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Abstract. In this work, the effect of the observing geometry on the tomographic reconstruction quality of both a regularized1

Least Squares (LSQ) and a Compressive Sensing (CS) approach for water vapor tomography is compared based on synthetic2

Global Navigation Satellite System (GNSS) Slant Wet Delay (SWD) estimates. In this context, the term observing geometry3

mainly refers to the number of GNSS sites situated within a specific study area subdivided into a certain number of volumetric4

pixels (voxels) and to the number of signal directions available at each GNSS site. The novelties of this research are 1) the5

comparison of the observing geometry’s effects on the tomographic reconstruction accuracy when using LSQ resp. CS for the6

solution of the tomographic system and 2) the investigation of the effect of the signal directions’ variability on the tomographic7

reconstruction. The tomographic reconstruction is performed based on synthetic SWD data sets generated, for many samples8

of various observing geometry settings, based on wet refractivity information from the Weather Research and Forecasting9

(WRF) model. The validation of the achieved results focuses on a comparison of the refractivity estimates with the input WRF10

refractivities. The results show that the recommendation of Champollion et al. (2004) to discretize the analyzed study area into11

voxels with horizontal sizes comparable to the mean GNSS inter site distance represents a good rule of thumb for both LSQ12

and CS based tomography solutions. In addition, this research shows that CS needs a variety of at least 15 signal directions13

per site in order to estimate the refractivity field more accurately and more precisely than LSQ. Therefore, the use of CS is14

particularly recommended for water vapor tomography applications for which a high number of multi-GNSS SWD estimates15

are available.16

1 Introduction17

An accurate determination of the three dimensional (3D) atmospheric water vapor distribution is essential for weather forecast-18

ing and climate research. In addition, atmospheric water vapor delays the microwave signal propagation within the atmosphere19

and thus represents an error source in e.g. Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture20

Radar (SAR) (InSAR) observations. Therefore, a precise knowledge of the water vapor field e.g. is required for accurate defor-21

mation monitoring using InSAR. However, the atmospheric water vapor distribution is difficult to model because it is highly22

variable in time and space. Several approaches exist for reconstructing the 3D tomographic water vapor reconstruction using23

one dimensional (1D) GNSS SWDs, see Section 2.24

One of the main limiting factors in water vapor tomographies consists in the point-wise GNSS observing geometry, which25
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causes an ill-conditioned inverse tomographic model that needs to be regularized. Yet, even after regularization, the observing1

geometry composed e.g. of the number and the geographic distribution of the GNSS sites, the SWD signal directions, and the2

voxel discretization still effects the quality of the tomographic solution. This work therefore meets the challenge of comparing3

the observing geometry’s effect on a GNSS based water vapor tomography solved by means of Least Squares (LSQ) resp. by4

means of Compressive Sensing (CS). By investigating the observing geometry’s effect on the LSQ and CS solution strategies,5

the differences between the LSQ solution and a CS solution approach benefiting of the signal’s sparsity in an appropriate trans-6

form domain for regularization are better understood and recommendations can be given for future water vapor tomography7

campaigns and the processing of their measurements. Based on synthetic data sets deduced from the Weather Research and8

Forecasting Model (WRF) described in Skamarock et al. (2005), the presented work answers the research questions 1) in how9

far the rule of thumb of Champollion et al. (2004), derived for LSQ and recommending a voxel size corresponding to the mean10

GNSS inter site distance, can be transferred from a LSQ solution to a CS solution. In addition, this research investigates 2) in11

which settings CS is able to more accurately and more precisely reconstruct the tomographic water vapor field than LSQ and 3)12

to which extent multi-GNSS SWD observations improve the tomographic solution obtained by means of LSQ resp. CS, when13

compared to solutions obtained from SWDs originating from the Global Positioning System (GPS) only.14

2 Related work15

Current water vapor tomographies can be distinguished e.g. based on the methodology and the data sets applied for solving16

the tomographic model. The tomographic model is commonly established based on the directions along which space-geodetic17

SWD estimates are acquired and based on a discretization of the investigated atmospheric volume into volumetric pixels (vox-18

els) e.g. of constant refractivity. The existing tomography solution approaches applied to such a discretized atmosphere are19

subdivided into iterative and non-iterative techniques. Bender et al. (2011a) propose different iterative Algebraic Reconstruc-20

tion Techniques (ART), while Hirahara (2000), Flores et al. (2000), Champollion et al. (2004), Troller (2004), Song et al.21

(2006), Notarpietro et al. (2008), and Rohm (2013) apply different non-iterative methods for solving the tomographic system22

using a LSQ adjustment. Thanks to its good capability to estimate dynamically changing parameters, Flores et al. (2000), Grad-23

inarsky and Jarlemark (2004), and Rohm et al. (2014) choose a Kalman filter approach. Hirahara (2000) proposes a damped24

least squares solution known from seismic tomography to solve the tomographic problem. Xia et al. (2013) combine iterative25

and non-iterative techniques. Instead of using voxels in water vapor tomographies with a small number of GNSS sites, Ding26

et al. (2018) discretize the tomographic field based on the perimeter of the tomographic boundary on the plane and based on27

meshing techniques. They then determine tomographic fields by means fitting the real distribution of GNSS signals on different28

tomographic planes at different tomographic epochs.29

In addition to slant wet delay estimates from GNSS, Hurter and Maier (2013) introduce wet refractivity profiles from radio30

occultation and radiosonde observations into a combined least squares collocation. Rather than using slant wet delay estimates31

as input observations, Nilsson and Elgered (2007) apply a solution that relies directly on GPS phase observations.32

Independently of the reconstruction strategy, due to the point-wise GNSS observing geometry, the tomographic system of33
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equations is usually ill-posed and needs to be regularized e.g. i) by constraining the tomographic system by means of pseudo1

observations, ii) by introducing additional observations from models, from simulations, or from other sensors, or iii) by de-2

creasing the amount of voxels crossed by no rays at all.3

Both Flores et al. (2000) and Gradinarsky and Jarlemark (2004) regularize the solution by means of adding horizontal and4

vertical smoothing constraints to the tomographic system and by means of introducing a boundary constraint assuming the re-5

fractivity to approach zero above a certain height. Alternatively, as proposed in Elosegui et al. (1998), the refractivity field can6

be assumed to decrease exponentially with increasing height. Yet, while regularizing the solution significantly, both geometric7

constraints and the exponential decay usually are not able to accurately model the real atmospheric state. As an alternative to8

using horizontal and vertical constraints relying on physical approximations to the atmospheric behavior, the work in Heublein9

et al. (2018) and Heublein (2019) exploit the signal’s sparsity in a particular, predefined transform domain as prior knowledge10

for regularizing the tomographic system in order to then reconstruct the signal using an L1-norm minimization. Similarly, CS11

and sparse reconstruction are applied here for the tomographic reconstruction of the 3D water vapor field and the CS solution12

to water vapor tomography is compared to a solution obtained using a classical LSQ approach. Initially presented by Can-13

dès et al. (2006), Donoho (2006), Baraniuk (2007), and Candès and Wakin (2008) for the image or signal recovery from a14

number of samples below the desired resolution or the Nyquist rate, CS has been, since then, applied to many remote sensing15

problems in which sparse signals occur. E.g. Potter et al. (2010) and Alonso et al. (2010) describe the use of CS for SAR16

imaging, Pruente (2010) applies CS for ground moving target identification, Zhu and Bamler (2010), Budillon et al. (2011),17

Aguilera et al. (2013), and Zhu and Bamler (2014) apply CS to SAR tomography, and Li and Yang (2011), Zhu and Bamler18

(2013), Grohnfeldt et al. (2013), Jiang et al. (2014), and Zhu et al. (2016) use CS for pan-sharpening and hyperspectral image19

enhancement. When compared to classical LSQ adjustments usually applying L2-norm regularizations, Compressive Sensing20

and sparse reconstruction based on a small number of measurements led to promising results.21

However, Compressive Sensing only yields encouraging results if the input data acquisition – corresponding, in water vapor22

tomography, to the determination of SWD estimates – fulfills certain prerequisites. For general applications of CS, Rauhut23

(2010) e.g. states that randomness in the acquisition step helps to utilizing the minimum number of measurements. When24

reconstructing images based on frequency data, e.g. Candès et al. (2006) alternatively recommend to randomly measure fre-25

quency coefficients such that sparse objects are sensed by taking as few measurements as possible. For CS-based water vapor26

tomography approaches, no explicit requirements for the SWD acquisition or for designing advantageous observing geometry27

settings have been established so far.28

For LSQ, Champollion et al. (2004) state that the optimal horizontal size of a voxel should correspond to the mean inter-site29

distance between the used GNSS sites. Given a certain cutoff elevation angle, the height layers’ thicknesses in their approach30

should be defined such that signals received at a GNSS site situated within a voxel’s center are able to cross neighboring voxels.31

Due to the small wet refractivity values in the upper layers and in order to make the tomographic solutions less sensitive to32

errors in the input data, Rohm (2012) recommends to increase the height layer thicknesses with increasing altitude. Bender and33

Raabe (2007) resp. Bender et al. (2009) estimate the spatial distribution of the geometric intersection points between different34

ray paths in order to compute the information density contained in a given set of GPS signals. They then use this information35
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as a precondition to an optimal tomographic reconstruction resp. in order to identify regions that are well covered by GPS1

slant paths. Although Bender et al. (2011b) and Zhao et al. (2019) state that changing the observing geometry by combining2

multi-GNSS observations instead of GPS only observations does not substantially improve the reconstruction quality, Rohm3

(2012) realizes that the uncertainty of the tomographic solution is largely influenced by the mathematical properties of the4

design matrix, depending itself on the observing geometry. With the aim of giving advice for the installation of new permanent5

sites and for the solution of future water vapor tomographies, this work therefore investigates the observing geometry’s effect6

on the quality of both a LSQ and a CS solution to the tomographic system.7

3 Methodology8

In order to analyze the observing geometry’s effect on the quality of the LSQ and CS solution to water vapor tomography,9

different observing geometry settings are defined. Based on synthetic SWD estimates derived from WRF, 3D water vapor10

distributions are reconstructed for each of the defined observing geometry settings using both LSQ and CS. The quality of the11

LSQ and CS solutions to water vapor tomography is then compared w.r.t. the respective observing geometry settings.12

3.1 Tomographic model13

For tomography using GNSS SWDs, Flores et al. (2000) introduce the functional model14

SWDi,cont = 10−6 ·
∫

spi

Nwet dl, (1)15

where SWDi,cont stands for the integrated slant wet delay observations between a certain satellite and a certain GNSS site and16

dl is a differential along the slant ray path. As in Heublein et al. (2018) and Heublein (2019), the variable spi is the ith slant17

ray path, i.e. the slant ray path of the radiowave signal between a certain satellite and a certain receiver. The variable Nwet18

contains the wet refractivity along this path. The index i attains the values19

i ∈ N with 1≤ i≤N, (2)20

where N corresponds to the number of observations available between any receiver and any satellite. When tomographically21

reconstructing the wet refractivity, however, the continuous functional model from Equation 1 is usually replaced by a discrete22

functional model23

SWDi,disc = 10−6 ·
L∑

j=1

Nwet j · dij . (3)24

That is, the 3D water vapor distribution is discretized into L= P×Q×K voxels in longitude, latitude, and height, assuming a25

constant refractivity value for each voxel. As in Heublein et al. (2018) and Heublein (2019), in this work, a uniform voxel dis-26

cretization is selected in the horizontal directions, while the voxel sizes in the vertical direction increase with increasing height.27

Horizontally, the voxels are limited by constant longitudes and latitudes. In the vertical direction, the voxels are separated by28

layers of constant ellipsoidal height.29
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As in Heublein et al. (2018) and Heublein (2019), summarizing all observations SWDi,disc in an observation vector ydata ∈1

RN×1, all unknown refractivities Nwetj for2

j ∈ N with 1≤ j ≤ L (4)3

in a parameter vector x ∈ RL×1, and all distances dij in a design matrixΦdata ∈ RN×L, the discrete tomographic system from4

Equation 3 can be rewritten as5

ydata =Φdata ·x (5)6

with7

Φdata(i, j) =

{
dij if signal i crosses voxel j

0 otherwise.
(6)8

As each signal only passes a small subsection of the study area, most entries of the matrixΦdata are zero and only a few matrix9

elements are non-zero (e.g. only about 5% of the entries of Φdata are non-zero in the case of an about 95×99km2 large study10

area subdivided into 5×5×5 voxels, disposing of seven GNSS sites and ten signals per site). For voxels that are not crossed by11

any signals, Φdata has a zero column. Therefore, the tomographic model and the mathematical properties of the design matrix12

largely depend on the observing geometry settings described in Section 3.3.13

3.2 Solution of the inverse tomographic model using LSQ resp. CS14

The LSQ solution to Equation 5 is derived by solving the minimization problem15

x̂= argmin
x

‖ydata−Φdata ·x‖22︸ ︷︷ ︸
data fidelity term

+

3∑
t=1

Γ2
constraintst · ‖yconstraintst −Φconstraintst ·x‖

2
2︸ ︷︷ ︸

regularization constraints and prior knowledge

 , (7)16

regularized by means of t= 3 regularization terms, namely by horizontal and vertical smoothing constraints as well as by17

prior knowledge from surface meteorology. Namely, the wet refractivity at the surface is computed from in-situ observations18

of pressure, temperature, and dew point temperature at a single weather site within study area. As described in Heublein19

et al. (2018), the horizontal smoothing constraints assuming the refractivity of a voxel (a,b,k) to equal the weighted mean20

refractivity of the surrounding voxels (p,q,k) with voxel indices p 6= a and q 6= b within the same height layer k are defined21

by:22

Nweta,b,k
=
∑
p,q

wp−a,q−b ·Nwetp,q,k (8)23
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The weights can e.g. be derived using inverse distance weighting1

wp−a,q−b =



1

dp−a,q−b∑
p,q

1

dp−a,q−b

if (a,b) 6= (p,q)

−1 if (a,b) = (p,q),

(9)2

with distances dp−a,q−b between the center of voxel (p,q) and the center of voxel (a,b) of the considered kth height layer.3

Moreover, Davis et al. (1993) state that an average refractivity profile can be approximated assuming the refractivity to expo-4

nentially decrease with height:5

Nwet(hk) =Nwet(h0) · exp

(
−hk −h0

Hscale

)
(10)6

The variable hk is the height of the kth layer, h0 stands for some reference height at which the refractivity equalsNwet(h0), and7

Hscale represents the scale height of the local troposphere. As Hscale is essential for defining an exponential decay with height,8

its value is determined within the solution of the tomographic system from a set of realistic values for Hscale between 1000 m9

and 2000 m. Both the weights for the horizontal and vertical smoothing constraints and for the prior knowledge from surface10

meteorology are determined w.r.t. the data fidelity term using the place holder trade-off parameter Γ2
constraint in Equation 7.11

The selection of the trade-off parameters from a certain number of logarithmically scaled possible trade-off parameters and the12

selection of Hscale are described in Heublein et al. (2018) and Heublein (2019).13

When aiming at a tomographic reconstruction of atmospheric water vapor by means of Compressive Sensing, the parameters14

x are sparsely represented in some transform domain15

x= Ψ · s (11)16

as sparse parameters s. Estimates ŝ for these sparse parameters are obtained by17

ŝ= argmin
s

‖y−Φ ·Ψ · s‖22︸ ︷︷ ︸
data fidelity term

+ Γ2
CS · ‖s‖1︸ ︷︷ ︸

L1−norm regularization

+Γ2
constraints · ‖yconstraints−Φconstraints ·Ψ · s‖22︸ ︷︷ ︸

prior knowledge from surface meteorology

 (12)18

as described in Heublein et al. (2018) and Heublein (2019). Instead of adding horizontal and vertical constraints to the data19

fidelity term as in Equation 7, an L1-norm regularization term is introduced in the CS solution to promote sparse solutions for20

s, as described in Heublein et al. (2018) and Heublein (2019). The L1-norm minimization of the sparse parameters reduces the21

solution space. The wet refractivity estimates x̂ are then reconstructed using22

x̂= Ψ · ŝ (13)23

with a dictionaryΨ ∈ RL×M . As in Heublein et al. (2018) and Heublein (2019), the dimensionM of the parameters s ∈ RM×124

in the transform domain varies with the number of base functions resp. atoms in Ψ . Similarly to Heublein et al. (2018) and25
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Heublein (2019), we assert that a sparse representation of the refractivity distribution can be obtained by means of e.g. a1

dictionary composed of Kronecker products of inverse Discrete Cosine Transform (iDCT) letters in longitude and latitude2

directions and of Euler letters and Dirac letters in the height direction. When thinking of languages, an atom would stand3

for a word within a dictionary. Comparably to a word composed of different letters within a language dictionary, each atom4

results from the Kronecker product of smaller items, namely letters, within the dictionary for sparse representation. I.e., for5

each column, i.e. line, of the three-dimensional (3D) wet refractivity signal, a Kronecker product of the one-dimensional (1D)6

letters along the longitude, latitude, and height direction are computed. In the longitude and latitude directions, iDCT letters7

shall represent horizontal refractivity variations. The Euler letters model an exponential refractivity decay with height, and the8

Dirac letters describe deviations from a decay described by a linear combination of Euler letters.9

3.3 Observing geometry settings10

In Section 4, tomographic solutions obtained based on a high number of different observing geometry settings are compared.11

The observing geometry settings result from i) a fixed voxel discretization, ii) seven to 32 sites, iii) five to 20 signal directions12

per site, and iv) 48 signal direction samples per number of sites and signals. Champollion et al. (2004) recommends i) horizontal13

voxel sizes for a LSQ solution to water vapor tomography greater than or equal to the mean inter-site distance between the14

available GNSS sites, i.e. voxel sizes greater than or equal to about 37×37km2 resp. to about 17×17km2 in the case of seven15

resp. 32 uniformly distributed GNSS sites within the investigated study area of about 95× 99km2 size. In this work, the study16

area is discretized into 5× 5× 5 voxels of horizontal sizes of about 19× 20km2. In the vertical direction, five height layers17

are distinguished. With increasing height, the height layer thicknesses increase from 1300m up to 2900m. The lowest layer’s18

thickness is set to 1300m in order to ensure at least for signals with very low elevation angles that a signal arriving at the19

center of a voxel is able to pass the horizontally neighboring voxel within the same height layer. This is only possible if the20

minimum thickness ∆hmin of the height layers is related to the horizontal voxel size ∆hz = 20km and to the cutoff elevation21

angle εcut = 7◦ by means of22

∆hmin =
1

2
·∆hz · tanεcut. (14)23

The ii) minimum number of seven sites originates from the real GNSS Upper Rhine Graben (URG) network site distribution24

within the analyzed study area. The maximum number of sites is chosen such that the rule of thumb of Champollion et al.25

(2004), introduced in Section 2, is clearly fulfilled. The horizontal position of the synthetic GNSS sites corresponds, for seven26

sites, to the position of real GNSS sites within the analyzed study area. The horizontal position of the additionally defined27

synthetic GNSS sites is chosen such that they are uniformly distributed within the study area. The vertical position of the28

synthetic GNSS sites corresponds to the height of the WRF digital elevation model at the horizontal position of the sites.29

The iii) number of signal directions per site is motivated by the GPS resp. by a multi-GNSS orbit geometry. According to30

Feairheller and Clark (2006), the Global’naya Navigatsionnaya Sputnikova Sistema (GLONASS) constellation disposes of 2131

active plus three spare satellites on three orbital planes inclined by 64.8◦ w.r.t. the equator. In contrast, Hofmann-Wellenhof32

et al. (2008) describe the GPS orbit constellation to consist of 21 satellites plus three spares on six orbital planes inclined by33
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55◦ w.r.t. the equator, and the Galileo orbit constellation to contain 27 operational plus three spare satellites on three planes1

inclined by 56◦ w.r.t. the equator. Therefore, five signal directions resp. five visible satellites correspond to a pessimistic GPS2

setting e.g. with site specific shadowing. Eight signal directions per site may be considered as a typical GPS setting at a GNSS3

permanent site, at which about 30% of the total number of GPS satellites is visible at a time. Similarly, a total number of 204

signal directions per site corresponds to a visibility of about 30% of the total number of satellites at a time within a multi-5

GNSS constellation composed of GPS, GLONASS, and Galileo. For each of the mentioned numbers of sites and numbers of6

visible satellites, 48 signal direction samples are defined. Given the GPS repeat cycle of about one day, the number of 48 signal7

direction samples is chosen in order to emulate about half-hourly orbit samples. Using the orbit characteristics mentioned8

above, synthetic satellite positions are approximated by means of circular orbits. The ii) minimum number of seven sites9

originates from the real GNSS URG network site distribution within the analyzed study area. The maximum number of sites10

is chosen such that the rule of thumb of Champollion et al. (2004), introduced in Section 2, is clearly fulfilled. The horizontal11

position of the synthetic GNSS sites corresponds, for seven sites, to the position of real GNSS sites within the analyzed study12

area. The horizontal position of the additionally defined synthetic GNSS sites is chosen such that they are uniformly distributed13

within the study area. The vertical position of the synthetic GNSS sites corresponds to the height of the WRF digital elevation14

model at the horizontal position of the sites. The iii) number of signal directions per site is motivated by the GPS resp. by a15

multi-GNSS orbit geometry. According to Feairheller and Clark (2006), the GLONASS constellation disposes of 21 active plus16

three spare satellites on three orbital planes inclined by 64.8◦ w.r.t. the equator. In contrast, Hofmann-Wellenhof et al. (2008)17

describe the GPS orbit constellation to consist of 21 satellites plus three spares on six orbital planes inclined by 55◦ w.r.t. the18

equator, and the Galileo orbit constellation to contain 27 operational plus three spare satellites on three planes inclined by 56◦19

w.r.t. the equator. Therefore, five signal directions resp. five visible satellites correspond to a pessimistic GPS setting e.g. with20

site specific shadowing. Eight signal directions per site may be considered as a typical GPS setting at a GNSS permanent site,21

at which about 30% of the total number of GPS satellites is visible at a time. Similarly, a total number of 20 signal directions22

per site corresponds to a visibility of about 30% of the total number of satellites at a time within a multi-GNSS constellation23

composed of GPS, GLONASS, and Galileo. For each of the mentioned numbers of sites and numbers of visible satellites,24

48 signal direction samples are defined. Given the GPS repeat cycle of about one day, the number of 48 signal direction25

samples is chosen in order to emulate about half-hourly orbit samples. Using the orbit characteristics mentioned above, such26

synthetic half-hourly satellite positions are approximated by means of circular orbits.27

3.4 Study area and data sets28

For each of the described observing geometry settings, synthetic SWD observations as input for the tomographic system are29

deduced from one single WRF simulation covering an about 200km× 200km large area centered around the longitude and30

latitude (λ,ϕ) = (8.15◦,49.15◦) at a 900m horizontal resolution. The vertical resolution increases with height, ranging from31

about 50m to about 500m. As schematically illustrated in Figure 1, for each synthetic GNSS site, this is done by means of32

averaging the refractivity information of all WRF cells situated within the defined tomographic voxels, a direct raytracing33

within these tomographic voxels, and adding together the SWD along each signal direction within the tomographic voxels34
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using Equation 3. As the voxels are limited by ellipsoidal upper and lower borders, the raytracing is performed according to1

Perler (2011).2

The horizontal distribution of the synthetic GNSS sites within the URG study area is shown in Figure 2. The signal direc-3

tions result from selecting at random the defined number of signal directions from a synthetic multi-GNSS orbit constellation4

composed of GPS, GLONASS, and Galileo. Both signals entering the study area on its top and on its side are included.5

From WRF, simulations of water vapor mixing ratio, temperature, pressure, and geopotential height are available at a 900m6

horizontal resolution for generating the synthetic GNSS SWDs within the 95× 99km2 large study area situated in the URG7

as shown in Figure 2. The topography within the Rhine Valley is flat. Height differences mainly occur at the foot of the Black8

Forest mountain range. The height difference between the highest and the lowest synthetic GNSS site used for this study is9

about 494m.10a) Real GNSS

z

c) Synthetic GNSS

b) Real InSAR d) Synthetic InSAR

z

Figure 1. Schematic illustration of the generation of synthetic GNSS SWDs according to Heublein (2019): Within each tomographic voxel

(grey), the WRF refractivities of all those WRF cells (blue) situated within that voxel are averaged. A direct raytracing along the considered

signal direction then yields the SWD introduced into the tomographic system.

4 Results11

For the most humid acquisition date (27 June 2005) for which WRF simulations were provided for this research and for an12

exemplary voxel in the lower middle of the lowest voxel layer, Figure 3 shows that variations in the SWD signal directions13

available within the tomographic system cause variations in the estimated refractivities. The magnitude of the absolute wet14

refractivity values during the analyzed weather conditions ranges from 0ppm to 74ppm.. As variations in the signal direc-15

tions imply a change in the observed atmospheric volume, these variations in the estimated refractivities seem obvious. Yet,16

Figure 3 illustrates that the variations in the refractivity estimates vary with the selected solution strategy. When considering17

many sites and many signal directions per site (e.g. at least 27 sites and at least 15 signal directions), the difference between18
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Figure 2. Distribution of the seven GNSS permanent sites (blue squares) as well as of the five to 25 additional, synthetic sites (black

symbols) within the URG study area. The additional, synthetic sites are distributed within a grid that uniformly covers the study area.

Triangles, pentagons, hexagons, diamonds, and circles represent the first, second, third, fourth, and fifth group of five additional sites each.

the CS refractivity estimates and the WRF refractivity of the considered voxel approaches zero for most samples. However,1

e.g. for 27 sites and 20 signal directions per site, there are some samples in which the CS based refractivity estimate differs2

from the WRF refractivity by up to 3.3ppm. I.e. for many signal directions, CS is able to accurately and precisely reconstruct3

the voxel’s refractivity, but for some signal directions, the voxel’s refractivity estimate does not match well with the voxel’s4

validation refractivity from WRF. In contrast, in the case of few sites and few signal directions per site (e.g. twelve sites and5

ten signal directions per site), LSQ yields refractivity estimates differing from−5.9ppm to−0.7ppm from the WRF refractiv-6

ity, while the CS refractivity estimates differ much more from the WRF refractivity (differences of −42.9ppm to 26.9ppm).7

Consequently, when investigating the observing geometry’s effect on the quality of the tomographic reconstruction, the chosen8

solution strategy as well as the effect of varying signal directions absolutely need to be taken into account. Therefore, in this9

research, a representative set of 48 half-hourly samples of synthetic GNSS orbits is considered in order to analyze the observing10

geometry’s effect on the tomographic reconstruction quality.11

12

13
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Figure 3. Absolute differences between estimated refractivity and the WRF refractivity in ppm for an exemplary voxel in the lower middle

of the lowest voxel layer for the 48 samples of each investigated observing geometry setting. The two left columns dispose of an ordinate

ranging from −25ppm to 25ppm, the third column plots the differences within the range −10ppm to 10ppm, and the right column plots

the differences within the range −5ppm to 5ppm. The legend in the upper left subplot holds for all subplots: red circles stand for LSQ

results, while blue squares represent the CS results. In each subplot, the minimum and maximum absolute differences in ppm of the LSQ

resp. CS refractivity estimate w.r.t. the WRF input refractivities and the mean and the standard deviation over all samples are given in red

resp. blue. Moreover, the mean and the standard deviation over all samples are indicated, for LSQ by a red dashed line resp. for CS by a blue

dashdotted line and by errorbars in the corresponding colors.
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As expected, an increased number of sites and an increased number of signal directions per site, in general, decrease the1

mean of the absolute difference (called mean difference in the following) and the standard deviation of the difference between2

estimated refractivities and WRF refractivities. Yet, as shown in Figure 4 averaged over all voxels, in the case of a LSQ solution3

to the tomographic system, the mean difference decrease by means of introducing more SWD estimates into the tomographic4

reconstruction is much smaller than that in the case of a CS solution. When averaged over 48 samples per observing geometry,5

introducing more SWD estimates improves the mean difference by up to 1.3ppm resp. 1.9ppm (maximum improvement6

observed for 20 resp. 15 signal directions per site in the case of LSQ resp. CS).7
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Figure 4. Averaged over all voxels, this figure shows the mean of the absolute difference and the std of the difference between estimated

refractivities and WRF refractivities in ppm, deduced from 48 samples of each investigated observing geometry setting composed of a certain

number of synthetic GNSS sites and various numbers of signal directions per site. The dashed resp. dotted lines serve for better following

the variation of the represented quantities with the number of sites, but only the discrete values indicated by the markers should be evaluated.

The legend in the upper left subplot holds for all subplots. In each subplot, the improvement by introducing 32 sites instead of seven sites is

given in red resp. blue. Degradations are given with a minus sign.
8

When investigating the standard deviation of the differences between estimated refractivities and WRF refractivities for the CS9

case, considering an increased number of synthetic GNSS sites only, while keeping a constant number of five signal directions10

per site, is not advantageous. However, as of 15 different signal directions per site, a clear improvement in standard deviation11

is visible when increasing the number of sites in the tomographic setting solved by means of CS. Independently of the number12

of sites, for realistic GPS-like observing geometry settings with five to ten signal directions per site, the LSQ refractivity esti-13

mates are more precise than the CS refractivity estimates. In contrast, as of 15 signal directions per site, the CS solution yields14

more accurate and more precise refractivity estimates than the LSQ solution if at least 22 sites are available. I.e. this study15

shows that LSQ is less sensitive to the number of signal directions than CS. Therefore, we recommend to use LSQ for water16

vapor tomography disposing of GPS-only observations and CS for water vapor tomography disposing of multi-GNSS SWD17

12



estimates.1

In the case of the maximum number of sites and the maximum number of signal directions per site (32 sites and 20 signal di-2

rections per site), when averaged over the 48 considered samples per observing geometry, the mean difference and the standard3

deviation of the LSQ resp. CS reconstruction attain values of about 0.3ppm resp. 0.0ppm. Therefore, the number of sites and4

the number of signal directions per site are of particular interest when aiming at a very accurate and very precise tomographic5

reconstruction using CS.6

For the given 5×5×5 voxel discretization with horizontal voxel sizes of 19km resp. 20km, the rule of thumb of Champollion7

et al. (2004) requests the mean inter site distance to correspond to no more than 19km to 20km. The results show that, using8

the investigated synthetic data set with and at least 15 signal directions per site, the CS solution is able to more accurately and9

more precisely reconstruct the atmospheric water vapor distribution than LSQ in the case of 22 sites within the 95× 99km210

large study area, i.e. at a site density of about one site per 20.7×20.7km2 which is a bit lower than that required by the rule of11

thumb of Champollion et al. (2004). I.e. if 15 signal directions are available per site, the rule of thumb can be transferred from12

the LSQ solution to water vapor tomography to CS solutions.13

14

Consequently, the following three main results are summarized from this study:15

1. The rule of thumb of Champollion et al. (2004) can be transferred from LSQ to CS.16

2. Based on site distributions obeying the rule of thumb of Champollion et al. (2004), CS needs a variety of at least 1517

signal directions per site in order to estimate the 3D refractivity field more accurately and precisely than LSQ.18

3. While LSQ seems to be less sensitive on the number of signal directions than CS. Therefore, CS should only be used in19

the case of multi-GNSS SWD estimates yielding a variety of at least 15 signal directions per site.20

5 Discussion and outlook21

Section 4 states that the rule of thumb of Champollion et al. (2004) does not only hold for a tomographic solution based on22

LSQ, but that it also ensures a good tomographic reconstruction in the case of a CS solution. Although this finding is based23

on many different observing geometry settings, it only refers to a single voxel discretization and to a single study area with a24

single topography and a single site distribution within that study area. As a consequence, this research mainly investigates the25

validity of the rule of thumb of Champollion et al. (2004) for CS for the given study area, weather condition, and voxel dis-26

cretization. For generalization, further tests should be performed that repeat the described methodology for other study areas,27

weather conditions, and voxel discretizations, and for site distributions varying not only in the number, but also in the position28

of the sites.29

Moreover, as the presented approach only relies on a synthetic data set deduced from WRF, the synthetic SWDs introduced30

within the tomographic system in this research are too optimistic, when compared to real GNSS SWD estimates. Therefore, the31

conclusions drawn in Section 4 cannot necessarily be transferred to tomographic applications involving real SWD estimates.32
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In order to get a better idea on the transferability of the results, the analysis should be repeated based on real data, or the effect1

of adding different types of noise to the synthetic SWD estimates should be investigated (e.g. measurement and sensor noise2

and uncertainties resulting from the observing geometry). In the presented approach, instead of mapping ZWDs to the slant3

signal directions as in the case of a real GNSS processing, the synthetic SWD data set is computed based on a direct raytracing4

within the same voxels in which the tomographic reconstruction is thereafter performed. Yet, Heublein (2019) shows that this5

involves neglecting both a voxel discretization error and a mapping error committed in the case of real data.6

Furthermore, Section 4 shows that the standard deviation of the difference between LSQ refractivity estimates and WRF re-7

fractivities is 6% to 65% smaller than that computed based on the CS refractivity estimates, if at most ten different signal8

directions per site are available. In contrast, in the case of a high number of sites and a high number of signal directions per9

site, the LSQ reconstruction is not able to yield as accurate and as precise estimates of the water vapor distribution as CS.10

I.e. when solving the tomographic system by means of LSQ, increasing the number of SWD signal directions improves the11

tomographic reconstruction quality less than when using CS. This may be due to the geometric smoothing constraints forming12

the basis of the LSQ solution. In the case of a small number of observations, the smoothing constraints ensure a smooth solu-13

tion free of outliers that does not necessarily correspond to the prevailing atmospheric conditions. In the case of a high variety14

of observations, the smoothing constraints become less important w.r.t. the data fidelity term within the LSQ solution to the15

tomographic system, but they still effect the tomographic solution. Even in the case of a very high number of observations, the16

tomographic system cannot be solved in a pure data-driven way. Instead, the tomographic solution always takes into account17

to the chosen model assumptions, i.e. the LSQ solution always applies a certain amount of smoothing.18

In addition, a low resp. a high number of signal directions chosen from a synthetic multi-GNSS constellation for the recom-19

mendation of LSQ resp. CS for GPS-only resp. for multi-GNSS water vapor tomography applications should not be to set20

equal to considering a real GPS-only resp. a real multi-GNSS setting. Choosing a small number of signal directions from a21

multi-GNSS constellation yields a higher variability in the signal directions than choosing the same small number of signal22

directions from a GPS-only constellation. Since a high number of signal directions showed to be of particular importance in23

the case of a CS solution, the quality of the refractivity estimates deduced using CS may decrease, if real GPS-only signal24

directions are chosen.25

Finally, future research should analyze in more detail which signal directions are necessary in a LSQ resp. CS based water26

vapor tomography in order to well reconstruct the refractivities of as much voxels as possible. A two-step CS LSQ may then27

first yield accurate refractivity estimates for most voxels by means of CS and then use the geometric smoothing constraints28

applied in LSQ to improve the refractivity estimates of those voxels in which CS yields inaccurate refractivity estimates even29

if a high number of sites and a high number of signal directions per site are available.30
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