphere near
271 East Asia (100°E to 130°E) in the medieval period. The north geomagnetic pole of dipole
272 axis computed from the average spherical harmonic models were 84.8° N and 103.8° E
273 in 1100 (Constable et al., 2000).

274 The geomagnetic latitude of Amida (Turkey) in the late 8th century to be about
275 50.1° (Neuhäuser and Neuhäuser, 2015) based on the Holocene geomagnetic field
276 (Nilsson et al., 2014) and 45° (Hayakawa et al., 2017) based on the location of the North
277 Geomagnetic Pole over the past 2000 years (Merrill and McElhinny, 1983). According to
278 the Silverman (2006), the geomagnetic latitude of Edessa and Antioch was 41° and 40°,
279 respectively. Strong geomagnetic storms, indicating strong solar activity around 770 and
280 1100 should have been exist in Amida (45°), Edessa (41°) and Antioch (40°).

281 This study could also be significant constraints for exploration of solar activity on
282 Earth's atmosphere and climate during the historical periods previously proved by Bard

283 and Frank (2006). According to the Bard and Frank (2006) solar fluctuations caused
284 climatic changes called Medieval Warm Period (900–1400). The Maunder Minimum
285 (1645-1715) which delineates the coldest part of the Little Ice Age (Eddy, 1976) is
286 depicted by a solar activity reduction, as well as a sunspots scarcity. The Medieval
287 Climate Anomaly characterizing by warmer and drier climate conditions generally related
288 to reasonably prolonged solar activity during the 12th and 13th centuries (Jirikowic and
289 Damon, 1994). Damon and Jirikowic (1992) estimated that the rise of global temperature
290 maxima stays below 0.8°C and anomalously high temperatures pursue during the 12th
291 and 13th centuries. Sharma (2002) revisited the issue and proposed that very large solar
292 variations have modulated climate over the past 200 millennia. Gallet et al. (2006)
293 demonstrated that fluctuations in the geomagnetic field might trigger significant climate
294 change impacting on some major societal events in the Middle East at longer time. **Also,**
295 **climate change was a significant component to indicate the Byzantium socio-economic**
296 **instability during the Medieval Climate Anomaly. The fall of Constantinople in AD 1204**
297 **coincides with a lowest Auroral acitivity in a moderately wet climate condition. The**
298 **moderately wet climate condition and high aurora activity around 1100 might be more**
299 **likely to cause the socio-economic growth in Anatolia. Xoplaki et al. (2016) examine the**
300 **relationship between the climate change and socio-economic development in Byzantine**
301 **Anatolia. An inverse relationship amidst the aurora records, severe winter and famine is**
302 **estimated during the years of 1100 in Anatolia. The high aurora activity could be reason**
303 **of temperature rise during the medieval period in Anatolia. A new low sunspot number**
304 **and lower aurora activity, which occurring in the period between 2014 and 2025 (Li et**
305 **al., 2018), might have led to a temporary change in natural environment influencing the**

306 general public's attitudes and socio-economic factors. Also, resource scarcity and
307 disparities could also lead to social tensions in the communities for the next ten years.

308 Haldon et al. (2014) subdivided Medieval into four climatic phases as dry (270-
309 540), very wet (540-750), moderately dry (750-950) and moderately wet (950-1400)
310 depending on archaeological, environmental, climate, high resolution pollen and stable
311 isotope data from sites in central and northwestern Turkey. However, this subdivision
312 should be revised as dry (0-560), very wet (560-725), moderately dry (725-990) and
313 moderately wet (990-1400) as given in Table 5 by using Anatolian and Middle Eastern
314 aurora observations besides **historical-climatological data**. Affective cold winter, wet
315 climate conditions, drought and famine could be occurred for Asia Minor and Middle
316 East region during 990-1400. It seems that the relatively high auroral activity during the
317 years around 1100 both in Anatolia and Middle East indicates that solar activity must
318 have been intense rather than moderate causing the climate warmer (Fig. 2). In this
319 period, Islamic world was converted into an enlightened center for science, education,
320 medicine, and philosophy as previously stated by Hamilton (1982). An important
321 increase in agricultural production and population seems to have occurred in Anatolia
322 after the year of 1100 where the aurora observations are intense (Fig. 2). Vaquero and
323 Trigo (2012) stated the period from 1095 to 1204 as an average solar cycle length.
324 **Vaquero et al. (1997) found a 250-year cycle in naked eye sunspot observations releted**
325 **to intense solar activity at around 1100 comparing with aurora events being observed at**
326 **mid-latitudes during the Medieval Climate Anomaly (Willis and Stephenson, 2001) and**
327 **historical documents.** Bekli et al. (2017) demonstrated that the naked-eye sun spot
328 observations from 974 to 1278 and aurora records from 965 to 1273 show multiple

329 unusual peaks related to the high solar activity at latitudes below 45° by using Chinese
330 and Korean historical sources.

331 In the medieval period, the people thought that the aurora was a sign of anger of
332 God, menace, threat, apocalyptic, doomsday, misfortunes, war, slaughter and bloodshed.
333 Little (2007) described an aurora observation record in Constantinople at 396: "All
334 people stacked to the church, and the place could not receive huge mass. But after that
335 great tribulation, when God had accredited His word, the cloud began to diminish and at
336 last disappeared. The people, freed from fear for a while, again heard that they must
337 migrate, because the whole city would be destroyed on the next Sabbath. The whole
338 people left the city with the Emperor; no one remained in his house. The city was saved.
339 What shall we say? adds Augustine. Was this the anger of God or rather His mercy"?

340 In the Chronicle of Zuqnin, an aurora observation recorded in 772, Amida
341 (Turkey) was described: "Another sign was seen in the northern side, and its view gave
342 evidence about the menace of God against us. For the intelligent person the sign
343 indicated menace. Many people said many things about it; some said it announced
344 bloodshed, and others said other things. But who knows the deeds of the Lord"?

345 Matthew of Edessa described the aurora phenomenon as a sign of rage,
346 catastrophe, and celestial wrath of God over the Christians and bloodshed of Christians.
347 Matthew of Edessa reported: "These predictions were truly realized. No favorable omen
348 did not appear since the day when the Franks began their expedition. All omens noticed
349 to realize the destruction, death, slaughter, famine and other diverse disasters"
350 (Andreasyan, 2000).

351

352 **4. Conclusions**

353 This study establishing the strong solar activity during medieval period reports the
354 aurora observations recorded both in Anatolia and Middle East region integrating
355 historical-climatological data. The following conclusions can be summarized as follows:

- 356 1. Historical Anatolian Aurora catalog (hAAc) containing 23 different aurora records provide
357 important information on variations in geomagnetic and auroral activity during medieval
358 period.
- 359 2. In Anatolia and Middle East, there was a relatively high auroral activity during the years
360 around 1100 is quite consistent with the naked-eye sunspot observations related to solar
361 activity as stated by Vaquero et al. (1997) and Bekli et al. (2017).
- 362 3. The historical Anatolian Aurora catalog exceptionally promote that there is a remarkable
363 correlation between the past solar activity and aurora activity.
- 364 4. The intensity of dipole moment and position of the geomagnetic pole might be the most
365 important factors observing aurorae in Anatolia and Middle East regions during medieval
366 period.
- 367 5. In the Medieval period, four climatic phases portrayed by Haldon et al. (2014) is revised
368 as dry (0-560), very wet (560-725), moderately dry (725-990) and moderately wet (990-
369 1400) depending on aurora observations besides historical-climatological data.
- 370 6. People in medieval Anatolia were believed that the aurora was a sign of celestial wrath of
371 God, menace, threat, apocalyptic, doomsday, misfortunes, war, slaughter, rage,
372 catastrophe and bloodshed.

373

374

375

376

377 **5. Acknowledgements**

378 I would like to thank Elif KARSLI (KTU), Alam KHAN (GU) and anonymous
379 referees for their thorough critical and constructive comments. The author is grateful to
380 Editor for his advice to improve the quality of this manuscript.

381

382 **6. References**

383 Andreasyan, H.D.: Urfalı Mateos vekayinamesi (952-1136) ve Papaz Grigor'un
384 zeyli (1136-1162), Türk Tarih Kurumu, Ankara (in Turkish). 2000.

385 Baldwin, M.W.: A History of the Crusades: The First Hundred Years, University of
386 Pennsylvania Press, 1969.

387 Bard, E. and Frank, M.: Climate change and solar variability: What's new under
388 the sun, Earth and Planetary Science Letters, 248(1), 1-14. 2006

389 Basurah, H. M.: Records of aurora in the Islamic chronicles during 9th–16th
390 centuries. Journal of Atmospheric and Solar-Terrestrial Physics, 68(8), 937-941, 2006.

391 Bekli, M.R., Zougab, N., Belabbas, A., Chadou, I.: Non-parametric Data Analysis
392 of Low-latitude Auroras and Naked-eye Sunspots in the Medieval Epoch, Solar Physics
393 292:52, 2017.

394 Botley, C.M.: Aurora in S.W. Asia 1097-1300. J. British Astr. Assoc. 74, 293-296,
395 1964.

396 Chabot, J.B.: Chronique de Michel le Syrien, (French translation accompanied by
397 the original Syrian text), vols. 1-4, photo-printed edition, Culture and Civilisation,
398 Brussels. 1968.

399 Constable, C. G., Johnson, C. L., and Lund, S. P.: Global geomagnetic field
400 models for the past 3000 years: transient or permanent flux lobes? *Phil. Trans. R. Soc.*
401 *Lond., A* 358, 991-1008, 2000.

402 Dall'Olmo, U.: An additional list of auroras from European sources from 450 to
403 1466 A.D., *Journal of Geophysical Research*, 84, 1525-1535, 1979.

404 Damon, P.E. and Jirikowic, J.L.: Solar Forcing of Global Climate Change?: In
405 Taylor, R.E., Long, A., and Kra, R. (eds.), *Four Decades of Radiocarbon*, Springer-
406 Verlag, New York, 117 pp., 1992.

407 Eather, R.H.: Majestic light: The Aurora in Science, History and the Arts, AGU,
408 Washington D.C., 1980.

409 Eddy, J.A.: The Maunder Minimum, *Science* 192, 1189–1202, 1976.

410 Fritz. H.: *Verzeichnis beobachteter Polarlichter*, C. Gerold's Sohns, Vienna, 1873.

411 Frobesius, J.N.: *Luminis Atque Aurorae Borealis Spectaculorum Recensio*
412 *Chronologica*, Helmstadt, Germany, 1739.

413 Gallet, Y., Genevey, A., and Fluteau, F.: Does Earth's magnetic field secular
414 variation control centennial climate change? *Earth and Planetary Science Letters*,
415 236(1), 339-347, 2005.

416 Gallet, Y., Genevey, A., Le Goff, M., Fluteau, F., and Eshraghi, S.A.: Possible
417 impact of the Earth's magnetic field on the history of ancient civilizations. *Earth and*
418 *Planetary Science Letters*, 246(1), 17-26, 2006.

419 Haldon, J., Roberts, N., Izdebski, A., Fleitmann, D., McCormick, M., Cassis, M.,
420 Doonan, O., Eastwood, W., Elton, H., Ladstätter, S., Manning, S., Newhard, J., Nicoll,
421 K., Telelis, I., and Xoplaki, E.: The Climate and Environment of Byzantine Anatolia:

422 Integrating Science, History, and Archaeology, Journal of Interdisciplinary History, XLV
423 (2), 113–161, 2014.

424 Hamilton, A.R.G.: Studies on the civilization of Islam. United States. Princeton
425 University Press, 1982.

426 Harrak, A.: The Chronicle of Zuqnīn, Parts III and IV: AD 488-775: Translated
427 from Syriac with Notes and Introduction, 36, 404p., PIMS, 1999.

428 Hayakawa, H., Tamazawa, H., Kawamura, A. D., and Isobe, H.: Records of
429 sunspot and aurora during CE 960–1279 in the Chinese chronicle of the Sòng dynasty.
430 Earth, Planets and Space, 67(1), 1-14, 2015.

431 Hayakawa, H., Mitsuma, Y., Fujiwara, Y., Kawamura, A. D., Kataoka, R., Ebihara,
432 Y., Kosaka, S., Iwahashi, K., Tamazawa, H., and Isobe, H.: The earliest drawings of
433 datable auroras and a two-tail comet from the Syriac Chronicle of Zūqnīn. Publications
434 of the Astronomical Society of Japan, 69(2), 2017.

435 Jirikowic, J.L., Damon, P.E.: The medieval solar activity maximum, Climatic
436 Change 26(2), 309–316, 1994.

437 Kataoka, R. and Iwahashi, K.: Inclined zenith aurora over Kyoto on 17 September
438 1770: Graphical evidence of extreme magnetic storm, Space Weather, 15, 1314-1320,
439 2017.

440 Kataoka, R., Isobe, H., Hayakawa, H., Tamazawa, H., Kawamura, A.D.,
441 Miyahara, H., Iwahashi, K., Yamamoto, K., Takei, M., Terashima, T., Suzuki, H.,
442 Fujiwara, Y., Nakamura, T.: Historical space weather monitoring of prolonged aurora
443 activities in Japan and in China, Space Weather, 15, 392-402, 2017b.

444 Kawai, N., Hirooka, K. and Sasajima, S.: Counterclockwise rotation of the
445 geomagnetic dipole axis revealed in the world-wide archaeo-secular variations, Proc.
446 Japan Acad., 41, 398-403, 1965.

447 Keimatsu, M.: A chronology of aurorae and sunspots observed in China, Korea
448 and Japan, Ann. Sci., 13, 1-32, 1976.

449 Korte, M., and Constable, C.G.: The geomagnetic dipole moment over the last
450 7000 years-new results from a global model. Earth and Planetary Science Letters,
451 236(1), 348-358, 2005.

452 Korte, M. and Stolze, S.: Variations in mid-latitude auroral activity during the
453 Holocene, Archaeometry, 58 (1), 159-176, 2016.

454 Krey, A.C.: The First Crusade: The Accounts of Eyewitnesses and Participants,
455 Princeton, 139-142, 1921.

456 Krivsky, L., and Pejml, K.: Solar activity aurorae and climate in Central Europe in
457 the last 1000 years. Bulletin of the Astronomical Institute of the Czechoslovak Academy
458 of Sciences No 75, 1988.

459 Le Strange, G.: Palestine under the Moslems. Houghton, Mifflin and Company,
460 Boston and New York, 1890.

461 Fi, F.Y., Kong, D.F., Xie, J.L., Xiang, N.B., Xu, J.C.: Solar cycle characteristics
462 and their application in the prediction of cycle 25. Journal of Atmospheric and Solar-
463 Terrestrial Physics, 181, 110-115, 2018.

464 Link, F.. Observations et catalogue des aurores boréales apparues en Occident
465 de-626 à 1600. Geofys. Sb. X, 297–392, 1962.

466 Little, L.K.: Plague and the end of antiquity: the pandemic of 541-750. Cambridge
467 University Press, UK, 2007.

468 Lovering, J.: On the periodicity of the aurora Borealis, *Mem. Amer. Acad. Arts*
469 *Sci.*, X., 1868.

470 Mairan, J.J.: *Traite physique et historique de l'aurore borale*. Paris, 1733.

471 Mairan, J.J.: *de Ort, Traite Physique et Historique de l'Aurore Boreale*, Imprimerie
472 Royale, Paris, 1754.

473 Matsushita, S.: Ancient aurorae seen in Japan, *J. Geophys. Res.*, 61, 297-302,
474 1956.

475 Mekhaldi, F., Muscheler, R., Adolphia, F., Aldaha, A., Beer, J, McConnel, J.R.,
476 Possnert, G., Sigl, M., Svensson, A., Synal, H.A., Welten, K.C. and Woodruff, T.E.:
477 Multirodionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and
478 993/4, *Nature Communications* 6:8611, 2015.

479 Merrill, R.T. and McElhinny, M.W.: *The Earth's Magnetic Field: Its History, Origin*
480 and *Planetary Perspective*, Academic Press, London, 1983.

481 Miyake, F., Nagaya, K., Masuda, K., and Nakamura, T.: A signature of cosmic-ray
482 increase in AD 774-775 from tree rings in Japan, *Natura* 486 (7402), 240, 2012.

483 Nakazawa, Y., Okada, T., & Shiokawa, K.: Understanding the “SEKKI”
484 phenomena in Japanese historical literatures based on the modern science of low-
485 latitude aurora. *Earth, planets and space*, 56(12), e41-e44, 2004.

486 Neuhäuser, R. and Neuhäuser, D.L.: Solar activity around AD 775 from aurorae
487 and radiocarbon. *Astronomische Nachrichten*, 336, 225–248, 2015.

488 Newton, R.R.: *Medieval Chronicles and the Rotation of the Earth*, the Johns
489 Hopkins University Press, Baltimore, 1972.

490 Nilsson, A., Holme, R., Korte, M., Suttie, N. and Hill, M.: Reconstructing Holocene
491 geomagnetic field variation: new methods, models and implications. - *Geophysical*
492 *Journal International*, 198(1), 229-248, 2014.

493 Pang, K.D., and Yau, K.K.: Ancient observations link changes in Sun's brightness
494 and Earth's climate. *Eos, Transactions American Geophysical Union*, 83(43), 481-490,
495 2002.

496 Russell, K.W.: The earthquake chronology of Palestine and northwest Arabia from
497 the 2nd through the mid-8th century AD. *Bulletin of the American Schools of Oriental*
498 *Research*, 37-59, 1985.

499 Scafetta, N.: A shared frequency set between the historical mid-latitude aurora
500 records and the global surface temperature. *Journal of Atmospheric and Solar–*
501 *Terrestrial Physics* 74, 145–163, 2012.

502 Scafetta, N., and Willson, R.C.: Planetary harmonics in the historical Hungarian
503 aurora record (1523–1960). *Planetary and Space Science*, 78, 38-44, 2013

504 Schoning, G.: *Nordlyset Aelde. Skrift. Kiobenh. Selsk.* 8, 1760.

505 Schove, D.J.: Sunspot epochs 188 A. D. to 1610 A. D, *Popular Astronomy*, 56,
506 247-251, 1948.

507 Schove D.J. and Ho P.Y.: Chinese aurorae: AD 1048-1070, *J. British. Astr. Soc.*
508 69, 295-304, 1959.

509 Schröder, W.: On the Existence of the 11-Year Cycle in Solar and Auroral Activity
510 before and during the So-Called Maunder Minimum. *Journal of geomagnetism and*
511 *geoelectricity*, 44(2), 119-128, 1992.

512 Schröder, W.: Aurorae during the so-called Spoerer minimum. *Solar physics*,
513 151(1), 199-201, 1994.

514 Schröder, W.: A note on auroras during the so-called Maunder-Minimum. *Acta*
515 *Geodaetica et Geophysica Hungarica*, 39(4), 355-358, 2004.

516 Sharma, M.: Variations in solar magnetic activity during the last 200,000 years: is
517 there a Sun-climate connection? *Earth Planet. Sci. Lett.* 199, 459–472, 2002.

518 Shiokawa, K., Ogawa, T., and Kamide, Y.: Low-latitude auroras observed in
519 Japan: 1999–2004, *Journal of Geophysical Research: Space Physics*, 110(A5), 2005.

520 Silverman, S.M.: Secular variation of the aurora for the past 500 years, *Reviews*
521 *of Geophysics*, 30, 333-351, 1992.

522 Silverman, S.: Early auroral observations, *Journal of Atmospherical and Solar–*
523 *Terrestrial Physics*, 60(10), 997-1006, 1998.

524 Silverman, S.M.: Comparison of the aurora of September 1/2, 1859 with other
525 great auroras. *Advances in Space Research*, 38(2), 136-144, 2006.

526 Siscoe, G.L.: Evidence in the auroral record for secular solar variability,
527 *Geophys.*, 78,647-658, 1980.

528 Stothers, R.B.: Solar cycle during classical antiquity, *Astron. Astrophys.*, 77, 121-
529 127, 1979.

530 Seydl, A.: A list of 402 northern lights observed in Bohemia, Moravia and Slovakia
531 from 1013 to 1951, *Geofys. Sb.*, 17, 159, 1954.

532 Trombley, F.R. and Watt, J.W.: *The chronicle of pseudo-Joshua the Stylite*, 32,
533 Liverpool University Press, UK, 2000.

534 Turtledove, H.: *The Chronicle of Theophanes: Anni Mundi 6095-6305 (AD 602-*
535 *813)*. University of Pennsylvania Press, USA, 1982.

536 Usoskin, I.G., Kromer, B., Ludlow, F., Beer, J., Fiedrich, M., Kovaltsov, G.A.,
537 Solanki, S.K. and Wacker, L.: The AD 775 cosmic event revisited: the Sun is to blame,
538 Astronomy & Astrophysics 552, L3, 2013.

539 Vaquero, J.M., Gallego, M.C. and Garcia, J.A.: A 250-year cycle in naked-eye
540 observations of sunspots, Geophysical Research Letters, 29 (20), 1997,
541 doi:10.1029/2002GL014782, 2002.

542 Vaquero, J.M., Gallego, M.C., Barriendos, M., Rama, E., and Sanchez-Lorenzo,
543 A.: Francisco Salvá's auroral observations from Barcelona during 1780–1825. Advances
544 in Space Research, 45(11), 1388-1392, 2010.

545 Vaquero, J.M., Trigo, R.M.: A Note on Solar Cycle Length during the Medieval
546 Climate Anomaly, Solar Physics 279, 289-294, 2012.

547 Vazquez, M., Vaquero, J.M., Curto, J.J.: On the connection between solar activity
548 and low-latitude aurorae in the period 1715–1860. Solar Physics, 238, 405–420, 2006.

549 Willis, D. M., Stephenson, F. R.: Solar and auroral evidence for an intense
550 recurrent geomagnetic storm during December in AD 1128, Annales Geophysicae, 19,
551 289-302, 2001.

552 Wolf, R.: Nordlichtcatalog, Vierteljahresschro Naturforsch. Ges. Zuerich, 2, 353,
553 1857.

554 Xoplaki, E., Fleitmann, D., Luterbacher, J., Wagner, S., Haldon, J.F., Zorita, E.,
555 Telelis, I., Toreti, A., Izdebski, A., The Medieval Climate Anomaly and Byzantium: a
556 review of the evidence on climatic fluctuations, economic performance and societal
557 change, Quat. Sci. Rev. 136, 229-252, 2016.

558

559

560 **TABLES CAPTIONS:**

561 **Table 1.** Historical Aurora catalogs compiled by different authors.

562 **Table 2.** Historical Anatolian Aurora catalogs during medieval period compiled in this
563 study.

564 **Table 3.** The number of historical aurora records observed in Anatolia.

565 **Table 4.** Ancient aurora observations recorded in Middle East region during medieval
566 period.

567 **Table 5.** Summary of Ancient climate change based on the aurora observations and
568 meterological data in Anatolia during medieval period.

569

570 **FIGURE CAPTIONS:**

571 **Figure 1.** The location map of the historical Anatolian records during medieval period.

572 **Byzantine Empire map:** <https://www.britannica.com/place/Byzantine-Empire>,
573 last access: 12 November 2019.

574 **Figure 2.** Comparison of historical aurora observations with climate change and
575 **climatological** data in Anatolia and neigbouring regions. The upper panel
576 shows the **historical** data climatic subdivisions, the middle panel shows the
577 aurora observations in Anatolia and Middle East regions and the lower panel
578 shows the land use and population in Anatolia. **Historical-climatological** and
579 land use data are taken from Haldon et al. (2014).

580 **Figure 3.** The number of aurorae records per century observed in the Anatolia and in
581 Middle East.

582

583 **TABLES**584 **Table 1.**

Sources	Number of Observations	Region	Period
Link, 1962	385	Europe	626 B.C. to 1600 A.D.
Link, 1964	209	Europe	1600-1700 A.D.
Stothers, 1979	67	Greece and Italy	480 B.C. to 333 A.D.
Newton, 1972	65	Europe	450-1263 A.D.
Dall'Olmo, 1979	61	Europe	450-1461 A.D.
Keimatsu, 1976	260	China, Korea, and Japan	687 B.C. to 1600 A.D.
Matsushita, 1956	18	Japan	620-1909 A.D.
Basurah, 2006	18	Arabia, North Africa, Spain	800-1600 A.D.
This Study	23	Anatolia	1-1453 A.D.
This Study	45	Middle East	1-1453 A.D.

585

586

587

588

Table 2.

#	Date	Location	Description	N	References
1	333	Constantinople	Sky fire.	1	Stothers, 1979
2	396	Constantinople	A fiery cloud was seen from the East.	3	Little, 2007
3	22 Ağustos 502, Thursday	Edessa	A great fire appeared to us blazing in the northern quarter the whole night.	3	Link, 1962 Botley, 1964 Hayakawa et al., 2017
4	633	Constantinople	A bloody spear and a light of the sky were sighted for nearly the all night.	4	Dall'Olmo, 1979
5	668	Constantinople	There was a sign appeared in the sky in the same winter.	1	Turtledove, 1982
6	675	Constantinople	In this year, a sign was seen in the sky on a Sabbath day.	1	Turtledove, 1982
7	734	Constantinople	There was a sign in the sky which shone like a burning brand.	2	Turtledove, 1982
8	June 743	Constantinople	In June, a sign appeared on the northern sky.	1	Turtledove, 1982
9	744	Constantinople	This year, a sign appeared on the northern sky.	1	Turtledove, 1982
10	771/772	Amida	Another sign appeared in the northern side.	3	Harrak, 1999 Hayakawa et al., 2017
11	June 773, Friday	Amida	The sign that was seen a year ago in the northern region was seen again in this year, in the month of June, on a Friday.	3	Neuhäuser and Neuhäuser, 2015 Harrak, 1999
12	988	Constantinople	Frightened fiery pillars seen in the northern region for some nights.	3	Dall'Olmo, 1979
13	21 November 1097, Monday	Edessa	A frightful and strange omen appeared in the northern portion of the sky.	3	Link, 1962 Silverman, 2006 Andreasyan, 2000 Botley, 1964
14	30 December 1097, Friday	Antioch	A very fabulous sign was watched in the sky.	3	Silverman, 1998 Baldwin, 1969 Botley 1964 Kery, 1921
15	3 June 1098, Saturday	Antioch	A fiery red sky was seen.	2	Link, 1962 Silverman, 2006 Botley 1964

591

Table 2 continued.

16	27 September 1098, Monday (10:00)	Edessa	A second omen appeared in the northern portion of the sky at the fourth hour of the night the sky flared up more than it had before and turned a deep red color.	4	Andreasyan, 2000 Link, 1962
17	27 September 1098, Monday	Antioch	Blaze of light girdled Pole.	1	Link, 1962 Botley, 1964
18	1099	Edessa	A fire-like omen of a very deep red color appeared in the sky.	3	Andreasyan, 2000 Link, 1962 Silverman, 2006
19	18 November 1100, Sunday	Edessa	The northern portion of the sky reddened, appearing more frightful and wondrous than the previous phenomenon.	3	Andreasyan, 2000 Silverman, 2006 Link, 1962
20	1108	Adana	A light like the sunlight was seen in the middle of the night, and remained about three hours in Djihan.	2	Chabot, 1968 Dall'Olmo, 1979
21	16 December 1117, Monday	Asia Minor			Link, 1962 Newton, 1972
22	1119	Asia Minor			Link, 1962
23	1 April 1143, Thursday	Edessa	A sign appeared in the sky from the north in the form of a luminous column	3	Andreasyan, 2000

592

593

594

595

596

597

598

599 **Table 3.**

#	City	Latitude [Degree, N]	Longitude [Degree, E]	Numbers of observation
1	Constantinople	41.03	28.99	9
2	Edessa	37.17	38.79	6
3	Amida	37.93	40.21	2
4	Antioch	36.2	36.16	3
5	Adana	36.99	35.34	1
6	Asia Minor	39.93	32.85	2
Total				23

600

601

602

603

604

605

606

607

Table 4.

#	Date	Place	Descriptions	References
1	65	Jerusalem		Botley, 1964
2	66	Jerusalem		Botley, 1964
3	400	Byzantium		Link, 1962
4	402	Byzantium		Link, 1962
5	473	Byzantium		Link, 1962
6	474	Byzantium		Link, 1962
7	502 Agust 22	Palestine	A great fire appeared to us blazing in the northern quarter the whole night	Botley, 1964
8	743 June	Syria	A mighty sign appeared in the heavens like columns of fire blazing in June	Chabot, 1968
9	743 September	Middle East	Another sign appeared in September like a flame of fire and spread from the East to the West	Cook, 2001
10	745 January	Middle East	In the middle of the sky, a large column of fire appeared during the night	Chabot, 1968
11	793 May 11-17	Iraq	There occurred a violent wind and overshadowing of the heavens and a redness in the sky, on the night of Sunday	Basworth, 1989
12	817 October 29	Iraq	A reddish glow appeared in the sky and stayed until late at night like a two red columns	Basurah, 2006
13	840 September 24	Middle East	A fiery cloud appeared in the northern part of the sky, moving from east to West.	Dall'Olmo, 1979
14	931 November 9	Baghdad	An intense red glow appeared in the city of Al-Salam (Baghdad)	Basurah, 2006
15	939 October 17	Syria	An intense red glow appeared in the atmosphere coming from North and West	Basurah, 2006
16	1050 Agust 5	Middle East	Through which light shone out broad and glittering, and then became extinguished	Le Strange, 1890
17	1097	Palestine		Botley, 1964
18	1100	Palestine		Botley, 1964
19	1102	Palestine		Botley, 1964
20	1106	Syria		Botley, 1964
21	1110	Syria		Botley, 1964
22	1117 December 16	Palestine		Newton, 1972 Botley, 1964
23	1119	Armenia		Botley, 1964
24	1121 May, Monday	Syria	There appeared a full arc, which had not been observed for many generations	Botley, 1964
25	1129 January	Middle East	A fire appeared in the northern region. A sort of pillar was stretched toward the south.	Dall'Olmo, 1979
26	1129 March	Middle East	A fire appeared in the northern region. A sort of pillar was stretched toward the south.	Dall'Olmo, 1979

Table 4. continued

27	1129 April	Middle East	A fire appeared in the northern region. A sort of pillar was stretched toward the south.	Dall'Olmo, 1979
28	1130 November	Middle East	A burning fire was seen in the northern region	Dall'Olmo, 1979
29	1135 July 21	Middle East	A light like a torch moved from east to West. The light of the moon and of the stars was obscured. A frightful noise followed	Dall'Olmo, 1979
30	1138 October	Syria	A red sign was seen in the northern part of the sky	Botley, 1964
31	1140 June 22	Syria	Red lances were seen in the northern region.	Botley, 1964
32	1141 August	Middle East	Rays of fire were observed in the northern region.	Dall'Olmo, 1979
33	1141 September	Syria	A brightness as bright as the sun broke out in the northeast. It shone as if the sky were on fire.	Botley, 1964
34	1149	Syria		Botley, 1964
35	1150	Palestine		Botley, 1964
36 37	1176 September 6 - October 5	Syria	An intense red light appeared in the sky from the East	Basurah, 2006
	1179 May 7	Syria	The sky became cloudy and pillars of fire appeared at the horizon	Basurah, 2006
38	1182	Byzantium		Link, 1962
39	1187 July	Tiberias, Israel		Botley, 1964
40	1223 October 26	Syria	We saw from Bani Helal Mountain (toward the North direction) a hugelight over Gassune; we thought that Damascus was on fire.	Basurah, 2006
41	1264 July 20-30	Syria	A bright glowing columns appeared toward North-West	Basurah, 2006
42	1370 November 27	Jerusalem	A great reddish glow appeared in the sky of Jerusalem	Basurah, 2006
43	1370 November 27	Damascus	A great reddish glow appeared in the sky of Damascus	Basurah, 2006
44	1370 November 27	Homs	A great reddish glow appeared in the sky of Homs	Basurah, 2006
45	1370 November 27	Aleppo	A great reddish glow appeared in the sky of Aleppo	Basurah, 2006

613 **Table 5.**

Medieval Period		Climate
Haldon et al. (2014)	This Study	
270-540	0-560	Dry
540-750	560-725	Very wet
750-950	725-990	Moderately dry
950-1400	990-1400	Moderately wet

614

615

616

617

618

619

620

621

622

623

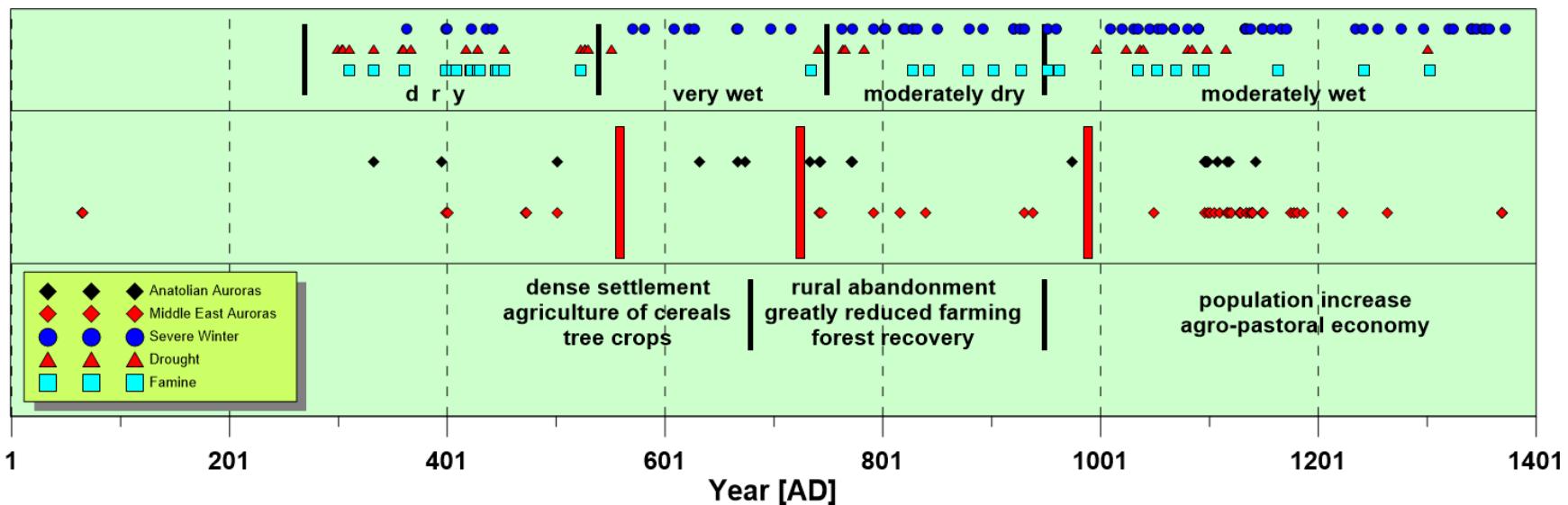
624

625

626

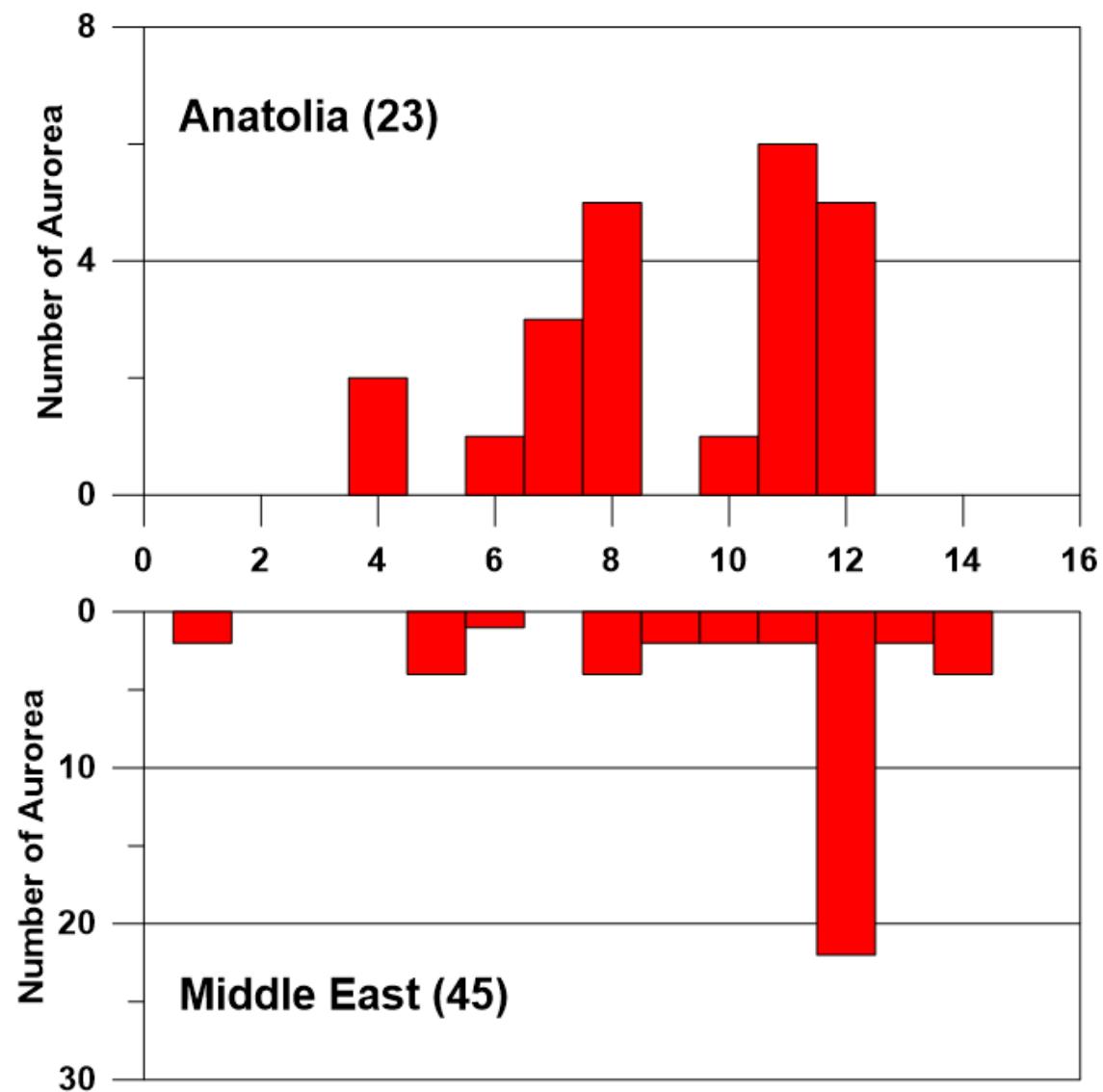
627

628


629

631

632 **Figure 1.**


633

634

635 **Figure 2.**

636

