
Mirror mode physics: The amplitude limit
Rudolf A. Treumann1,3 and Wolfgang Baumjohann2

1International Space Science Institute, Bern, Switzerland
2Space Research Institute, Austrian Academy of Sciences, Graz, Austria
3Geophysics Department, Ludwig-Maximilians-University Munich, Germany,
Correspondence to: Wolfgang.Baumjohann@oeaw.ac.at

Abstract. The mirror mode evolving in collisionless magnetised high-temperature thermally anisotropic plasmas is shown to

resemble a macro-quantum state. Starting as a classical zero frequency ion fluid instability it saturates quasi-linearly at very

low magnetic level, while forming extended magnetic bubbles.It traps the electron component into an adiabatic bounce motion

along the magnetic field which causes a bulk electron anisotropy. This can drive an electron mirror mode (see Treumann &

Baumjohann, 2018b, who identified it in old spacecraft data). More important, however, we show that trapped electrons play5

the dominant role of further evolution towards a stationary state. Interaction of the trapped bouncing electrons with the thermal

level of ion sound waves causes attractive potentials between electrons and forms electron pairs in the lowest-energy singlet

state of two combined electrons. This happens preferentially near the electron mirror points resulting in a diamagnetic current

effect which ultimately drives evolution of the magnetic field into large amplitude mirror bubbles causing diamagnetism and

expelling a larger fraction of magnetic flux from the interior of the initial quasi-linearly stable mirror mode bottle. Estimates10

given in view of mirror modes in the magnetosheath are in reasonable numerical agreement with observation. We derive the

self-consistent final state of the mirror bubbles. This analysis demonstrates that the observed mirror mode in high temperature

space plasmas (solar wind, magnetosheath, magnetotail) is not a simple magnetohydrodynamic instability. It resembles a

classical super-conducting, super-fluid state in high temperature plasma under conditions when electron pairs form. This is a

most interesting observation which suggests that pair formation can become relevant in space and astrophysics.15
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1 Introduction

There seems to be nothing particularly interesting left about a very low frequency effect in high temperature magnetised plasma

known as the mirror mode (see, e.g., Tsurutani et al., 2011, for a more recent observational review). It was formally discovered

some sixty years ago (Chandrasekhar, 1961; Hasegawa, 1975; Gary, 1993) as a theoretical complement of the zero-frequency20

hose instability, two purely growing linear instabilities in the presence of pressure anisotropies. The hose instability excites

propagating Alfvén waves when the magnetically parallel temperature T‖ > T⊥ exceeds the perpendicular temperature, the

mirror mode grows under the opposite condition T‖ < T⊥ that the perpendicular temperature is higher than the parallel by a

certain amount, passing a threshold. The mirror mode generates magnetically elongated magnetic bottles thereby providing

the plasma a local texture. Later it was found that in the presence of weak plasma gradients the mirror mode assumed a small25
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but finite real frequency (Hasegawa, 1969). Various formal properties of the instability were added under different plasma

conditions and in different wavenumber ranges like finite gyroradius effects, dependencies on electron temperature and electron

anisotropies, as well as on streaming plasma conditions. It was moreover shown that the instability saturates quasilinearly at a

rather low level by exhausting the bulk thermal anisotropy (cf., e.g., Treumann & Baumjohann, 1997; Noreen et al., 2017, for

the quasilinear numerics). Finally it was shown that the trapped particle components give rise to the excitation of ion cyclotron30

and electron whistler waves if only a thermal anisotropy of resonant particles evolves. Identification in real plasmas became

possible when measuring the pressure balance between the magnetic field and plasma. It was shown that in observations the two

pressures in ion-mirror modes are indeed anti-correlated, a condition which generally is considered the key identifier of mirror

modes: mere pressure balance. Thus it seemed that the physics of mirror modes was completely understood though it remained

unclear how in an ideally conducting plasma at high temperature the magnetic field could become expelled to a high degree35

from the interior of the magnetic mirror bottle, an effect resembling the Meissner effect in low frequency low-temperature

superconductivity which, however, would be forbidden in classical physics as it requires the presence of quantum correlations

known to be restricted to very dense very low-temperature conditions only. In superconductivity the Meissner effect arises from

the close interaction between electrons and phonons in the crystal lattice of a superconducting metal when electron pairs form in

a way that the antiparallel spins of the paired electrons which occupy the same quantum state compensate and the pairs, though40

remaining fermions, together with the interacting phonon assume quasi-particle-bosonic properties, and can condensate in the

lowest energy level in the conduction band just above the Fermi energy, evolving into a Landau-Fermi fluid. The theory of this

effect was given by Ginzburg & Landau (1950) based on Landau’s Fermi-liquid theory (Landau, 1941), ultimately culminating

in the famous microscopic superconducting BCS theory (Bardeen et al., 1957) which relies on Cooper pair formation (Cooper,

1956). Only when this happens, the current of the condensate becomes capable of generating a sufficient amount of correlated45

bulk diamagnetism, rather different from simple pressure balance, which then compensates and thus expels the magnetic field

from the superconducting region. Interestingly this effect is based on microscopic annihilation of oppositely directed magnetic

fields thus resembling kind of microscopic reconnection that has not yet been investigated! In superconductivity it becomes

strong indeed until the magnetic field is completely expelled and the lattice resistance is not only circumvented but violently

excluded. In the mirror mode, on the other hand, the comparable quasi-diamagnetic effect – generally believed to be caused by50

pressure balance only – amounts to roughly 50%. A substantial strong interior magnetic field remains whose amount, however,

is much less than any plasma theory like quasilinear theory predicts. It has also been claimed that it could be due to weakly

kinetic plasma turbulence based on wave-wave and wave-particle interaction. However no such theory is in sight as there are

no substantially large amplitude plasma waves of any kind available in the required frequency and wave number range which

could do the job. This discrepancy is disturbing because it suggests that some fundamental effect has not yet been understood55

in the evolution of the mirror mode.

Recently we exhumed kind of a parallelism between superconductivity and the growth of the ion mirror mode (Treumann

& Baumjohann, 2018a). Here we demonstrate that the mirror mode can be understood as a combination of a classical plasma

ion effect which generates magnetic bottles at very low quasilinear saturation level (Noreen et al., 2017), while the main large

mirror effect is caused by the trapped electron component in a similar though classical way as in the BCS theory (Bardeen et60
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al., 1957) of superconductivity. It are the trapped mirroring electrons, not the ions, which interact with the available general

thermal ion-sound wave population in the plasma at either thermal or non-thermal level to produce correlated trapped electron

pair singlets which are dynamically distributed over the volume of a mirror bottle. Together with the ion sound fluctuations they

form kind of quasiparticles which condensate at an energy level near the Debye temperature, lead to strong electron boundary

currents and cause sufficient diamagnetism to produce the large amplitude mirror bubbles.65

Here we show that the mirror mode is a combination of the classical ion effect causing the evolution of low amplitude mirror

bottles which in a plasma provide a magnetic texture. This combines with a macro-quantum effect on the mirror trapped low

energy electron component which is responsible for the destruction of the quasilinear level transforming it into a diamagnetic

macro-Meissner effect. The latter causes the blow up of the bubbles in the collisionless high temperature plasma. The physical

mechanism behind this effect is the interaction of the trapped electrons with the thermal background noise of the ion-acoustic70

wave spectrum excited inside the small-amplitude mirror mode

2 Electron trapping

Once the ion-mirror mode starts growing at the well known ion-mirror growth rate

γm(k)
ωci

≈ k‖λi
1 +A

√
β‖
π

[
A− k2

k2
⊥β⊥

]
, A≡ Ti⊥

Ti‖
− 1 & 0 (1)

with approximately vanishing real frequency ωm ≈ 0, neglecting the effect of density gradients which would cause a finite75

real part on the frequency, λi = c/ωi ion inertial length, a magnetic bottle evolves in slightly oblique direction k‖� k⊥ with

magnetic disturbances |δB‖| � |δB⊥|. This bottle is elongated along the ambient magnetic field B and has a narrow opening

angle θ given by tanθ = k‖/k⊥� 1. Instability corresponds to a second order phase transition in plasma which happens

whence the magnetic field locally drops below a critical threshold value

B <Bc ≈
√

2µ0NTi⊥A|sinθ| (2)80

Though substantial, this growth rate is just a fraction of the ion cyclotron frequency ωci = eB/mi for k‖λi� 1 and B respec-

tively A near threshold, the usual case (Treumann & Baumjohann, 2018a). As noted above, the instability readily stabilises

quasi-linearly (Noreen et al., 2017; Treumann & Baumjohann, 1997) at very low level |δB|2�B2 via depleting the anisotropy

A.

2.1 Electron dynamics, energy limit, trapped density fraction85

The conventional ion mirror mode provides a quasi-stationary magnetic bottle (see, e.g., Constantinescu, 2002, for a geo-

metric analytical model) structure, which necessarily traps electrons of sufficiently small magnetic moment µe. Because the

mirror mode frequency practically vanishes and the mirror mode grows slowly compared to the electron dynamics, electrons

react adiabatically to the presence of the mirror instability. They conserve their magnetic moment µe = Ee⊥/B = const when
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moving along the magnetic field B(s). Trapping occurs between the two mirror magnetic fields B±m =B(±sm), with s co-90

ordinate along the magnetic field. The trapped-electron perpendicular kinetic energy Ee⊥(s) = µeB(s)≡ V (s) plays the role

of a retarding potential

Ee‖(s) = Ee−V (s) (3)

At the mirror points the parallel energy of trapped electrons vanishes, and Ee⊥(±sm) = Ee. Thus trapping occurs for all

µe ≤ µm ≡ Ee/B±m, a well-known fact. Though it does not bunch them, mirroring keeps these electrons together by confining95

them to the volume of the bottle, inside which they perform the oscillatory bounce motion between mirror points ±sm. The

parallel electron equation of motion is

dv‖(s, t)
dt

=− µe
me
∇‖B(s), ∇‖ =

∂

∂s
(4)

For symmetric bottles and motion around and not too far away from the minimum B(s0) = min{B(s)} ≡B0 of the magnetic

field we have100

B(s)≈B0 + 1
2B
′′
0 (s− s0)2, B′′0 =

∂2B

∂s2

∣∣∣
s0

(5)

which immediately gives the bounce frequency

ωb =
√
µe
me

B′′0 � ωce (6)

a frequency much less than the electron cyclotron frequency ωce = eB/me. We shall show below that this kind of trapping, in

the case of the mirror mode, becomes advantageous for electron pairing, an effect otherwise observed only under solid state105

conditions in superconducting metals.

In order to get an idea on the trapping energy condition we consider the mirror point s=±sm. Here all the energy is in the

perpendicular direction, i.e. the local gyro motion of electrons. Hence de-trapping of electrons occurs once their gyroradius

exceeds the opening radius of the bottle neck rce,s &Rs = L‖ tanθ, where L‖ ∼ 2π/k‖ is the half length of the ion mirror

bottle. This yields immediately that electrons remain trapped as long as their energy satisfies the condition110

Ee . 1
4π2

Te
k2
⊥r

2
ce

≡ Etrap , rce = ve/ωce,s (7)

with rce the electron gyro-radius and k⊥ the perpendicular wave number of the ion-mirror mode. All electrons with this energy

remain trapped in the magnetic mirror bottle. Larger energy electrons escape from the bottle along the magnetic field. (We do

not discuss the subtle problem that quasi-neutrality requires them to be replaced by electron inflow.)

Since trapped electrons fill the volume of the ion mirror mode, the question is whether they contribute to diamagnetism and115

blow up the mirror bottle to become a real large-amplitude magnetic mirror bubble. It is clear that such an effect cannot be a

simple pressure balance because this is already taken care of in the quasi-linearly stable ion mirror mode via charge neutrality

where all particles contribute. The difference can thus only be the order of at most a factor of 2. Otherwise, if it can be shown
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that the trapped electrons are correlated behaving like quasi-particles, then they would form kind of a quasi-particle condensate

behaving collectively and adding their diamagnetism coherently in a way similar to superconductivity in the Fermi fluid. Below120

we will investigate a condition which, if fulfilled, causes macroscopic mirror bubbles to evolve not as an ion but an electron

effect.

2.2 Fractional trapping conditions

The fractional number density of maxwellian mirror trapped electrons is

Ntrap

N0
= C

Etrap∫

0

dεe ε
1
2
e exp

(
− εe
Te

)
= Γ−1

(
3
2

)
γ

(
3
2 ,
Etrap

Te

)
125

(8)
=

1
4

erf
(√Etrap

Te

)
−
√
Etrap

Te
exp

(
− Etrap

Te

)

where C is a normalisation constant, and γ(a,b) is the incomplete Gamma function.

The trapped electron dynamics is basically along the magnetic field B(s). It consists of the bounce motion at systematically

varying parallel velocity v‖(s), vanishing at the mirror point v‖(s±m) = 0 and maximising in the symmetric plane cross130

section, and the fast gyration with perpendicular velocity v⊥(s). Under isotropic conditions, the maximum parallel velocity is

v‖(0) = v⊥(0). Hence, the trapped electron energy distribution along the bounce path is anisotropic with

T⊥(s)> T‖(s) for s 6= 0 (9)

This is important to remember. At the one hand, if the bulk electron anisotropy T⊥(s)/T‖(s)> 1 becomes sufficiently large

somewhere along the magnetic field, electrons may themselves evolve into an electron-scale electron-mirror branch (Noreen135

et al., 2017) which appears as a small-scale low-amplitude structure on the ion-mirror mode. Such structures have recently

been identified in both old (Treumann & Baumjohann, 2018b) and recent high resolution (Breuillard et al., 2018; Ahmadi et

al., 2018) spacecraft data. Trapped electrons may also, as will be demonstrated below, go into resonance with ion-sound waves

which at finite temperature are always present in the plasma at least as thermal background.

The constancy of the magnetic moment, as is well known for long (cf., e.g., Baumjohann & Treumann, 1996, for a textbook140

presentation), can also be exploited to represent the parallel particle velocity respectively energy through the magnetic mirror

ratio

E‖(s) = Ee
(

1− B(s)
B(sm)

)
(10)

which defines the angle between velocity and magnetic field for the trapped electrons

θ(s) = cos−1

√
1− B(s)

B(sm)
(11)145
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3 Single electron wake potential

In preparing for the investigation of ion-mirror-mode trapped electrons, we consider the interaction of an electron with the bath

of ion sound waves. This is most easily done in the naked test particle picture, assuming that we grab one of the electrons and

ask for its reaction to the presence of the dielectric in which it moves.

The electron is a point charge −e with velocity v that is located at its instantaneous position x′ = x−vt in the observers150

frame (x, t). This is represented by the point charge density function N(x, t) =−eδ(x−vt). We assume that the electron is

non-relativistic which for trapped electrons under the conditions in the magnetosheath (Lucek et al., 2005) or the solar wind is

good enough. The relative dielectric constant of the plasma it experiences is ε(ω,k) where ω,k are frequency and wavenumber

of the plasma wave which changes the dielectric properties. In general, we have a whole spectrum of waves which is taken care

of below by integrating over the entire spectrum. The naked charged electron polarises the plasma. The total electric potential155

the moving non-relativistic charge at location x′ causes at location x is obtained from Poisson’s equation with above charge

density and has the form

Φ(x, t) =− e

(2π)3ε0

∫
dωdk

δ(ω−k · v)
k2ε(k,ω)

eik·(x−vt) (12)

This can easily be shown (cf., e.g., Neufeld & Ritchie, 1955; Krall & Trivelpiece, 1973, for a textbook description) by Fourier-

transformation. In this representation the action of the δ-function on the exponential has already been taken care of. Integration160

is over wave numbers and frequencies, the wave spectrum responsible for the dielectric properties the electron experiences.

Integration with respect to frequency ω implies the substitution ω→ k ·v also in the dielectric response function ε(ω,k), which

we shift until having discussed the latter.

In solid state physics it is assumed that the oscillations of the ion lattice generate a thermal spectrum of phonons. In plasmas

these waves are not restricted to the Brillouin zones but are freely propagating waves or thermal noise obeying a response165

function which either accounts for the excitation of the waves or simply refers to the thermal jitter motion of the plasma

particles which leads to spontaneous emission and modifies the dielectric properties of the plasma. Any general linear, even

nonlinear electrostatic response function in a plasma reads

ε(ω,k) = 1 +
1

k2λ2
e

+χe(ω,k) +χi(ω,k) (13)

with χe,i(ω,k) the electron and ion susceptibilities. One may wonder why for wave lengths usually much longer than the170

Debye length λe� λ the second term in this expression is not neglected. The reason that it must be retained here, is that the

uncompensated charge of the test particle when immersed into the plasma excites short wavelengths waves on the Debye scale

in order to screen the charge. Therefore, independent on the wavelength of plasma waves, the test particle dielectric response

must include the Debye term.

The dielectric response function of the thermal spectrum of ion-sound waves at frequencies far below the electron plasma175

frequency ω� ωe is

ε(ω,k) = 1 +
1

k2λ2
e

−
(ωi
ω

)2

(14)
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where ωi is the ion plasma frequency, λe ≈ ve/ωe the Debye screening distance, and the frequency of ion sound waves ωk is

obtained putting the real part of this expression to zero, which as usually yields

(ωk

ωi

)2

=
k2λ2

e

1 + k2λ2
e

or ω2
k =

c2sk
2

1 + k2λ2
e

< ω2
i (15)180

Here c2s = ω2
i λ

2
e ≈ (me/mi)v2

e ≈ 2Te/mi is the ion-sound speed square. It is simple matter to show that the inverse response

function becomes

1
ε(ω,k)

=
k2λ2

e

1 + k2λ2
e

(
1 +

ω2
k

ω2−ω2
k

)
(16)

Actually, this is also the general inverse form of any response, if only ωk is understood as the solution of the general response

function ε(ω,k) = 0 for electrostatic waves, and ε(ω,k)− k2c2/ω2 = 0 for very-low frequency electromagnetic waves like185

magneto-sonic or Alfvén waves. In the latter case one has, including kinetic effects,

εA(ω,k) = 1 +
1

k2λ2
e

+
c2

V 2
A

[
1 +

(
k · rci

)2
(

3
4

+
Te
Ti

)]−1

(17)

with rci = vi⊥/ωci the vectorial ion gyro-radius. The relevant wave frequency is ω2
kA ≈ k2V 2

A for the ordinary Alfvén wave,

with VA� c the Alfvén speed (if wanted including the bracketed modification factor). The electric potential resulting from its

kinetic nature is along the magnetic field. Hence any attractive effect will be in this direction, a very interesting fact in itself190

which we do not investigate here leaving it for separate investigation.

Inserting Eq. (16) into the above electrostatic potential of the test electron

Φ(x, t) =− eλ2
e

(2π)2ε0

∫
dωk⊥dk⊥dk‖

1 + k2λ2
e

(
1 +

ω2
k

ω2−ω2
k

)
δ
(
ω−k ·v

)
eik·(x−vt) (18)

shows that Φ consists quite generally of two contributions, the screened Coulomb potential of the test electron, and another

wave induced term which multiplies the screened potential by the frequency dependent term in the last expression. This form195

demonstrates the well known self-screening Debye effect of the naked point charge, which leads to the first term in the above

expression and causes the Debye-Yukawa potential to exponentially compensate for the electron charge field in a spherical

region of radius λe. We are not interested here in the deformation of the Debye sphere introduced by the electron motion as

this is a higher order effect.

The zero order effect of the test electron contained in the wave-independent term, the proper self-screening is, in the wave-200

dependent term, multiplied by the wave-induced factor. For frequencies ω2 = k2 ·v2 > ω2
k higher than ion sound, this factor

is positive adding to the screening but changes sign for frequencies ω2 = k2 ·v2 < ω2
k, thereby indicating the possibility of

over-screening at wavelengths larger than the Debye radius λe. Under certain conditions it may come into play outside the

Debye radius where the charge-electric field is practically already compensated, and the long range wave electric field adds up

over some distance, may dominate and cause a spatially restricted deficiency of repulsion. In this case the potential may even205

turn negative, eliminates the repulsive nature of the electron locally and becomes attractive for electrons. This was first shown

(Neufeld & Ritchie, 1955) for high frequency Langmuir waves even before the discovery of Cooper pairs in superconductivity
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and solid state physics. In a bath of Langmuir waves this attraction turned out to be unimportant however, while in an isotropic

non-magnetic plasma it survives for low-frequency ion sound, first suggested by Nambu & Akama (1985). With θk the angle

between electron speed and wavenumber, it happens at resonant electron speeds210

v2 cos2 θk . ω2
k/k

2 (19)

requiring the parallel electron speed to be less than the wave phase velocity. The above expression depends on angle θk between

velocity v and wavenumber k, which in our case will turn out to be crucially important.

For completeness we note that in magnetised plasma the ion acoustic wave is azimuthally symmetric with respect to the

magnetic field B. However, its frequency depends itself on the angle of propagation between k = (k⊥,k‖) and B according215

to (Baumjohann & Treumann, 1996)

ω2
k =

c2sΛ0(ηi)k2
‖

Λ0(ηe) + k2λ2
e

(20)

with Λ0(ηj) = I0(ηj)exp(−ηj), ηj = 1
2k

2
⊥r

2
cj , and the index j = e, i on the gyroradius is for electrons and ions. I0(ηj) is the

Bessel function of imaginary argument. rcj = v⊥,j/ωcj is the gyroradius, and ωcj is the cyclotron frequency. One has that,

moreover, k⊥λe� k⊥rci� 1 and k‖/k⊥ < 1. Long-wavelength ion sound in magnetised plasma thus propagates essentially220

along the magnetic field, a well known fact which in observations, for instance in the magnetosheath (Rodriguez & Gurnett,

1975), manifests itself as a complete drop out of the electrostatic low frequency thermal ion noise spectrum when the antenna

points strictly perpendicular to the ambient magnetic field (cf., e.g., Treumann & Baumjohann, 2018b, for an example and

discussion).

The interaction between electrons and ion sound waves thus opens up the option that electrons in a Debye-screened potential225

may, under certain conditions, experience an attractive potential which compensates and overcomes the Coulomb repulsion

between two negatively charged electrons, resembling a the famous effect of Cooper pairing in solid state physics though here

in the realm of classical physics. The paired electrons and the propagating ion sound wave form a quasiparticle in both these

cases.

It is important to insist that this attraction is not due to trapping of the electron by a large amplitude wave in the wave potential230

trough; at the contrary, it is an electron-induced change in the dielectric properties of the wave-carrying plasma causing the

electron to evolve an attractive electrostatic wake potential it carries along when moving across the plasma. We have previously

shown (Treumann & Baumjohann, 2014) that this can happen also with other waves than ion-sound. Below we demonstrate

that it becomes crucial in the evolution of mirror modes to which plasma wave trapping does not contribute in no sense.

Since the waves are longitudinal propagating along the magnetic field and the bounce motion of the electrons is as well along235

the magnetic field the coordinate s of interest is parallel to the magnetic field, and the gyration of the electrons decouples from

the interaction. In this case we have for the wave number k = (k‖,k⊥) and velocity

k‖ = k · ŝ, v‖(s) = v cosθ(s)

parallel to the local magnetic field. The problem then consist in solving Eq. (18) under the conditions of a bouncing test electron.

This task resembles the solution under non-magnetised conditions which had been given in our previous paper (Treumann &240
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Baumjohann, 2014). In the known form it cannot be applied here but has to be substantially modified in order to become

adapted to the conditions of electron trapping in mirror modes.

3.1 Conditions for an attractive potential

In the light of the previous discussion we rewrite Eq. (18) in the magnetic field as

Φ(x, t) =− eλ2
e

2(2π)2ε0

∫
ωk dωdk e

ik·(x−vt)

(1 + k2
⊥λ

2
e + k2

‖λ
2
e)

[
δ(ω− k‖v‖)

(ω−ωk)
− δ(ω− k‖v‖)

(ω+ωk)

]
(21)245

Here we left the Debye-potential term out as it is of no interest, and resolved the denominator. We also refer to the parallel

particle velocity v‖ = v cosθ which in our case of mirror trapped test particles is along the magnetic field. It selects the parallel

wavenumber of the wave in the Dirac δ-function to replace the frequency ω. In the same spirit the argument of the exponential

becomes ik · (x−vt) = ik⊥ρsinφ+ ik‖(s− tv cosθ) with ρ the independent perpendicular spatial coordinate. It is assumed

that the magnitude v of the velocity remains constant in this kind of interaction, which holds for the adiabatic motions along250

the magnetic field where no further external force acts on the electron except for the stationary restoring magnetic force. (Note

also that the wave frequency ωk depends on k‖,k⊥ but not anymore on angle φ because it has been determined independently

from kinetic wave theory not using the test particle picture.)

These assumptions reduce the integral to integrations over the perpendicular wavenumber k⊥,φ, and frequency ω. Moreover,

since the problem has become cylindrically symmetric with respect to B, integration over φ can easily be performed by255

using the representation of the exponential as a series of Bessel functions (?) which reduces to the zero-order Bessel function

J0(k⊥ρ). The formal result before final integration is

Φ(s,ρ, t) =− eλ2
e

2(2π)2ε0

∫
ωk dωk⊥dk⊥dk‖ J0(k⊥ρ)eik‖(s−v‖t)

(1 + k2
⊥λ

2
e + k2

‖λ
2
e)

[
δ(ω− k‖v‖)
ω−ωk

− δ(ω− k‖v‖)
ω+ωk

]
(22)

where one understands v‖ = v cosθ(s), and the ion sound wave frequency is

ω2
k ≈

Λ0(ηi)c2sk
2
‖

Λ0(ηe) + k2λ2
e

≈
Λ0(ηi)k2

‖c
2
s

1 + k2λ2
e

(23)260

with the right-hand side holding since the electron term in the denominator is Λ0(ηe)≈ 1. In the low frequency approximation

applicable here, the frequency is proportional to the parallel wave number. In the following we simplify this dispersion relation

setting Λ0(ηi)≈ 1, which is its maximum value, and in the resonant denominators neglecting the inverse dependence of ωk on

kλe, only keeping it in the nominator of the integral. Then one may perform the integration with respect to k⊥ which gives,

with ξ = λek⊥, ρ′ = ρ/λe, ζ = k‖λe,265

I(ρ′, ζ)≡
∞∫

0

ξdξJ0(ξρ′)
(
1 + ζ2 + ξ2

)3/2 =
exp

(
− ρ′

√
1 + ζ2

)
√

1 + ζ2
(24)

In order to perform the integral, its singular properties have to be elucidated. The dominant contribution will come from the

resonant denominators in the bracketed terms. Any possible resonances in the Coulomb factor do not play any role here. The
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Dirac δ-functions prescribe replacing the frequency everywhere with k‖v‖. It is, however, convenient to delay this action until

integrating out the singularities in the complex ω plane. To see their effect, one temporarily replaces k‖ in the argument of270

the exponential with ω as the δ-function prescribes as an inverse action. Then we have for ik‖(s− v‖t) = iω(s/v‖− t). Since

the waves are damped, the imaginary part of the frequency is required to be negative. This forces demanding s/v‖− t < 0,

consequently taking the ω-integration over the lower complex ω-half plane, which in surrounding the poles in the positive

sense adds a factor 2πi to the integral and includes the sum of residua ω =±ωk in the integral in this order. The result is

Φ(s,ρ, t) =− ie

4πε0λe
cs
v‖

∫
ζ dζ e−ρ

′√1+ζ2+iζ(s−v‖t)/λe

√
1 + ζ2

[
δ
(
ζ − ωkλe

v‖

)
− δ
(
ζ +

ωkλe
v‖

)]
(25)275

Performing the substitution prescribed by the delta functions in the exponential only yields the sum of two exponentials which

turns into a sinus function. One then obtains for the potential of the particle in the presence of ion sound waves

Φ(s,ρ, t) =
e

2πε0λe
cs
v‖

1∫

0

ζ dζ e−ρ
′√1+ζ2

√
1 + ζ2

sin
[
ζ(s− v‖t)/λe

]
(26)

What remains is the ζ integration with ζ = k‖λe < 1 limited. To simplify, we can either neglect ζ or replace it by unity in the

arguments of the roots. To be conservative and decide for the weakest case, we chose the latter, what yields the integral280

Φ(s,ρ, t) =− e

2
√

2πε0λe

cs
v‖
e−
√

2ρ′
1∫

0

ζ dζ sin
[
ζ
∣∣s− v‖t

∣∣/λe
]

(27)

The argument of the sinus function is negative. So we have taken its sign out and use its absolute value. Integration gives

Φ(s,ρ, t) =− e

2
√

2πε0

cs
v‖

e−
√

2ρ/λe

|σ|2
{

sin |σ| − |σ|cos |σ|
}

(28)

where

σ = (v‖t− s)λ−1
e > 0285

The condition for an attractive potential follows immediately as

tan |σ|> |σ| or 0< σ <
π

2
mod(2π) (29)

Depending on the parallel velocity v‖ > 0 there is an entire range of distances s < v‖t < πλe/2 in which the conditions for

an attractive potential are satisfied. We may note that for negative velocities v‖ < 0 there is no range where the potential can

become attractive as the braced expression is always positive. It is the scalar product k ·v between the wave number of the290

ion-sound and the test particle velocity which selects those speeds which are parallel to the sound velocity, not anti-parallel.

One should keep in mind that this attraction has nothing in common with wave trapping, however! It is the over-screening

effect of the particle, which is moving on the background of the wave noise and experiences the modified dielectric properties

of the plasma.
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It should also be noted that in this condition the time explicitly appears because the test electron is seen from the stationary295

observers frame in which the electron moves. Instead, σ is measured in the moving electron frame. This distinction is important

to make as it will be picked up again below.

The restriction on the velocity is obtained from that ω2 < ω2
k when referring to the replacement ω = k‖v‖ = k‖v cosθ pre-

scribed by the δ-functions. Rescaling ωk ∼ csk‖, it follows that the parallel particle speed is limited as

|v‖|. cs or |cosθ|. cs
v

(30)300

This is in fact a condition on the angle θ. For small speeds v < cs the condition is trivial. The largest effect is caused when

the particle speed is parallel, below and close to the phase velocity cs of the ion-sound wave. For large velocities v > cs the

angle between the phase speed and velocity must be close to π/2, in agreement with the above requirement on the potential

becoming attractive.

This is an important point in application to a plasma. In thermal plasmas we have generally cs ≈
√
me/mive which is far305

below thermal speed. Hence there are only few electrons in the distribution sufficiently far below thermal speed which would

satisfy the resonance condition v < cs. Higher speed electrons can be in resonance and thus contribute to attraction only at

strongly oblique wave and electron speeds. Consequently under normal conditions in a plasma the generation of attractive

potentials becomes obsolete, a point which had been missed in previous work (Neufeld & Ritchie, 1955; Nambu & Akama,

1985). In the particular case of mirror modes it becomes the crucial ingredient, as will be demonstrated below.310

3.2 Correlation length

In all cases the attraction exceeds the repulsion outside the Debye sphere of the electron in its wake and, therefore and most

important, can be felt by other electrons. From here it is clear that two electrons must move at distance somewhat larger than

λe and at nearly same speed in the same direction in order to be held together by their attractions and form a pair. This is the

important point when applying our model to the mirror mode below.315

Having obtained the conditions under that the wake potential behind the moving test electron becomes attractive, we would

like to know the distance over that the negative potential extends. This distance is measured in the instantaneous frame of

the electron and is, hence, given by the above absolute normalised value of |σ|< π/2 which repeats itself periodically. It is,

however, clear that it is only the zeroth period which counts as the effect of the dielectric polarisation on the electron diminishes

with increasing distance s′ = σλe. In absolute numbers this distance becomes320

λcorr = |s− v‖t|<
π

2
λe ≈ 1.57λe (31)

which can be understood as an electron “correlation length” between neighboured electrons. Any electrons within such a

distance will behave about coherently, an important conclusion which, however, has to be extended below to many electrons.

This correlation length is to be compared with the particle spacing in the plasma. Plasmas are defined for particle densities

Nλ3
e� 1, which implies that the distance between the particles is� λe. Consequently the extension of the attractive potential325

in the electron wake is much larger than the spatial distance between two electrons. It thus affects many electrons, an effect

which cannot be neglected when speaking about attraction.
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As for an example, in the magnetosheath which is the preferred domain where the mirror mode is permanently excited, the

average density is, say,N ≈ 3×107 m−3 at temperature Te ≈ 50−100 eV. For the Debye length we have λe ≈ 10 m, while the

inter-particle distance is a mere of≈ 0.005 m. Roughly≈ 104 electrons should experience the presence of the attraction behind330

the test particle, which thus becomes a many-electron effect. Because pair formation depends on the quite severe condition

on the particle velocity, not all those electrons of course will form pairs though however, in reality, the attractive potential

involves a substantial fraction of electrons which necessarily will cause modifications of the plasma conditions. Normally such

modifications will only cause minor effects in the wave spectrum and will be negligible. Below we show that in the evolution

of the mirror mode they become important.335

3.3 Ensemble averaged potential

If we understand the plasma as a compound of a large number of electrons, we can ask for the ensemble averaged potential 〈Φ〉
of the single electron averaging over the particle energy distribution. In an isotropic plasma this is the Boltzmann distribution.

Writing for the parallel velocity v‖ = v cosθ the average potential becomes

〈
Φ
〉

=
e

ε0

Ccs√
2λe

e−
√

2ρ/λe

∞∫

0

vdv e−v
2/v2e

(s+πλe/2)/tv∫

s/tv

dcosθ
σ2 cosθ

[
sinσ−σ cosσ

]
(32)340

which immediately tells that the mean potential taken over the full Boltzmann distribution in repulsive. This is clear, however,

because it accounts for all electrons in the Debye sphere. To calculate the cos-integral we expand the trigonometric functions

to obtain

π

6

∫
σdcosθ ≈ π

6λe

[
π2

12
vt− s log

(
1 +

π

2
vt

s

)]
(33)

We now exclude the Debye sphere by restricting the integration with respect to v over a shell between the thermal and trapped345

speeds. This gives

Etrap∫

Te

dEe−E/Te

[
π2t

12

√
2E
me
− s log

(
1 +

πt

2s

√
2E
me

)]
≈−

(
1− π

6

)
πt

2

√
2T 3

e

me

y∫

1

x
1
2 e−xdx (34)

For a mean attractive potential the last integral should be positive. Doing it yields (Gradshteyn & Ryzhik, 1965)

y∫

1

x
1
2 e−xdx=

2
3

(
y2e−y − e−1

)
≈−y3 + 2y2− 1 (35)

which is positive only if y = 1 + ∆ and ∆ =
(
Etrap −Te

)
/Te < 1 in which case there is a narrow energy range (or energy350

“gap”) for trapped electrons where the mean potential
〈
Φ
〉
< 0 becomes attractive for the electrons when averaging over their

energy distribution and warranting that they behave coherently. The latter we will show can under certain condition be the case.
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4 Two-electron potential

We saw that, under a certain condition, an electron moving in the plasma in resonant interaction with an ion-sound background

may give rise to an attractive potential in its wake where another electron can be captured and thus be forced to accompany355

the first electron. First of all, in plasma all electron are in permanent motion. Hence, if an electron satisfies the resonance

condition with an ion sound fluctuation, it acts attracting on another one moving nearly at same speed. We have seen that this

attractive potential in the presence of a large number of thermally distributed electrons becomes depleted. This holds when

just one electron contributes to the potential. We now extend this to the combined effect of two electrons in the interaction, in

which case we can immediately use the above solution when, however, accounting for the slightly different velocities v‖1,v‖2360

and initial locations s1,s2 of the electrons along the magnetic field. In view of the later application to mirror modes, we again

consider only motion along the magnetic field not yet specifying to the particularities introduced by bouncing in the mirror

field. Then the two-electron potential becomes

Φ(s,ρ, t) =−
∑

j

e

2
√

2πε0

cs
v‖j

e−
√

2ρ/λe

|σj |2
{

sin |σj | − |σj |cos |σj |
}

(36)

with j = 1,2 counting the electrons. Here365

σj = (v‖jt− sj)λ−1
e > 0

As before, the requirement σj > 0 results from the condition that the waves in resonance with the electrons must be damped.

In order to obtain the combined effect of the two electrons, we transform to their centre-of-mass frame

2Z = s1 + s2, 2z = s1− s2 (37)

2U = v‖1 + v‖2, 2u= v‖1− v‖2 (38)370

From the previous we saw that the large correlation length implies that many electrons are affected. Any attractive potential

couples two ore more particles together. The most probable state to be formed is the two-particle (singlet) state. These will

be distributed over the plasma, resembling the Cooper states in solid state superconductivity while not being a quantum effect

here. Rather it is the polarisation effect moving particles produce in the high temperature collisionless plasma which causes

singlet states of pairs.375

In order to be realistic, we now derive the condition for singlet states do evolve. To simplify the algebra, let us define

Σ =: 1
2

(
σ1 +σ2

)
≡
(
Ut−Z

)
λ−1
e > 0

(39)
σ′ =: 1

2

(
σ1−σ2

)
λe ≡

(
ut− z

)
λ−1
e

The restriction on Σ> 0 maps the ω-resonance onto the new variables. At the contrary, σ′ can be positive or negative. With380

these expressions and after some rather tedious though simple calculations, Eq. (36) can be brought into the form

Φ(s,ρ, t)≈−
√

2e
π ε0

cst

(λeΣ +Z)
e−
√

2ρ/λe

|Σ|2
{

sin |Σ| − |Σ|cos |Σ|
}

cosσ′ (40)
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where we made use of the above representations and replaced

v‖1,2t= 1
2λe
(
Σ±σ′

)
+Z ± z (41)

This expression holds under the reasonable assumptions σ′� Σ and z� Z that the difference between the two electrons in385

location is small enough to be found within the correlation length. Only under this condition one expects that the electrons will

be correlated. Interestingly, the form of the potential remains the same as that for the one-particle case with the only difference

that the potential is multiplied by cosσ′. Hence the condition for attraction depends on the value of σ′. Closely spaced electrons

of similar and, as required, resonant speeds not differing too much from the phase speed of the ion-sound give indeed rise to

attraction between the two electrons if the following conditions are satisfied:390

tan Σ > Σ if cosσ′ > 0

tan Σ < Σ if cosσ′ < 0

which yields

0 < Σ <
π

2
if cosσ′ > 0

(42)395
−π

2
< Σ < 0 if cosσ′ < 0

These conditions are essentially the same as in the one-electron case. There modification is due to cosσ′ being positive or

negative and that they apply to the centre of mass coordinate system Z and mean particle speed U which both are contained in

the variable Σ.

We remark that these conditions are very general. They substantially generalise the conditions found earlier by Nambu &400

Akama (1985) to the much more important interaction between two electrons, the lowest order singlet state and thus most

realised state in a plasma. Higher order states like interaction of three electrons leading to triplets and so on are in principle

also possible but will not play any important role because the interaction decays with distance even though they may be located

within the correlation length and form “quasi-particles”. In the singlet state the electrons behave like one particle of double

charge and double mass for the time of their interaction, the time they remain inside one correlation length. This length for the405

singlet is the same as given above that produced by one electron with the difference that it now applies to the centre of mass of

the two electrons. Measured from the centre of mass it extends to its both sides over a length of roughly λcorr ≈ 1.5λe.

In physical units the first singlet state, for instance, is realised for

0< Ut−Z < π

2
λe, |ut− z|< π

2
λe (43)

In these cases resonant electrons in the presence of an ion-sound wave background will arrange into loosely bound electron410

pairs. In high temperature plasma a substantial number of such pairs will exist. However, they will mostly not play any role in

the dynamics. In order to do so the plasma must offer additional ways for the bound singlet pair states to cause any susceptible

effect in the plasma. Such conditions are provided by the quasilinearly stable mirror mode.
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5 Mirror bottle and pairs

Being in the possession of the conditions under which electron pairs can form in a high temperature plasma in interaction415

with a thermal background of ion sound waves, we now intend to apply them to the case of mirror modes. We saw that the

correlation length between electrons provided by one single test electrons is of the order of λcorr ∼ 1.5λe. This value is only

slightly increased by the interaction of two electrons, such that we can roughly take λcorr ∼ 2λe for the singlet. A mirror bottle

is a preferred place for pair formation. This is in contrast to an extended plasma. Firstly, the bottle confines trapped electrons

which cannot easily escape. Secondly, the parallel velocity of a bouncing electrons varies along the mirror magnetic field and420

at some place may get in resonance with the thermal ion-sound spectrum present in the entire plasma volume. If this happens at

some location along the mirror magnetic field, electrons might form pairs and remain correlated for some time, bunch, perform

like bound orbits and thus represent resonant correlated states which due to the correlation become coherent states.

5.1 Centre of mass pair bounce motion

The application of these finding to mirror modes is not an easy task. The electrons perform a complicated bounce motion along425

the inhomogeneous magnetic field with periodically changing bounce velocity and bounce frequency depending on the value

of their constant magnetic moment. Under these conditions we need to now the variation of their bounce velocity as function of

the location along the magnetic field be tween the mirror points. We moreover need to satisfy the common resonance condition

of the pairs with respect to the phase velocity of the ion sound. Since the electron velocity is generally much larger than the

latter this immediately suggests that the best conditions for attraction will be found near the mirror points sm. There the parallel430

velocity of the electrons drops to zero, and there will be a certain range ∆s at distance s. sm where the resonance condition

is satisfied most easily. Here, near sm one expects that attraction will become important.

In order to understand this process we thus need to transform to the moving frame of the pairing electrons. For this purpose

we use the electron bounce motion to define the new pair-electron quantities

M=: 1
2

(
µ1 +µ2

)
, µ=: 1

2

(
µ1−µ2

)
(44)435

Ω2 =:MB′′0 /me, $2 =: µB′′0 /me (45)

U2 =:
2
m
E −Ω2Z2, E =: 1

2

(
E1 + E2− 2MB0

)
(46)

u2 =:
2
m
ε̃−$2z2, ε̃=: 1

2

(
E1−E2− 2µB0

)
(47)

The mean bounce velocity U of the pair becomes a function of the location Z of the centre of mass along the magnetic

field. This requires knowledge of its displacement as a function of the bounce phase which again requires solution of the two440

dynamics of the two electrons. Note the adiabatic constants E ,M,µ,Ω,$. The only variables are the mean and difference

velocities U(Z),u(z). In the magnetic mirror symmetry U(t) is the bounce velocity of the trapped electron pair, and Z(t) is

its location along the magnetic field at time t. The difference speed u(z) is measured in the centre of mass frame relative to Z

and U . The mean speed U along the magnetic field must be expressed either as function of time t or distance Z. For this to
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accomplish one needs to solve the parallel equation of motion:445

dU

dt
=−Ω2Z −$2z ≈−Ω2Z, U =

dZ

dt
(48)

which is given in the reasonable approximation of small$2z. Obviously the mean speed along the field obeys the mean bounce

equation, an oscillation at frequency Ω. Integrating the bounce equation of motion with U(Z) =
√

2E/m−Ω2Z2 yields

Z(t) = Zm sin
(
πt

2tm

)
, Zm = Ω

√
2E
me

(49)

Zm is the distance of the centre of mass mirror point along the magnetic which is reached by the pair at mirror time Ωtm = 1
2π.450

Note that symmetric mirror bottles have been assumed, which implies time symmetry ±tm. For the lag in distance z as

measured relative to the centre of mass Z we obtain formally and similarly

z(t) = zε sin
(
πt

2tε

)
, zε =$

√
2ε̃
me

(50)

with $tε = 1
2π the lag in time in the electron pair to reach the mirror point at relative location zm to the mirror location of the

centre of mass Zm.455

These expressions give the centre of mass and jitter velocities as functions of time

U(t) =
π

2
Zm
tm

cos
(
πt

2tm

)
(51)

u(t) =
π

2
zε
tε

cos
(
πt

2tε

)
(52)

5.2 Condition for pair formation

Electron pair formation proceeds if, in addition to the conditions for attraction which have been given above, the pair electron460

are in resonance with the ion sound. This condition is non-trivial. We mentioned already that electrons participating in attraction

move at speed comparable to the thermal speed ve which exceeds cs substantially. Under non-mirror conditions pair formation

will thus barely take place. However, magnetic mirrors as provided by the mirror instability are a rare exception. The resonance

condition is in fact not a condition on U(Z) but on the angle between the pair velocity and the direction of the magnetic field, as

the latter is the direction of the propagation of the ion sound. During the bounce motion the particle velocities are adiabatically465

conserved. It is only the angle θ(s) that changes along the magnetic field. Thus writing U(s) = 1
2v
(

cosθ1(s) + cosθ2(s)
)
,

assuming that v1 ≈ v2,µ1 ≈ µ2, we have

cosθ1 =
U +u

v
, cosθ2 =

U −u
v

(53)

Introducing the mean angles Θ = 1
2 (θ1 + θ2),ϑ= 1

2 (θ1− θ2)�Θ we obtain

〈U〉
v

= cos
Θ
2

cos
ϑ

2
≈ cos

Θ
2
,

〈u〉
v

=−sin
Θ
2

sin
ϑ

2
≈−ϑ

2
sin

Θ
2

(54)470
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Note that u can be negative as it is measured in the centre of mass frame. The condition of resonance U(Z) . cs then reduces

to

〈U〉 . cs −→ cos
Θ
2

. cs
v
� 1

(55)∣∣∣∣
ϑ

2

∣∣∣∣ ∼
〈u〉
v
� 1475

This condition shows that our assumption of about equal magnitudes v1 ≈ v2 is not crucial because of the smallness of this

ratio. It shows moreover that the resonance condition is nicely satisfied near the mirror points sm where the average angle

Θ/2≈ π
2 . As for an example, cs/ve ≈

√
me/mi ≈ 0.023 which shows that the average cosine is very small, and the effective

angle Θ/2≈ 88.7◦ is close to 90◦. Allowing for a deviation in the ratio of ∼ 0.002 the angular variation would amount to

ϑ≈ 0.2◦ as obtained from the average jitter velocity 〈u〉, as is suggested by the second above condition with sinΘ/2≈ 1,480

which gives the angular spread in case of attraction.

This analysis shows that once a mirror bottle evolves there is a narrow range near the mirror points ±sm for the trapped

electrons to generate attractive potentials in their wake during their bounce motion inside the magnetic mirror trap. This

attractive potential extends over approximately one or two Debye lengths along the magnetic field outside the Debye sphere

of the acting electron (roughly some ten meters in the magnetosheath!) whose charge field is compensated by the bulk of the485

surrounding electrons populating its Debye sphere. This lengths is much larger than the mutual particle distance. It thus affects

a substantial number of electrons which in case their velocities do not differ much form pairs inside the correlation length

which the attractive potential attributes to them. As a consequence, there is a substantial number of paired electrons inside

the mirror bottle along the magnetic field around all the many mirror points of trapped electrons of different initial angle and

velocity. The distribution of those mirror points depends on the distribution of pitch angles of the electrons trapped in the field490

minimum B =B0 at the centre of the mirror bottle. One thus expects that over a certain length along the mirror magnetic field

an almost homogeneous distribution of electron pairs will evolve.

5.3 Dynamics of pair population: Magnetic susceptibility

The pitch angle distribution of trapped electrons in a mirror bottle is not known a priori. The equatorial pitch angle θ0 is given

as495

sin2 θ0 =B0/B(sm) (56)

the ratio of minimum magnetic field to the mirror field of trapped electrons. Electrons with large equatorial pitch angle mirror

very close to the minimum magnetic field. It is thus clear that there is practically a continuous distribution of mirror points

along the mirror magnetic field in the bottle depending on the given initial distribution of equatorial pitch angles. Moreover this

applies to all magnetic field lines, not only the central one. As a consequence, the entire narrow volume of the quasi-linearly500

stable mirror bottle will be subject to the presence of pairs each of which is located at and along the magnetic field centred

around its mirror point. Under these conditions the pairs become an important population of a mirror bottle and contribute to

its dynamics. This pair distribution has dropped out of the main particle distribution which does not evolve into pairs because
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it does not fulfil the requirements, i.e. the resonance condition for attraction. The normal population simply continues in

the bounce motion and for an observer will dominate the measurement. The pairs at the contrary after becoming formed are505

locked. They drop out from bouncing remaining in their locked positions along their magnetic field line and jittering at velocity

u around it.

Formation of pairs in the magnetic bottle has an immediate and profound effect on the dynamics of the magnetic bottle. By

producing an attractive potential and at the same time forming pairs in the narrow environment of extension of a Debye length

(as noted above∼ 10 m in the magnetosheath) around their common mirror points at the magnetic field the two paired electrons510

do not anymore participate in bouncing. To repeat, they have become locked at the personal mirror points with all their energy

being now in the perpendicular gyration. They form a particle of twice its mass m∗ = 2me and twice its charge q∗ =−2e.

Dropping out of the bounce by being locked in the attraction implies energetically that their parallel motion condensates in

the lowest energy bounce level which is classically. This level has not anymore thermal energy but energy of the order of

ε̃∼ (m∗/2)〈u2〉 � Ee, the energy in their average jitter motion around the mirror point, negligibly small with respect to their515

gyration energy.

The main consequence of this effect of pairing is thus that the paired electrons have all the same mean speed v⊥ ≈ ve in

their gyration, which is rather close to the thermal speed ve, while their common mean energy which equals their temperature

is less by a factor 2 than the electron temperature of the non-paired electron plasma. On the other hand, their kinetic energy

and thus magnetic moment is larger by the same factor 2 for the simple reason that they are pairs.520

Being locked in pairing, at lowest bounce level, and in steady gyration, they behave coherently. In this way they form a

coherent gyration current Jpair which gives rise to an orbital diamagnetism which expels the magnetic field from the interior

of the mirror bottle thereby increasing its radius and diminishing the magnetic field until the depletion of the field substantially

exceeds the original quasi-linear saturation value of the depletion.

This becomes a difficult problem to solve in detail as it requires the construction of the grand partition function for the paired525

electrons which is hardly known in the inhomogeneous situation provided by the mirror mode. Though this is possible to do

in the homogeneous quantum mechanical approach to superconductivity. This was done in the celebrated Bardeen-Cooper-

Schrieffer theory of superconductivity. The classical case is unfortunately less transparent as it does not allow the simplifying

use of a wave function and operator formalism.

In a more heuristic approach we refer to the definition of the diamagnetic susceptibility χ. This is given in the pair case as530

χpair = µ0
∂Mpair

∂B
(57)

whereMpair is the average magnetic moment induced by the total pair distribution in unit volume, and B0 is the undisturbed

field reached after quasi-linear stabilisation of the quasi-linearly stable mirror mode. Of course and again,Mpair is not a priori

known microscopically in the inhomogeneous medium of the interior of a mirror bubble, even though we have extensively

discussed the formation of pair singlets.535

However we may assume that for a single pair it is given as Mδ(U −Upair )δ(Z −Zpair ). The summation over all pair

velocities and locations, assuming coherence, requires knowledge of the pair distribution. Assuming thatMpair is the wanted
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average magnetic moment, this gives that

Mpair ≈NpairM, M≈ 〈E⊥〉
B

(58)

where Npair = αN is the total density of pairs in the volume with α their fractional density. Strictly speaking, this is a crude540

approximation because each pair contributes a slightly different magnetic moment. When the phase transition sets on near

some critical mean energy corresponding to some critical temperature of the order of the average trapping energy 〈Etrap〉=

Te,crit & Te the mean magnetic moment will have a slightly weaker dependence on the magnetic fieldM∼B−δ with critical

exponent δ . 1 related to three other critical exponents α,β,γ which have to be determined experimentally, all determining the

exact way in which the phase transition proceeds. Here, for our purpose of demonstrating the main effect, we leave the subtle545

problem of phase transition aside. Taking then the derivative we obtain that

χpair =−µ0
Npair

B
M≈−µ0α

N〈E⊥〉
B2

(59)

which suggests that the coherent effect of the trapped paired electrons causes the expected diamagnetism which reduces the

magnetic field inside the mirror bottle.

The dynamics of the pairs in the mirror bottle is thus responsible for the further demagnetisation of its interior. This proceeds550

by the coherent gyration of the pairs. Since they are locked in the lowest bounce level at frequency ω = 1
2ωb, their parallel

temperature is practically zero compared to the plasma temperature, with jitter temperature δT ∼ 2me

〈
u2
〉
/2� Te and all

their energy in the gyromotion at average velocity 〈v⊥〉& ve. The grand partition function of this problem consists of the

integral over the continuum of (classical) Landau states in the inhomogeneous magnetic field, a problem which cannot easily

be solved in our non-quantum case, as it requires knowledge of the coherent Hamiltonian of trapped paired bounce-locked555

electrons.

5.4 Self-consistent mirror amplitude limit

To obtain a physically motivated approximation we can make use of the famous quantum mechanical Landau solution in a

homogeneous magnetic field (cf., e.g., Huang, 1987, pp. 258 ff.). Making the transition to large perpendicular temperatures

and taking the classical limit by replacing in Landau’s final solution the Bohr magneton, the quantum of an electron magnetic560

moment, by the average canonical magnetic moment of the typical electron pair yields that

χpair ≈−
µ0αN

Te⊥
M2

(
1− erf(1)

)
≈−0.59

µ0αN

Te⊥
M2 (60)

where we accounted for the condition that the Landau summation is maintained while the momentum integration applies only

to the paired electrons, excluding the Debye sphere. This resembles the above expression given for the magnetic susceptibility.

The magnetic susceptibility obtained is negative, as expected also in this case. The above bracketed expression shows that565

including the Debye electrons would deplete the susceptibility effect which is diamagnetic, decreasing the magnetic field.

Contrary to the solid state homogeneous Landau diamagnetism, where the magnetic susceptibility is independent of the

magnetic field, being universally constant and proportional to Bohr’s magneton, the diamagnetism in the inhomogeneous
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mirror state depends inversely on the magnetic field χ∝B−2. The diamagnetism in this case is dynamical. Decreasing the

magnetic field acts amplifying on its effect until the field becomes so weak that the gyration effect ceases and external pressure570

inhibits further expansion of the bottle. This is a most important finding. It is the clue to the description of large amplitude

mirror modes as being caused by the presence of the paired electron population in a mirror unstable plasma. This will be

demonstrated below.

In the final state, assuming it has been reached, we have for the minimum magnetic field in the bottle

Bfin ∼
(

1− |χpair |
)
B0 (61)575

Let us take the following (initial) conditions: T⊥ ∼ 50 eV, B0 ∼ 10 nT, N ∼ 3× 107 m−3. Then we have

Bfin ∼
(

1− 2α
)
B0 (62)

In order to obtain a 50% reduction of the magnetic field (as is frequently observed in the magnetosheath) thus requires that

α∼ 0.25. Hence roughly ∼ 25% of the electrons trapped in the quasi-linearly stable ion-mirror bottle are required to interact

with the ion-sound background in this case to evacuate half of the magnetic flux from the mirror bottle. This is a substantial580

though finite and not overwhelmingly large fraction of electrons which participate in the generation of an attractive potential

between electrons in their wakes and form singlets of electron pairs.

The second last expression enables estimating the magnetic self-quenching of the field due to pair formation. Define

Bfin =B0

(
1 +

∆B

B0

)
(63)

where ∆B < 0 measures the depletion of the magnetic field. Inserting for B inM and χpair gives a third order equation for585

∆B/B0. When neglecting the third order term, it yields the condition on

α <
B2

0

4.7µ0NT⊥
(64)

as the maximum possible absolute fraction of pairs which self-consistently support the expansion of the mirror bottle until

becoming self-stabilised. Assuming pressure balance in the quasilinear mirror mode state requires that α. 1/2.4≈ 0.42,

which is a fairly large fraction indeed, though of course just the severe upper limit. The resulting limiting maximum achievable590

depletion of the magnetic field then becomes

∆B ≈−
1
2

(
1− 0.07µ0αNT⊥

B2
0

)
≈−0.49B0 (65)

Here in the final state we assumed already that the pressure balance B2
0/2µ0 =NT⊥ is maintained in any mirror bottle. When

comparing with observations in the magnetosheath of Earth it is most interesting that this is close to the maximum observed

depletions (Lucek et al., 2001; Constantinescu et al., 2003; Tsurutani et al., 2011; Treumann & Baumjohann, 2018b; Yao et al.,595

2019) in the largest mirror mode bubbles.
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6 Conclusions

Natural mirror modes are an exception in high-temperature collisionless plasmas. They start from a simple magnetohydrody-

namic instability in an anisotropic pressure configuration far from thermal equilibrium that has been produced for instance in

the magnetosheath by the forced flow across the bow shock (cf., e.g., Balogh & Treumann, 2013, for the relations around the600

bow shock) and may be a general property of shocked plasma flows (Lucek et al., 2005). Linear theory shows that this instabil-

ity produces magnetic field-elongated magnetic bottles which stabilise by quasilinear interaction between the anisotropic ions

and the magnetic field in which course the thermal anisotropy is depleted to a low stable rudimentary value. The amplitude of

the magnetic depletion, as numerical simulations have demonstrated, is very low. It is in fact so low that the quasilinear mirror

mode would in observations not be noticed but added to the ordinary fluctuations of the magnetic field and thermal pressure. It605

does not explain the notorious though not persistent observation of very large amplitude chains of mirror modes of up to 50%

magnetic depletion.

In the present communication we have demonstrated that the physics of those large amplitude mirror modes is rather com-

plicated. So far no weak turbulence theory has been developed to explain their existence, mainly because it requires a spectrum

of very low frequency plasma waves which is barely available in this frequency range.610

The solution to this difficult problem is found in quite a different direction. It is given by accounting for the dynamics of

the electron component trapped in the magnetic mirror bottle. These electrons perform their bounce motion and can in the

vicinity of their mirror points, where their parallel speed drops to near zero, get into resonance with the always present thermal

ion-acoustic noise spectrum. They then generate an attractive potential in the wake outside the charge-compensating Debye

sphere that may affect another close electron, attract it and form an electron pair.615

This process has been applied in the present communication to the formation of electron pair singlets consisting of two

electrons and the wave spectrum, and the conditions for this to happen have been obtained. Such electron pairs need not to be

spin compensated in our case because at the high temperatures in classical plasmas the Pauli principle plays no role and does

not work. The jitter energies are still high above the spin energies.

However, the pairs fulfil an important function in the case of the mirror modes. By becoming trapped in the attraction, they620

drop out of the bounce motion, becoming locked near their mirror points along the quasi-linearly stable mirror bottle, spending

all their kinetic energy into their gyration. Thus the pair distribution in a mirror mode becomes highly and very narrowly peaked

just above and near their thermal velocity, an effect which should be very interesting to investigate in its further consequences.

The main effect of pair formation is that the gyration-locked pair distribution produces a finite diamagnetic susceptibility

which acts depleting on the mirror bottle-magnetic field. The conditions for this to happen have been given above. It turns625

out that the magnetic bottle in this pairing-diamagnetic process, which in fact is a classical-physics Meissner effect, stabilises

in a self-consistent manner by determining both the fraction of pairs which can be sustained by it and, at the same time, the

saturation amplitude of the magnetic depletion. It is interesting that both these fractions are not unreasonable when compared

with observations.
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Aside from the theoretically difficult problem of determining the grand partition function of the pairs respectively the free630

thermodynamic energy density related to the pair gas, and the implicated phase transition they produce in the trapped plasma-

magnetic field configuration, a number of problems remain open. These concern the observation of the paired distribution,

the theoretical problem of its classical effect concerning the possible generation of secondary instabilities and, finally, the

maintenance of pressure balance. The latter is probably not crucial as the quasilinear theory is not violated by the effect of

the pairs. The pairs take the energy they feed into the diamagnetism from their bounce motion, which is a process completely635

interior to the quasi-linear mirror mode which already is in very near pressure balance. Nevertheless would it be interesting to

check experimentally whether pairing causes additional changes.

Altogether, the present communication has discovered an interesting new effect in high-temperature plasma which might

have other consequences as well. It brings the theory of mirror modes to an intermediate conclusion by contributing to the

understanding of the so far badly understood large magnetic amplitudes of mirror bubbles. It also eliminates the sometimes640

claimed necessity of considering spiked mirror modes where the saturated magnetic field overshoots. If this actually happens

then it would be caused by pressure imbalance as consequence of the pairing effect. It also has brought an interesting important

and unexpected application of the strange generation of attractive potentials of electrons proposed long ago for a plasma but

never having found any application nor effect in a plasma. This has been shown here to become important when extending the

theory of mirror modes to the inclusion of pair formation and generation of electron singlets, a close analogy to the behaviour645

of electrons in solid state physics in particular superconductivity.

It would be of interest investigating which effects the process elucidated here might have in turbulence theory and as well in

astrophysical applications, in particular in view of our above finding that kinetic Alfvén waves are also capable of generating

attractive potentials and may form electron pairs. Since they naturally have high phase speeds, satisfaction of the resonance

condition seems to be easier for them than with ion sound waves. One example where this capability of kinetic Alfvén waves650

could become involved is in the aurora coupling region to the plasma sheet. Here, electrons are naturally trapped in the geo-

magnetic field and perform bounce motions. The relaxed kinetic Alfvén pairing condition may generated a fraction of trapped

pairs along the auroral magnetic field in this case to produced a substantial diamagnetic effect here with possible consequences

for auroral physics.

In mirror-modes kinetic Alfvén waves are of little interest, as there is no obvious reason for them to be generated. They655

have, moreover, never been identified in relation to mirror observations while ion sound waves are generally present within and

outside them. In ion-inertial range turbulence kinetic Alfvén waves seem to play some role as various observations indicate

and theory also supports for the reason that the scale of the ion-inertial range coincides with the perpendicular wave lengths of

kinetic Alfvén waves. Even though there is no obvious reason for the expectation that a coherent state would evolve for instance

in turbulence, our pair-singlet mechanism should work in those cases as well and might have consequences for turbulence,660

entropy generation, and turbulent dissipation.
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