

Historical Aurora Borealis Observations in Anatolia during medieval period: Implications for the past solar activity

Nafiz MADEN^{a,1}

^a Department of Geophysics, Gümüşhane University, TR-29100 Gümüşhane, Turkey

Abstract: In this paper, it is reviewed the relationships between the aurora observations, past solar activity and climatic change in Anatolia during medieval period.

9 For this purpose, it is presented two historical aurora catalogs for Anatolia and Middle
10 East regions at various dates in order to understand the past solar activity and possible
11 physical mechanism using historical texts, chronicles and other auroral records. The
12 available catalogs in literature are covered records observed in the Europe, Japan,
13 China, Russia and Middle East. There is no study dealing only with the historical aurora
14 observations recorded in Anatolia. The data of the catalog strongly support that there is
15 a considerable relationship between the aurora activity and past strong solar activity. An
16 unusually high auroral activity during the years around 1100 in Anatolia and Middle East
17 is quite consistent with the past solar variability, geomagnetic field intensity and
18 planetary climatic changes drastically impacting on the economy and human events.

Keywords: Historical aurora records; Solar activity; Climatic changes; Anatolia.

¹ Corresponding author. Tel.: +90 456 233 74 25; fax: +90 456 233 74 27. E-mail: nmaden@gumushane.edu.tr (N. MADEN).

23 **1. Introduction**

24 A number of researchers presented the low and middle-latitude aurora catalogs
25 (Table 1) from Europe (Mairan, 1733; Frobessius 1739; Fritz, 1873; Schove, 1948; Link,
26 1962; Dall'Olmo, 1979; Stothers, 1979; Krivsky and Pejml, 1988; Vaquero et al., 2010;
27 Scafetta and Willson, 2013), Arabic countries (Basurah, 2006), Japan (Matsushita, 1956;
28 Nakazawa et al., 2004; Shiokawa et al., 2005), and China (Schove and Ho, 1959;
29 Keimatsu, 1976; Hayakawa et al., 2015). Aurorae are the most majestic luminous
30 phenomenon observed in the sky. The historical aurora catalogs have been used to
31 recognize the past solar activities (Siscoe, 1980; Silverman, 1992; Schröder, 1992;
32 Schröder 1994; Basurah, 2006; Vazquez et al., 2006; Hayakawa et al., 2015), Earth's
33 climate change (Pang and Yau, 2002; Schröder, 2004; Gallet et al., 2005; Bard and
34 Frank, 2006; Scafetta, 2012) and perception of human civilizations (Schröder, 2004;
35 Gallet et al., 2006; Silverman, 2006). The state of the geomagnetic field and the form of
36 magnetosphere extremely control the location of auroral zone (Korte and Stulze, 2016).
37 The visibility of the aurorae at low latitudes is very scarce and closely connected with the
38 strong geomagnetic storms related to the high-speed solar wind or interplanetary
39 transients (Eather, 1980; Basurah, 2006; Vazquez et al., 2006).

40 Mairan (1733) presented that the first scientific monography covers a list of 229
41 historical aurorae during the period of 502-1731. In 1852, Wolf noticed that the aurorae
42 match with periods of high sunspot number, according to the historical aurora catalog
43 including more than 6300 records (Wolf, 1857). Fritz (1873), who listed 77 European
44 Aurora records during 1707-1708, published the historical auroral catalog and separated
45 auroral sightings into five categories based on the latitude and longitude (Schröder,
46 1994). Link (1962) published a useful aurora catalog seen in European countries based

47 on eight previous catalogs compiled by Frobessius (1739), Mairan (1754), Schonning
48 (1760), Boué (1856), Wolf (1857), Lovering (1868), Fritz (1873) and Seydl (1954).

49 Dall'Olmo (1979) listed 59 auroral observations displayed throughout medieval
50 period reported from European sources. Stothers (1979) compiled an extensive ancient
51 aurora catalog in Europe observed by the Mediterranean basin peoples and proved the
52 ancient auroral cycle simulates the modern cycle.

53 Vaquero et al. (2010) declared a set of auroral observation of Francisco Salva
54 Campillo who recorded in Barcelona during 1780-1825. This catalog represents a
55 sudden drop in the number of annual auroral observations at about 1793 owing to the
56 secular minimum in solar activity (Vaquero et al., 2010). Scafetta and Willson (2013)
57 studied the historical Hungarian auroral records covering 438 years. They found that the
58 maxima of the auroral observations conform to the maxima in the sunspot records and
59 there is a positive correlation amidst the auroral records, the solar and climate activities.
60 Korte and Stolze (2016) showed that the intensity and tilt of the geomagnetic field and
61 high solar activity are closely related to the Aurora occurrence.

62 The available catalogs described above present a number of records covering
63 Europe, Japan, China, Russia and Middle East. There is no study dealing only with the
64 historical aurora observations recorded in Anatolia. Anatolia have not been studied until
65 now with respect to meteorological and aurora observations. The goal of this study is to
66 compile a historical Anatolian aurora catalog (hAAc) during medieval period by scanning
67 the available sources and catalogs in literature. The catalog could be used to analyze
68 the past solar activity and planetary climatic changes impacting on the economy and
69 human events. This research may also contribute to the understanding of public
70 perception of the historical auroras.

71 **2. Historical Anatolian Aurora Catalog (hAAC) through medieval period**

72 It is propounded a historical aurora catalog observed only in Anatolia during
73 medieval period collected from Link (1962), Botley (1964), Baldwin (1969), Newton
74 (1972), Stothers (1979), Eather (1980), Melissinos, (1980), Silverman (1998), Dall'Olmo
75 (1979), Andreasyan (2000), Little (2007), Silverman (2006), Neuhäuser and Neuhäuser
76 (2015) resources. In this catalogue, 23 different historical aurora records observed in
77 Anatolia are presented during medieval period in Table 2. The location map of the
78 historical Anatolian observations is given in Figure 1. A number of Anatolian aurora
79 observations are summarized in Table 3. Another collected ancient aurora catalog
80 consisting 45 auroral observations is shown in Table 4 for the Middle East region during
81 the same period using Islamic historical texts, Arabic chronicles and other auroral
82 records given in Table 1. These two catalogues are plotted in Figure 2 and evaluated
83 altogether. The historical Anatolian and Middle East aurora records overlap through
84 medieval period especially between 1097 and 1129 years (Figure 3). Also, Chinese and
85 European aurora observations are in harmony with each other in this period (Siscoe,
86 1980).

87 According to the paper by Neuhäuser and Neuhäuser (2015), five criteria are
88 implemented to perform the aurora catalogs as night-time (darkness, sunset, sunrise),
89 non-southern directions (northern, NE, NW, E-W, W-E), color (red, reddish, fiery, bloody,
90 green, black), dynamics (fire, fiery), and repetition. The strength of the aurora can be
91 determined by considering its color, brightness, dynamics, duration, geomagnetic
92 latitude. The observation is classified as potential (N=0), possible (N=1), very possible
93 (N=2), probable (N=3), very probable (N=4), or certain (N=5) according to the criteria
94 number (N) satisfied (Neuhäuser and Neuhäuser, 2015).

95 In Anatolia, the first auroral observation was done in Constantinople at 333
96 (Stothers, 1979). Stothers (1979) described these observations as a sky fire (N=1)
97 according to the works of Aurelius Victor (320-390), who was a historian and politician of
98 the Roman Empire. On the other hand, Eather (1980) described an Aurora observation
99 over Constantinople at about 360 BC during the siege on Byzantium by Philip of
100 Macedonia.

101 Little (2007) described an aurora observation record in Constantinople at 396: "A
102 fiery cloud was observed from the East while the city darkened. At first, it was small, but
103 later gradually grew and moved towards the city. At last, it terribly enlarged and poised
104 over the entire city. A terrifying flame appeared to hang down. All people stacked to the
105 church, and the place could not receive huge mass" (N=3).

106 According to the Link (1962), an aurora appeared in Asia Minor on 22 August
107 502, Thursday. This aurora was also observed both in Edessa (Botley, 1964) and
108 Palestine after an earthquake (Russell, 1985) based on to the Chronicle of Joshua the
109 Stylite. Joshua the Stylite described it: "On the 22rd of August this year, on the night
110 preceding Friday, a great fire appeared to us blazing in the northern quarter the all night.
111 It was believed that the whole earth was going to be devastated that night by a fire
112 storm. However, the mercy of our Lord preserved us without damage" (N=3). This
113 appearance of the aurora borealis was also reported in Chronicon Edessenum without
114 apocalyptic detail (Trombley and Watt, 2000).

115 According to the Historia Ecclesiastica of Ptolomaeus Lucensis there was an
116 aurora sighting at a night of 633 in Constantinople (Dall'Olmo, 1979): "A bloody sign
117 appearing just at that time was sighted. A bloodstained spear and a sharp light were
118 observed on the sky for nearly all night" (N=4). Theophanes (758/760-817), a Byzantine

119 monk, theologian, and chronicler, reported an observation in 667 winter: "There was a
120 sign which appeared in the sky in the same winter" (N=1). Theophanes reported another
121 observation in 675-676: "This year a sign was seen in the sky on a Sabbath day" (N=1;
122 Turtledove, 1982).

123 Theophanes recorded three aurora events for 734, 743 June and 744 in
124 Constantinople. The first aurora observation was reported in 734: "A fiery sign shining
125 like a burning brand appeared in the sky in Constantinople" (N=2). The second aurora
126 observation was recorded by Theophanes in June of 743: "In the northern sky of
127 Constantinople, a sign was observed in the month of June" (N=1; Turtledove, 1982). The
128 last aurora record was observed in Constantinople for 744: "In the northern sky, a sign
129 seemed this year, and dust fell in several places" (N=1; Turtledove, 1982; Neuhäuser
130 and Neuhäuser, 2015).

131 The low-latitude aurorae of 772-773 are interesting, as being very close to the
132 extreme solar event of 774-775 (Miyake et al., 2012; Usoskin et al., 2013; Mekhldi et al.,
133 2015). Harrak (1999) listed two aurorae records observed near Amida in the early 770s
134 based on the Chronicle of Zuqnin. In the Chronicle of Zuqnin, the first observation was
135 recorded in 772, Amida (Turkey): "Another sign was seen in the northern side, and its
136 view gave evidence about the menace of God against us. It appeared at reaping time,
137 while wrapping the whole northern side of the sky from west to east end. It was look like
138 a green sceptre, a red one, a yellow one, and a black one. It was ascending from the
139 ground and changing into 70 shapes, while one sceptre was emerging and another
140 disappearing" (N=3). The second observation was recorded in the Chronicle of Zuqnin in
141 773, Amida (Turkey): "In the month of June, on a Friday, another sign that was seen a
142 year ago in the northern region was appeared again this year. It was on Fridays that it

143 used to appear during these three consecutive years, stretching itself out from the
144 eastern side to the western side. The sign would change into many shapes in such a
145 way that as soon as a green ray vanished, a red one would appear, and as soon as the
146 yellow one vanished, a green would appear, and as soon as this one vanished, a black
147 one would appear" (N=3; Harrak, 1999; Neuhäuser and Neuhäuser, 2015). These two
148 observations listed by Harrak (1999) and Neuhäuser and Neuhäuser (2015) based on
149 the Chronicle of Zuqnin were also cited by Dall'Olmo (1979) according to the *Chronique*
150 de Denys de Tell-Mahré (Chabot, 1895) with different dating. Mekhaldi et al. (2015)
151 indicated that these two extreme events (772/773) were five times greater than any
152 other recorded solar storms with instruments. In Constantinople, another aurora
153 observation was recorded in 988: "A luminous star and fiery pillars seen in the northern
154 region of the sky for some nights. They frightened the people who saw them." (N=3;
155 Dall'Olmo, 1979).

156 Matthew of Edessa, who wrote a chronicle, described the events that occurred
157 between the years 952 and 1136, and reported four aurora observations around the
158 year 1100 (Andreasyan, 2000). Matthew of Edessa reported the first aurora observation
159 in the Armenian year 546 (25.02.1097–24.02.1098): "In this year, an odd and horrible
160 signs were observed in the the northern side of the sky. No one had ever seen such an
161 amazing omen so far. In the month of November, the sky kindled and reddened though
162 the air was clear and quiet. The bloody sky was covered with stacks as if clustered on
163 top of one another becoming colorful. The stacks were set to slip through in an easterly
164 direction, dispersed after having gathered, and enveloped the large amount of the sky.
165 Then, the dark redness such an amazing degree reached up to the middle of the sky
166 vault. The savants and sages interpreted this phenomenon that, it was a sign of

167 bloodshed. Actually, terrible events and disasters we included as a short story in our
168 book were soon to be fulfilled." (N=3).

169 Krey (1921) described an aurora observation during the siege of Antioch on the
170 account of eyewitnesses and participants in the first crusade: "A great earthquake
171 occurred on the third day before the Kalends of January (30 December 1097), and a
172 very fabulous sign was noticed in the sky. Northern part of the sky was so red that it
173 appeared as if sun rose to inform the day in the first sight of the night" (N=3). This
174 observation was also described by Baldwin (1969): "There was an earthquake on
175 December 30th, and a frightening display of the aurora borealis next evening, and in this
176 way God chastised his army, so that we were intent upon the light which was rising in
177 the darkness, yet the minds of some were so blind and abandoned that they were
178 recalled neither from luxury nor robbery. At this time the Bishop prescribed a fast of
179 three days and urged prayers and alms, together with a procession, upon the people;
180 moreover, he commanded the priests to devote themselves to masses and prayers, the
181 clerics to psalms". On the other hand, another aurora was observed on 3 June 1098 at
182 Antioch based on the Link (1962) catalog as a fiery red sky (N=2; Silverman, 2006).

183 The Matthew of Edessa recorded second aurora observation in the Armenian
184 year 547 (25.02.1098–24.02.1099). "In the same year, a new sign appeared in the
185 northern part of the sky. At the fourth hour of the night, the sky appeared more inflamed
186 than before, and a dark red color. This phenomenon lasted from the evening until the
187 fourth hour of the night. Such a terrible omen had never been seen so far. This omen
188 raised upwards gradually and covered the northern portion of the sky with the lines
189 reaching the hills. All stars took a fiery color. This phenomenon was an omen of rage
190 and catastrophe" (N=4; Andreasyan, 2000). Botley (1964) reported an auroral

191 observation in Antioch as a blaze of light girdled Pole (N=1). Link (1962) dated this
192 observation on September 27, 1098.

193 In the Armenian year 548 (25.02.1099–24.02.1100) Matthew reported another
194 aurora observation: “A fiery sign of dark red color appeared in the sky in this year. This
195 omen heading from the northern to the eastern part of the sky appeared until the
196 seventh hour of the night and then became black. It was said that this phenomenon was
197 a sign of bloodshed of Christians. These predictions were truly realized. No favorable
198 omen did not appear since the day when the Franks began their expedition. All omens,
199 however, marked to realize the destruction, death, slaughter, famine and other diverse
200 disasters” (N=3; Andreasyan, 2000).

201 Matthew recorded the last aurora observation in the Armenian year 549
202 (25.02.1100–24.02.1101): “The northern part of the sky flushed red for the fourth time in
203 this year. The fiery red omen appeared more horrific than the previous one and
204 subsequently changed into black. This fourth appearance coincided with a lunar eclipse.
205 This phenomenon was a sign of the celestial wrath of God over the Christians as
206 previously said by the prophet Jeremiah with these words: “His wrath will blaze up from
207 the northern part of the sky. Indeed, several misfortunes occurred as we never could
208 have expected” (N=3; Andreasyan, 2000).

209 Dall'Olmo (1979) reported an aurora observation based on the Chronicle of
210 Michael the Syrian translated into French by Chabot (1968): “In the year 1108, a light
211 like the sunlight was seen in the middle of the night, and remained about three hours in
212 Djihan region near Adana” (N=2). Dall'Olmo (1979) was also cited 12 auroral records
213 observed probably in the Middle East from 745 to 1141 (Table 4) according to the
214 Chronicle of Michael the Syrian (Chabot, 1968).

215 On December 16, 1117, an aurora was recorded in Asia Minor (Link, 1962). In the
216 same date, two observations were also reported in the Middle East (Newton, 1972) and
217 in Palestine (Botley, 1964). These two observations could be same event. Link (1962)
218 described other observations in Asia Minor in the year 1119. This event might be the
219 same record observed in Armenia (Botley, 1964) given in Table 4.

220 Priest Grigor, who continued the Matthew's Chronicle and recorded events for the
221 years 1136/37-1162/63, added one aurora observation in about the year 1143. In the
222 Armenian year 592 (14.02.1143-13.02.1144) Priest Grigor described the aurora
223 observation: "On Holy Thursday (1 April 1143), an omen forming of a luminous column
224 appeared in the northern portion of the sky. This omen was visible for eight days. Three
225 sovereigns died after the appearance of this phenomenon" (N=3; Andreasyan, 2000).

226

227 **3. Results and Discussions**

228 The main purpose of this study is to present an aurora catalog for the Anatolia
229 during the medieval period. 23 different historical aurora records are presented during
230 the medieval period in Anatolia (Table 2). Another aurora catalog containing 45 records
231 collected from different sources is also given (Le Strange, 1890; Link, 1962; Botley,
232 1964; Newton, 1972; Dall'Olmo, 1979; Silverman, 1998; Basurah, 2006) for the Middle
233 East region (Table 4). The aurora observations were described as "sign", "a fiery shining
234 sign", "a very fabulous sign", "red sky", "a fiery red sky", "sky fire", "a great fire", "a fiery
235 cloud", "a frightful and strange omen", "a fire-like omen", "a bloody spear light", "blaze of
236 light", "a sunlight light". The form of aurorae was defined as "luminous column". The
237 aurorae were generally seen in the northern and eastern part of the sky. The color of the
238 aurora observations were red, green, yellow and black depending on the height and

239 relative concentrations of the nitrogen and oxygen compounds in the atmosphere
240 (Eather, 1980). The number N sort out only the probability that an event could be an
241 aurora or not. The possibility of the aurora could be decided by regarding its duration
242 geomagnetic latitude, color, brightness and dynamics. Aurorae observations with $N \geq 3$
243 tend to be true.

244 The aurora records strongly correlated to high solar activity (Siscoe, 1980)
245 provide some information about the Sun-Earth interaction as previously proved by
246 Scafetta (2012). They are the longest direct observational records available for studying
247 solar and space weather dynamics. Stronger solar dynamics were realized in aurorae
248 with color green-yellow-red as seen in 772 and 773 in Amida. Miyake et al. (2012) and
249 Usoskin et al. (2013) confirmed the 770s high solar events presenting ^{14}C
250 measurements from the annual rings of the cedar trees in Japan and inappropriate
251 carbon cycle model in German oak, respectively. The auroral records have also proven
252 itself to be a valuable data source for the investigation of the secular variation of solar
253 activity. Paleomagnetic researchs demonstrate that the recent dipole strength was
254 nearly 50% weaker than it was 2500 years ago (Raspopov et al., 2003). Siscoe and
255 Siebert (2002) indicated that the dipole strength was 1.5 times as large as that of the
256 present value. The long-term variation of the geomagnetic latitude and dipole moment
257 might be the reason of observing aurorae in Anatolia. The average dipole moment for
258 750 and 1250 are $8.85 \cdot 10^{22} \text{ Am}^2$ and $8.90 \cdot 10^{22} \text{ Am}^2$ slightly higher than the present
259 value of $7.78 \cdot 10^{22} \text{ Am}^2$ (Korte and Constable, 2005; Gallet et al., 2005). According to the
260 Kawai et al. (1965) the axis of geomagnetic dipole could have inclined towards Asia at
261 around the 11th-12th centuries. In addition, the possibility of auroral occurrence at low
262 latitudes could demonstrate changes in the location of the North magnetic pole

263 (Silverman, 1998). This study could also be significant constraints for exploration of solar
264 activity on Earth's atmosphere and climate during the historical periods previously
265 proved by Bard and Frank (2006). According to the Bard and Frank (2006) solar
266 fluctuations caused climatic changes called Medieval Warm Period (900–1400). The
267 Maunder Minimum (1645-1715) which delineates the coldest part of the Little Ice Age
268 (Eddy, 1976) is depicted by a solar activity reduction, as well as a sunspots scarcity. A
269 new low sunspot number and lower aurora activity, which occurring in the period
270 between 2014 and 2025 (Li et al., 2018), might have led to a temporary change in
271 natural environment influencing the general public's attitudes and socio-economic
272 factors. Also, resource scarcity and disparities could also lead to social tensions in the
273 communities for the next ten years.

274 The position of the magnetic poles is the most important factor defining whether
275 the aurora was observed at a geographic region. Palaeomagnetic data provides similar
276 longitude values (85° N, 115° E) for the north geomagnetic pole (Merrill and McElhinny,
277 1983). The positions of the north magnetic pole have changed from 10° to 358° in
278 longitude and between 79° and 88° in latitude over the past 2500 years (Ohno and
279 Hamano, 1992). During the interval of 1127–1129, the north geomagnetic pole was
280 located at a geographic latitude of 80° N, and geographic longitudes including East Asia
281 (Merrill and McElhinny, 1983; Constable et al., 2000). According to the Fukushima
282 (1994), the north magnetic pole was located at 81°N in the eastern hemisphere near
283 East Asia (100°E to 130°E) in the medieval period. The north geomagnetic pole of dipole
284 axis computed from the average spherical harmonic models were 84.8° N and 103.8° E
285 in 1100 (Constable et al., 2000).

286 The geomagnetic latitude of Amida (Turkey) in the late 8th century to be about
287 50.1° (Neuhäuser and Neuhäuser, 2015) based on the Holocene geomagnetic field
288 (Nilsson et al., 2014) and 45° (Hayakawa et al., 2017) based on the location of the North
289 Geomagnetic Pole over the past 2000 years (Merrill and McElhinny, 1983). According to
290 the Silverman (2006), the geomagnetic latitude of Edessa and Antioch was 41° and 40°,
291 respectively. Strong geomagnetic storms, indicating strong solar activity around 770 and
292 1100 should have been exist in Amida (45°), Edessa (41°) and Antioch (40°).

293 The Medieval Climate Anomaly characterizing by warmer and drier climate
294 conditions generally related to relatively prolonged solar activity during the 12th and 13th
295 centuries (Jirikowic and Damon, 1994). Damon and Jirikowic (1992) estimated that the
296 rise of global temperature maxima stays below 0.8°C and anomalously high
297 temperatures pursue during the 12th and 13th centuries. Sharma (2002) revisited the
298 issue and proposed that very large solar variations have modulated climate over the
299 past 200 millennia. Gallet et al. (2006) demonstrated that fluctuations in the
300 geomagnetic field might trigger significant climate change impacting on some major
301 societal events in the Middle East at longer time. An inverse relationship amidst the
302 aurora records, severe winter and famine is estimated during the years of 1100 in
303 Anatolia. The high aurora activity could be reason of temperature rise during the
304 medieval period in Anatolia.

305 Haldon et al. (2014) subdivided Medieval into four climatic phases as dry (270-
306 540), very wet (540-750), moderately dry (750-950) and moderately wet (950-1400)
307 depending on archaeological, environmental, climate, high resolution pollen and stable
308 isotope data from sites in central and northwestern Turkey. However, this subdivision
309 should be revised as dry (0-560), very wet (560-725), moderately dry (725-990) and

310 moderately wet (990-1400) as given in Table 5 by using Anatolian and Middle Eastern
311 aurora observations besides meteorological data. Affective cold winter, wet climate
312 conditions, drought and famine could be occurred for Asia Minor and Middle East region
313 during 990-1400. It seems that the relatively high auroral activity during the years around
314 1100 both in Anatolia and Middle East indicates that solar activity must have been
315 intense rather than moderate causing the climate warmer (Fig. 2). In this period, Islamic
316 world was converted into an enlightened center for science, education, medicine, and
317 philosophy as previously stated by Hamilton (1982). An important increase in agricultural
318 production and population seems to have occurred in Anatolia after the year of 1100
319 where the aurora observations are intense (Fig. 2). Vaquero and Trigo (2012) stated the
320 period from 1095 to 1204 as an average solar cycle length. Bekli et al. (2017)
321 demonstrated that the naked-eye sun spot observations from 974 to 1278 and aurora
322 records from 965 to 1273 show multiple unusual peaks related to the high solar activitiy
323 at latitudes below 45° by using Chinese and Korean historical sources.

324 In the medieval period, the people were thought that the aurora was a sign of
325 anger of God, menace, threat, apocalyptic, doomsday, misfortunes, war, slaughter and
326 blodshed. Little (2007) described an aurora observation record in Constantinople at 396:
327 "All people stacked to the church, and the place could not receive huge mass. But after
328 that great tribulation, when God had accredited His word, the cloud began to diminish
329 and at last disappeared. The people, freed from fear for a while, again heard that they
330 must migrate, because the whole city would be destroyed on the next Sabbath. The
331 whole people left the city with the Emperor; no one remained in his house. The city was

332 saved. What shall we say? adds Augustine. Was this the anger of God or rather His
333 mercy”?

334 In the Chronicle of Zuqnin, an aurora observation recorded in 772, Amida
335 (Turkey) was described: “Another sign was seen in the northern side, and its view gave
336 evidence about the menace of God against us. For the intelligent person the sign
337 indicated menace. Many people said many things about it; some said it announced
338 bloodshed, and others said other things. But who knows the deeds of the Lord”?

339 Matthew of Edessa described the aurora phenomenon as a sign of rage,
340 catastrophe, and celestial wrath of God over the Christians and bloodshed of Christians.
341 Matthew of Edessa reported: “These predictions were truly realized. No favorable omen
342 did not appear since the day when the Franks began their expedition. All omens noticed
343 to realize the destruction, death, slaughter, famine and other diverse disasters”
344 (Andreasyan, 2000).

345

346 **4. Conclusions**

347 This study establishing the strong solar activity during medieval period reports the
348 aurora observations recorded both in Anatolia and Middle East region integrating
349 meteorological data. The following conclusions can be summarized as follows:

350 1. Historical Anatolian aurora catalog (hAAC) containing 23 different aurora records provide
351 important information on variations in geomagnetic and auroral activity during medieval
352 period.

353 2. In Anatolia and Middle East, there was a relatively high auroral activity during the years
354 around 1100 is quite consistent with the naked-eye sunspot observations.

355 3. *The historical Anatolian Aurora catalog exceptionally promote that there is a remarkable*
356 *correlation between the past solar activity and aurora activity.*

357 4. The intensity of dipole moment and position of the geomagnetic pole might be the most
358 important factors observing aurorae in Anatolia and Middle East regions during medieval
359 period.

360 5. In the Medieval period, Four climatic phases portrayed by Haldon et al. (2014) is revised
361 as dry (0-560), very wet (560-725), moderately dry (725-990) and moderately wet (990-
362 1400) depending on aurora observations besides meteorological data.

363 6. Further investigations are required to establish a relationship between the solar variability
364 and climatic changes, such as the Medieval Climate Anomaly or Little Ice Age.

365 7. People in medieval Anatolia were believed that the aurora was a sign of celestial wrath of
366 God, menace, threat, apocalyptic, doomsday, misfortunes, war, slaughter, rage,
367 catastrophe and bloodshed.

369 **5. Acknowledgements**

370 We thank Elif KARSLI (KTU), Alam KHAN (GU) and anonymous referees for their
371 thorough critical and constructive comments. The authors are grateful to Editor for his
372 advice to improve the quality of this manuscript.

374 **6. References**

375 Andreasyan, H.D.: Urfalı Mateos vekayinamesi (952-1136) ve Papaz Grigor'un
376 zeyli (1136-1162), Türk Tarih Kurumu, Ankara (in Turkish). 2000.

377 Baldwin, M.W.: A History of the Crusades: The First Hundred Years, University of
378 Pennsylvania Press, 1969.

379 Bard, E. and Frank, M.: Climate change and solar variability: What's new under
380 the sun, *Earth and Planetary Science Letters*, 248(1), 1-14. 2006

381 Basurah, H. M.: Records of aurora in the Islamic chronicles during 9th–16th
382 centuries. *Journal of Atmospheric and Solar-Terrestrial Physics*, 68(8), 937-941, 2006.

383 Bekli, M.R., Zougab, N., Belabbas, A., Chadou, I.: Non-parametric Data Analysis
384 of Low-latitude Auroras and Naked-eye Sunspots in the Medieval Epoch, *Solar Physics*
385 292:52, 2017.

386 Botley, C.M.: Aurora in S.W. Asia 1097-1300. *J. British Astr. Assoc.* 74, 293-296,
387 1964.

388 Chabot, J.B.: *Chronique de Michel le Syrien*, (French translation accompanied by
389 the original Syrian text), vols. 1-4, photo-printed edition, Culture and Civilisation,
390 Brussels. 1968.

391 Constable, C. G., Johnson, C. L., and Lund, S. P.: Global geomagnetic field
392 models for the past 3000 years: transient or permanent flux lobes? *Phil. Trans. R. Soc.*
393 *Lond.*, A 358, 991-1008, 2000.

394 Dall'Olmo, U.: An additional list of auroras from European sources from 450 to
395 1466 A.D., *Journal of Geophysical Research*, 84, 1525-1535, 1979.

396 Damon, P.E. and Jirikowic, J.L.: Solar Forcing of Global Climate Change?: In
397 Taylor, R.E., Long, A., and Kra, R. (eds.), *Four Decades of Radiocarbon*, Springer-
398 Verlag, New York, 117 pp., 1992.

399 Eather, R.H.: *Majestic light: The Aurora in Science, History and the Arts*, AGU,
400 Washington D.C., 1980.

401 Eddy, J.A.: The Maunder Minimum, *Science* 192, 1189–1202, 1976.

402 Fritz. H.: *Verzeichnis beobachteter Polarlichter*, C. Gerold's Sohns, Vienna, 1873.

403 Frobesius, J.N.: *Luminis Atque Aurorae Borealis Spectaculorum Recensio*
404 Chronologica, Helmstadt, Germany, 1739.

405 Gallet, Y., Genevey, A., and Fluteau, F.: Does Earth's magnetic field secular
406 variation control centennial climate change? *Earth and Planetary Science Letters*,
407 236(1), 339-347, 2005.

408 Gallet, Y., Genevey, A., Le Goff, M., Fluteau, F., and Eshraghi, S.A.: Possible
409 impact of the Earth's magnetic field on the history of ancient civilizations. *Earth and*
410 *Planetary Science Letters*, 246(1), 17-26, 2006.

411 Haldon, J., Roberts, N., Izdebski, A., Fleitmann, D., McCormick, M., Cassis, M.,
412 Doonan, O., Eastwood, W., Elton, H., Ladstätter, S., Manning, S., Newhard, J., Nicoll,
413 K., Telelis, I., and Xoplaki, E.: The Climate and Environment of Byzantine Anatolia:
414 Integrating Science, History, and Archaeology, *Journal of Interdisciplinary History*, XLV
415 (2), 113–161, 2014.

416 Hamilton, A.R.G.: *Studies on the civilization of Islam*. United States. Princeton
417 University Press, 1982.

418 Harrak, A.: The Chronicle of Zuqnīn, Parts III and IV: AD 488-775: Translated
419 from Syriac with Notes and Introduction, 36, 404p., PIMS, 1999.

420 Hayakawa, H., Tamazawa, H., Kawamura, A. D., and Isobe, H.: Records of
421 sunspot and aurora during CE 960–1279 in the Chinese chronicle of the Sòng dynasty.
422 *Earth, Planets and Space*, 67(1), 1-14, 2015.

423 Hayakawa, H., Mitsuma, Y., Fujiwara, Y., Kawamura, A. D., Kataoka, R., Ebihara,
424 Y., Kosaka, S., Iwahashi, K., Tamazawa, H., and Isobe, H.: The earliest drawings of
425 dateable auroras and a two-tail comet from the Syriac Chronicle of Zūqnīn. *Publications*
426 *of the Astronomical Society of Japan*, 69(2), 2017.

427 Jirikowic, J.L., Damon, P.E.: The medieval solar activity maximum, *Climatic*
428 *Change* 26(2), 309–316, 1994.

429 Kawai, N., Hirooka, K. and Sasajima, S.: Counterclockwise rotation of the
430 geomagnetic dipole axis revealed in the world-wide archaeo-secular variations, *Proc.*
431 *Japan Acad.*, 41, 398-403, 1965.

432 Keimatsu, M.: A chronology of aurorae and sunspots observed in China, Korea
433 and Japan, *Ann. Sci.*, 13, 1-32, 1976.

434 Korte, M., and Constable, C.G.: The geomagnetic dipole moment over the last
435 7000 years-new results from a global model. *Earth and Planetary Science Letters*,
436 236(1), 348-358, 2005.

437 Korte, M. and Stolze, S.: Variations in mid-latitude auroral activity during the
438 Holocene, *Archaeometry*, 58 (1), 159-176, 2016.

439 Krey, A.C.: *The First Crusade: The Accounts of Eyewitnesses and Participants*,
440 Princeton, 139-142, 1921.

441 Krivsky, L., and Pejml, K.: Solar activity aurorae and climate in Central Europe in
442 the last 1000 years. *Bulletin of the Astronomical Institute of the Czechoslovak Academy*
443 *of Sciences* No 75, 1988.

444 Le Strange, G.: *Palestine under the Moslems*. Houghton, Mifflin and Company,
445 Boston and New York, 1890.

446 Fi, F.Y., Kong, D.F., Xie, J.L., Xiang, N.B., Xu, J.C.: Solar cycle characteristics
447 and their application in the prediction of cycle 25. *Journal of Atmospheric and Solar-*
448 *Terrestrial Physics*, 181, 110-115, 2018.

449 Link, F.. *Observations et catalogue des aurores boréales apparues en Occident*
450 *de-626 à 1600*. *Geofys. Sb.* X, 297–392, 1962.

451 Little, L.K.: *Plague and the end of antiquity: the pandemic of 541-750*. Cambridge
452 University Press, UK, 2007.

453 Lovering, J.: *On the periodicity of the aurora Borealis*, Mem. Amer. Acad. Arts
454 Sci., X., 1868.

455 Mairan, J.J.: *Traite physique et historique de l'aurore borale*. Paris, 1733.

456 Mairan, J.J.: *de Ort, Traite Physique et Historique de l'Aurore Boreale*, Imprimerie
457 Royale, Paris, 1754.

458 Matsushita, S.: *Ancient aurorae seen in Japan*, J. Geophys. Res., 61, 297-302,
459 1956.

460 Mekhaldi, F., Muscheler, R., Adolphia, F., Aldaha, A., Beer, J, McConnel, J.R.,
461 Possnert, G., Sigl, M., Svensson, A., Synal, H.A., Welten, K.C. and Woodruff, T.E.:
462 Multirodionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and
463 993/4, *Nature Communications* 6:8611, 2015.

464 Merrill, R.T. and McElhinny, M.W.: *The Earth's Magnetic Field: Its History, Origin
465 and Planetary Perspective*, Academic Press, London, 1983.

466 Miyake, F., Nagaya, K., Masuda, K., and Nakamura, T.: A signature of cosmic-ray
467 increase in AD 774-775 from tree rings in Japan, *Natura* 486 (7402), 240, 2012.

468 Nakazawa, Y., Okada, T., & Shiokawa, K.: Understanding the “SEKKI”
469 phenomena in Japanese historical literatures based on the modern science of low-
470 latitude aurora. *Earth, planets and space*, 56(12), e41-e44, 2004.

471 Neuhäuser, R. and Neuhäuser, D.L.: Solar activity around AD 775 from aurorae
472 and radiocarbon. *Astronomische Nachrichten*, 336, 225–248, 2015.

473 Newton, R.R.: *Medieval Chronicles and the Rotation of the Earth*, the Johns
474 Hopkins University Press, Baltimore, 1972.

475 Nilsson, A., Holme, R., Korte, M., Suttie, N. and Hill, M.: Reconstructing Holocene
476 geomagnetic field variation: new methods, models and implications. - *Geophysical*
477 *Journal International*, 198(1), 229-248, 2014.

478 Pang, K.D., and Yau, K.K.: Ancient observations link changes in Sun's brightness
479 and Earth's climate. *Eos, Transactions American Geophysical Union*, 83(43), 481-490,
480 2002.

481 Russell, K.W.: The earthquake chronology of Palestine and northwest Arabia from
482 the 2nd through the mid-8th century AD. *Bulletin of the American Schools of Oriental*
483 *Research*, 37-59, 1985.

484 Scafetta, N.: A shared frequency set between the historical mid-latitude aurora
485 records and the global surface temperature. *Journal of Atmospheric and Solar–*
486 *Terrestrial Physics* 74, 145–163, 2012.

487 Scafetta, N., and Willson, R.C.: Planetary harmonics in the historical Hungarian
488 aurora record (1523–1960). *Planetary and Space Science*, 78, 38-44, 2013

489 Schonning, G.: Nordlyset Aelde. *Skrift. Kiobenh. Selsk.* 8, 1760.

490 Schove, D.J.: Sunspot epochs 188 A. D. to 1610 A. D, *Popular Astronomy*, 56,
491 247-251, 1948.

492 Schove D.J. and Ho P.Y.: Chinese aurorae: AD 1048-1070, *J. British. Astr. Soc.*
493 69, 295-304, 1959.

494 Schröder, W.: On the Existence of the 11-Year Cycle in Solar and Auroral Activity
495 before and during the So-Called Maunder Minimum. *Journal of geomagnetism and*
496 *geoelectricity*, 44(2), 119-128, 1992.

497 Schröder, W.: Aurorae during the so-called Spoerer minimum. *Solar physics*,
498 151(1), 199-201, 1994.

499 Schröder, W.: A note on auroras during the so-called Maunder-Minimum. *Acta*
500 *Geodaetica et Geophysica Hungarica*, 39(4), 355-358, 2004.

501 Sharma, M.: Variations in solar magnetic activity during the last 200,000 years: is
502 there a Sun-climate connection? *Earth Planet. Sci. Lett.* 199, 459–472, 2002.

503 Shiokawa, K., Ogawa, T., and Kamide, Y.: Low-latitude auroras observed in
504 Japan: 1999–2004, *Journal of Geophysical Research: Space Physics*, 110(A5), 2005.

505 Silverman, S.M.: Secular variation of the aurora for the past 500 years, *Reviews*
506 *of Geophysics*, 30, 333-351, 1992.

507 Silverman, S.: Early auroral observations, *Journal of Atmospherical and Solar–*
508 *Terrestrial Physics*, 60(10), 997-1006, 1998.

509 Silverman, S.M.: Comparison of the aurora of September 1/2, 1859 with other
510 great auroras. *Advances in Space Research*, 38(2), 136-144, 2006.

511 Siscoe, G.L.: Evidence in the auroral record for secular solar variability,
512 *Geophys.*, 78,647-658, 1980.

513 Stothers, R.B.: Solar cycle during classical antiquity, *Astron. Astrophys.*, 77, 121–
514 127, 1979.

515 Seydl, A.: A list of 402 northern lights observed in Bohemia, Moravia and Slovakia
516 from 1013 to 1951, *Geofys. Sb.*, 17, 159, 1954.

517 Trombley, F.R. and Watt, J.W.: *The chronicle of pseudo-Joshua the Stylite*, 32,
518 Liverpool University Press, UK, 2000.

519 Turtledove, H.: *The Chronicle of Theophanes: Anni Mundi 6095-6305 (AD 602-813)*. University of Pennsylvania Press, USA, 1982.

521 Usoskin, I.G., Kromer, B., Ludlow, F., Beer, J., Fiedrich, M., Kovaltsov, G.A.,

522 Solanki, S.K. and Wacker, L.: The AD 775 cosmic event revisited: the Sun is to blame,

523 Astronomy & Astrophysics 552, L3, 2013.

524 Vaquero, J.M., Gallego, M.C. and Garcia, J.A.: A 250-year cycle in naked-eye

525 observations of sunspots, Geophysical Research Letters, 29 (20), 1997,

526 doi:10.1029/2002GL014782, 2002.

527 Vaquero, J.M., Gallego, M.C., Barriendos, M., Rama, E., and Sanchez-Lorenzo,

528 A.: Francisco Salvá's auroral observations from Barcelona during 1780–1825. Advances

529 in Space Research, 45(11), 1388-1392, 2010.

530 Vaquero, J.M., Trigo, R.M.: A Note on Solar Cycle Length during the Medieval

531 Climate Anomaly, Solar Physics 279, 289-294, 2012.

532 Vazquez, M., Vaquero, J.M., Curto, J.J.: On the connection between solar activity

533 and low-latitude aurorae in the period 1715–1860. Solar Physics, 238, 405–420, 2006.

534 Wolf, R.: Nordlichtcatalog, Vierteljahrsschro Naturforsch. Ges. Zuerich, 2, 353,

535 1857.

536

537

538

539

540

541

542

543

544

545 **TABLES CAPTIONS:**

546 **Table 1.** Historical Aurora catalogs compiled by different authors.

547 **Table 2.** Historical Anatolian Aurora catalogs during medieval period compiled in this
548 study.

549 **Table 3.** The number of historical aurora records observed in Anatolia.

550 **Table 4.** Ancient aurora observations recorded in Middle East region during medieval
551 period.

552 **Table 5.** Summary of Ancient climate change based on the aurora observations and
553 meterological data in Anatolia during medieval period.

554

555

556 **FIGURE CAPTIONS:**

557 **Figure 1.** The location map of the historical Anatolian records during medieval period.

558 **Figure 2.** Comparison of historical aurora observations with climate change and
559 meteorological data in Anatolia and neighbouring regions. The upper panel
560 shows the meteorological data climatic subdivisions, the middle panel shows
561 the aurora observations in Anatolia and Middle East regions and the lower
562 panel shows the land use and population in Anatolia. Meteorogical and land
563 use data are taken from Haldon et al. (2014).

564 **Figure 3.** The number of aurorae records per century observed in the Anatolia and in
565 Middle East.

566

567 **TABLES**568 **Table 1.**

Sources	Number of Observations	Region	Period
Link, 1962	385	Europe	626 B.C. to 1600 A.D.
Link, 1964	209	Europe	1600-1700 A.D.
Stothers, 1979	67	Greece and Italy	480 B.C. to 333 A.D.
Newton, 1972	65	Europe	450-1263 A.D.
Dall'Olmo, 1979	61	Europe	450-1461 A.D.
Keimatsu, 1976	260	China, Korea, and Japan	687 B.C. to 1600 A.D.
Matsushita, 1956	18	Japan	620-1909 A.D.
Basurah, 2006	18	Arabia, North Africa, Spain	800-1600 A.D.
This Study	23	Anatolia	1-1453 A.D.
This Study	45	Middle East	1-1453 A.D.

569

570

571

572

Table 2.

#	Date	Location	Description	N	References
1	333	Constantinople	Sky fire.	1	Stothers, 1979
2	396	Constantinople	A fiery cloud was seen from the East.	3	Little, 2007
3	22 Ağustos 502, Thursday	Edessa	A great fire appeared to us blazing in the northern quarter the whole night.	3	Link, 1962
					Botley, 1964
4	633	Constantinople	A bloody spear and a light of the sky were sighted for nearly the all night.	4	Dall'Olmo, 1979
5	668	Constantinople	There was a sign appeared in the sky in the same winter.	1	Turtledove, 1982
6	675	Constantinople	In this year, a sign was seen in the sky on a Sabbath day.	1	Turtledove, 1982
7	734	Constantinople	There was a sign in the sky which shone like a burning brand.	2	Turtledove, 1982
8	June 743	Constantinople	In June, a sign appeared on the northern sky.	1	Turtledove, 1982
9	744	Constantinople	This year, a sign appeared on the northern sky.	1	Turtledove, 1982
10	772	Amida	Another sign appeared in the northern side.	3	Harrak, 1999
11	June 773, Friday	Amida	The sign that was seen a year ago in the northern region was seen again in this year, in the month of June, on a Friday.	3	Neuhäuser and Neuhäuser, 2015
					Harrak, 1999
12	988	Constantinople	Frightened fiery pillars seen in the northern region for some nights.	3	Dall'Olmo, 1979
13	21 November 1097, Monday	Edessa	A frightful and strange omen appeared in the northern portion of the sky.	3	Link, 1962
					Silverman, 2006
					Andreasyan, 2000
					Botley, 1964
14	30 December 1097, Friday	Antioch	A very fabulous sign was watched in the sky.	3	Silverman, 1998
					Baldwin, 1969
					Botley 1964
					Kery, 1921
15	3 June 1098, Saturday	Antioch	A fiery red sky was seen.	2	Link, 1962
					Silverman, 2006
					Botley 1964

Table 2 continued.

16	27 September 1098, Monday (10:00)	Edessa	A second omen appeared in the northern portion of the sky at the fourth hour of the night the sky flared up more than it had before and turned a deep red color.	4	Andreasyan, 2000 Link, 1962
17	27 September 1098, Monday	Antioch	Blaze of light girdled Pole.	1	Link, 1962 Botley, 1964
18	1099	Edessa	A fire-like omen of a very deep red color appeared in the sky.	3	Andreasyan, 2000 Link, 1962 Silverman, 2006
19	18 November 1100, Sunday	Edessa	The northern portion of the sky reddened, appearing more frightful and wondrous than the previous phenomenon.	3	Andreasyan, 2000 Silverman, 2006 Link, 1962
20	1108	Adana	A light like the sunlight was seen in the middle of the night, and remained about three hours in Djihan.	2	Chabot, 1968 Dall'Olmo, 1979
21	16 December 1117, Monday	Asia Minor			Link, 1962 Newton, 1972
22	1119	Asia Minor			Link, 1962
23	1 April 1143, Thursday	Edessa	A sign appeared in the sky from the north in the form of a luminous column	3	Andreasyan, 2000

Table 3.

#	City	Latitude [Degree, N]	Longitude [Degree, E]	Numbers of observation
1	Constantinople	41.03	28.99	9
2	Edessa	37.17	38.79	6
3	Amida	37.93	40.21	2
4	Antioch	36.2	36.16	3
5	Adana	36.99	35.34	1
6	Asia Minor	39.93	32.85	2
Total				23

Table 4.

#	Date	Place	Descriptions	References
1	65	Jerusalem		Botley, 1964
2	66	Jerusalem		Botley, 1964
3	400	Byzantium		Link, 1962
4	402	Byzantium		Link, 1962
5	473	Byzantium		Link, 1962
6	474	Byzantium		Link, 1962
7	502 Agust 22	Palestine	A great fire appeared to us blazing in the northern quarter the whole night	Botley, 1964
8	743 June	Syria	A mighty sign appeared in the heavens like columns of fire blazing in June	Chabot, 1968
9	743 September	Middle East	Another sign appeared in September like a flame of fire and spread from the East to the West	Cook, 2001
10	745 January	Middle East	In the middle of the sky, a large column of fire appeared during the night	Chabot, 1968
11	793 May 11-17	Iraq	There occurred a violent wind and overshadowing of the heavens and a redness in the sky, on the night of Sunday	Basworth, 1989
12	817 October 29	Iraq	A reddish glow appeared in the sky and stayed until late at night like a two red columns	Basurah, 2006
13	840 September 24	Middle East	A fiery cloud appeared in the northern part of the sky, moving from east to West.	Dall'Olmo, 1979
14	931 November 9	Baghdad	An intense red glow appeared in the city of Al-Salam (Baghdad)	Basurah, 2006
15	939 October 17	Syria	An intense red glow appeared in the atmosphere coming from North and West	Basurah, 2006
16	1050 Agust 5	Middle East	Through which light shone out broad and glittering, and then became extinguished	Le Strange, 1890
17	1097	Palestine		Botley, 1964
18	1100	Palestine		Botley, 1964
19	1102	Palestine		Botley, 1964
20	1106	Syria		Botley, 1964
21	1110	Syria		Botley, 1964
22	1117 December 16	Palestine		Newton, 1972 Botley, 1964
23	1119	Armenia		Botley, 1964
24	1121 May, Monday	Syria	There appeared a full arc, which had not been observed for many generations	Botley, 1964
25	1129 January	Middle East	A fire appeared in the northern region. A sort of pillar was stretched toward the south.	Dall'Olmo, 1979
26	1129 March	Middle East	A fire appeared in the northern region. A sort of pillar was stretched toward the south.	Dall'Olmo, 1979

Table 4. continued

27	1129 April	Middle East	A fire appeared in the northern region. A sort of pillar was stretched toward the south.	Dall'Olmo, 1979
28	1130 November	Middle East	A burning fire was seen in the northern region	Dall'Olmo, 1979
29	1135 July 21	Middle East	A light like a torch moved from east to West. The light of the moon and of the stars was obscured. A frightful noise followed	Dall'Olmo, 1979
30	1138 October	Syria	A red sign was seen in the northern part of the sky	Botley, 1964
31	1140 June 22	Syria	Red lances were seen in the northern region.	Botley, 1964
32	1141 August	Middle East	Rays of fire were observed in the northern region.	Dall'Olmo, 1979
33	1141 September	Syria	A brightness as bright as the sun broke out in the northeast. It shone as if the sky were on fire.	Botley, 1964
34	1149	Syria		Botley, 1964
35	1150	Palestine		Botley, 1964
36 37	1176 September 6 - October 5	Syria	An intense red light appeared in the sky from the East	Basurah, 2006
	1179 May 7	Syria	The sky became cloudy and pillars of fire appeared at the horizon	Basurah, 2006
38	1182	Byzantium		Link, 1962
39	1187 July	Tiberias, Israel		Botley, 1964
40	1223 October 26	Syria	We saw from Bani Helal Mountain (toward the North direction) a hugelight over Gassune; we thought that Damascus was on fire.	Basurah, 2006
41	1264 July 20-30	Syria	A bright glowing columns appeared toward North-West	Basurah, 2006
42	1370 November 27	Jerusalem	A great reddish glow appeared in the sky of Jerusalem	Basurah, 2006
43	1370 November 27	Damascus	A great reddish glow appeared in the sky of Damascus	Basurah, 2006
44	1370 November 27	Homs	A great reddish glow appeared in the sky of Homs	Basurah, 2006
45	1370 November 27	Aleppo	A great reddish glow appeared in the sky of Aleppo	Basurah, 2006

601 **Table 5.**

Medieval Period		Climate
Haldon et al. (2014)	This Study	
270-540	0-560	Dry
540-750	560-725	Very wet
750-950	725-990	Moderately dry
950-1400	990-1400	Moderately wet

602

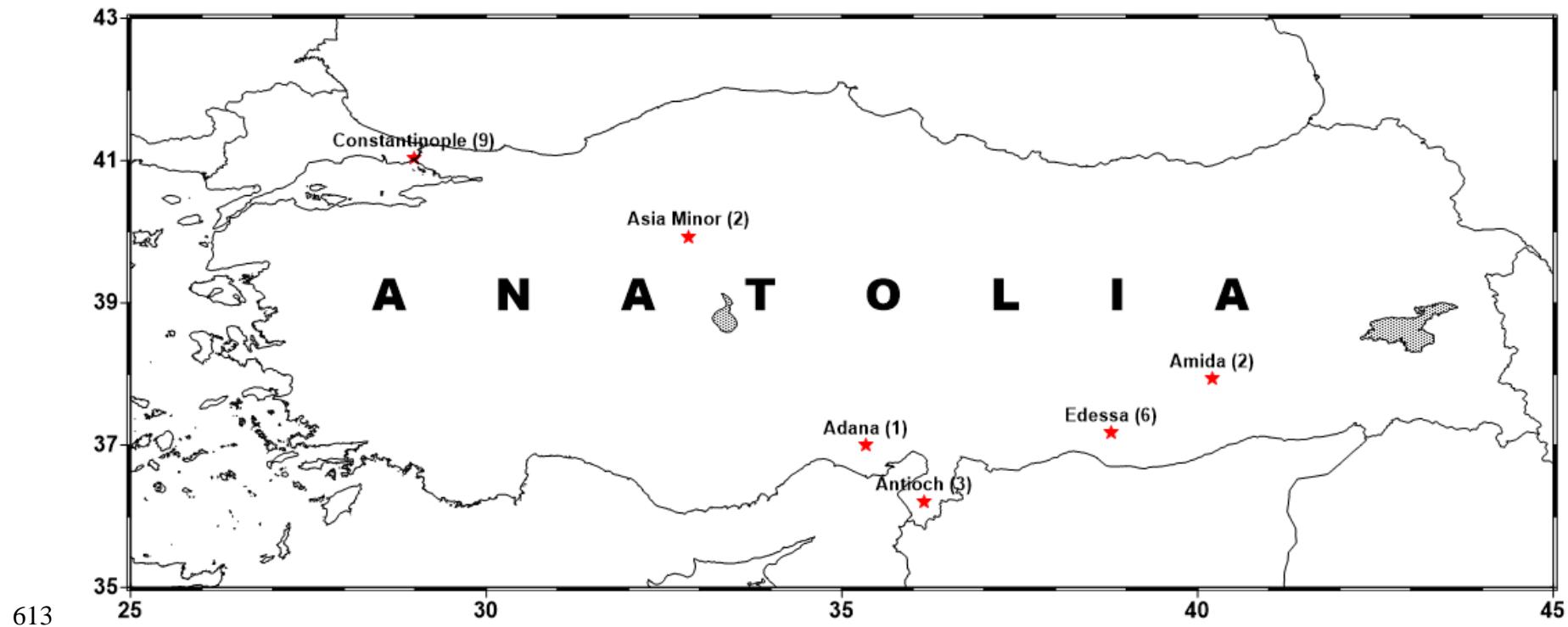
603

604

605

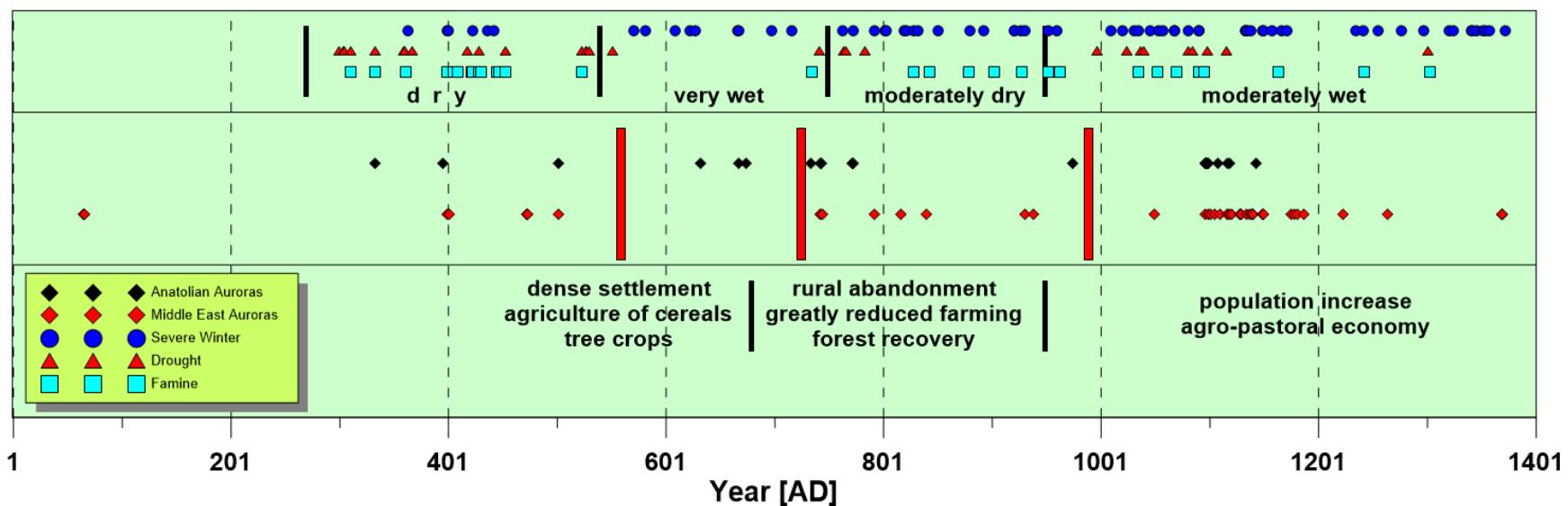
606

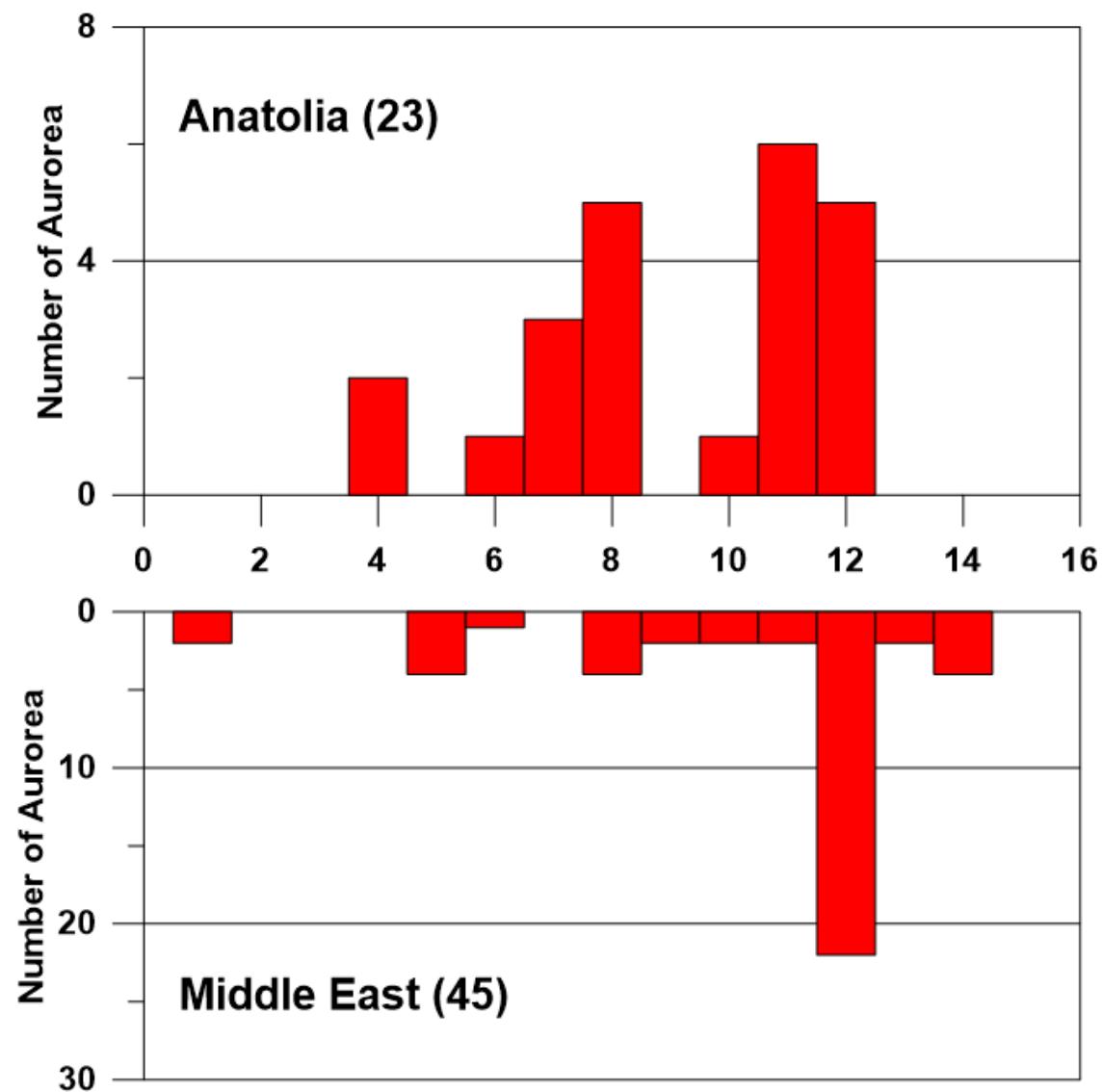
607


608

609

610


611


612 **Figures**

614 **Figure 1.**

615

