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Abstract. The mirror mode evolving in collisionless mag-
netised high-temperature thermally anisotropic plasmas is
shown to develop an interesting macro-state. Starting as
a classical zero frequency ion fluid instability it saturates
quasi-linearly at very low magnetic level, while forming5

elongated magnetic bubbles which trap the electron compo-
nent to perform an adiabatic bounce motion along the mag-
netic field. Further evolution of the mirror mode towards a
stationary state is determined by the bouncing trapped elec-
trons which interact with the thermal level of ion sound10

waves, generate attractive wake potentials which give rise
to formation of electron pairs in the lowest-energy singlet
state of two combined electrons. Pairing takes preferentially
place near the bounce-mirror points where the pairs become
spatially locked with all their energy in the gyration. The15

resulting large anisotropy of pairs enters the mirror growth
rate in the quasi-linearly stable mirror mode. It breaks the
quasilinear stability and causes further growth. Pressure bal-
ance is either restored by dissipation of the pairs and their
anisotropy or inflow of plasma from the environment. In the20

first case new pairs will continuously form until equilibrium
is reached. In the final state the fraction of pairs can be esti-
mated. This process is open to experimental verification. To
our knowledge it is the only process where in high tempera-
ture plasma pairing may occur and has an important observ-25

able macroscopic effect: breaking the quasilinear limit and,
via pressure balance, generation of localised diamagnetism.

Keywords. Mirror modes, magnetosheath, solar wind, tur-
bulence, plasma diamagnetism

1 Introduction30

There seems to be nothing particularly interesting left about
a very low frequency effect in high temperature magne-
tised plasma known as the mirror mode (see, e.g., Tsuru-

tani et al., 2011, for a more recent observational review).
It was formally discovered some sixty years ago (Chan- 35

drasekhar, 1961; Hasegawa, 1975; Gary, 1993) as a theoret-
ical complement to the zero-frequency hose instability, two
purely growing linear instabilities in the presence of pres-
sure anisotropies. The hose instability excites propagating
Alfvén waves when the magnetically parallel temperature 40

T‖ > T⊥ exceeds the perpendicular temperature, the mirror
mode grows under the opposite condition T‖ < T⊥ that the
perpendicular temperature is higher than the parallel by a
certain amount, passing a threshold. The mirror mode gen-
erates magnetically elongated magnetic bottles in pressure 45

balance, thereby providing the plasma a local texture. In the
presence of weak plasma gradients, the mirror mode, for-
mally, assumes a small but finite real frequency (Hasegawa,
1969). Various properties of the instability were added un-
der different plasma conditions and in different wavenumber 50

ranges like finite gyroradius effects (cf., e.g., Pokhotelov et
al., 2005), dependencies on electron temperature and electron
anisotropies (cf., e.g., Pokhotelov et al., 2003), as well as on
plasma convection. The instability saturates quasilinearly at
a rather low level by exhausting the bulk thermal anisotropy 55

(cf., e.g., Treumann & Baumjohann, 1997; Noreen et al.,
2017, for the quasilinear numerics). Finally, the trapped par-
ticle components give rise to the excitation of ion cyclotron
and electron whistler waves, if only a thermal anisotropy of
resonant particles evolves. Identification in real plasmas be- 60

came possible when measuring the pressure balance between
external magnetic field and increased internal plasma pres-
sure. In observations the two pressures in ion-mirror modes
are anti-correlated, a condition which generally serves as the
key identifier of mirror modes. 65

The disturbing remaining barely understood point is how,
in an ideally conducting plasma at high temperature, the
magnetic field can become expelled to a high degree from
the interior of the magnetic mirror bottle, an effect re-
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sembling the Meissner effect in low-temperature supercon-
ductivity which, however, is forbidden in classical physics
as it requires the presence of quantum correlations known
to be restricted to very dense and low-temperature condi-
tions only. In superconductivity, the Meissner effect arises5

from the electron-phonon interaction in the crystal lat-
tice when spin-compensated electron-Cooper pairs (Cooper,
1956) form, occupy the same quantum state and, though re-
maining fermions, together with the interacting phonons as-
sume bosonic properties.10

These quasi-particles condensate in the lowest energy
level above Fermi energy and evolve into a Landau-Fermi
fluid (Landau, 1941; Ginzburg & Landau, 1950; Ginzburg,
1955), culminating in BCS theory (Bardeen et al., 1957).
The condensate current becomes capable of generating up15

to ∼ 100% bulk diamagnetism, rather different from pres-
sure balance which in BCS is warranted by the stiffness of
the crystal lattice. In mirror modes the quasi-diamagnetic ef-
fect amounts to roughly 50%, many times more than the ∼
few % magnetic amplitudes quasilinear theory predicts (cf.,20

e.g., Noreen et al., 2017). For its explanation, no weak ki-
netic plasma turbulence theory (cf., e.g., Yoon, 2007) is in
sight. This discrepancy suggests that in the evolution of mir-
ror modes some fundamental effect is still missing.

Recently we exhumed kind of a parallelism between su-25

perconductivity and the growth of the ion mirror mode
(Treumann & Baumjohann, 2018a). Here we demonstrate
that the mirror mode can be understood as a combination
of the classical plasma ion effect which generates magnetic
bottles at the low quasilinear saturation level, while the main30

large mirror effect may possibly be caused by the trapped
bouncing particle component in a similar though classical
way as in the BCS theory.

In this case it are the mirroring particles (preferentially
electrons, though possibly also ions), which interact with the35

available general thermal ion-sound wave population in the
plasma, at either thermal or non-thermal level, to produce
trapped pair singlets which are dynamically distributed over
the volume of a mirror bottle. Together with the ion sound
fluctuations, they form kind of quasiparticles. These become40

locked near their centre-of-mass mirror points and conden-
sate at perpendicular energy close to the electron tempera-
ture. This leads to electron boundary currents causing some
weak diamagnetism which, probably, is incapable of explain-
ing the further growth of mirror modes.45

However, evolving from the quasilinear stable state, the
pairs generate a large perpendicular electron anisotropy that
enters the mirror growth rate and breaks the quasilinear sta-
bility. Further mode growth is either pressure compensated
by dissolution of pairs and plasma heating or by quasi-50

neutral plasma inflow from the environment along the mag-
netic field. This kind of pairing is proper to the mirror in-
stability and may develop for electrons and, possibly, under
modified conditions and effects, also for ions. For being spe-
cific, we concentrate on electrons only in the following.55

The physical mechanism behind this effect is the interac-
tion of mirror-mode-trapped electrons with the thermal back-
ground noise of the ion-acoustic wave spectrum excited in
the mirror unstable plasma at low but sufficiently large ampli-
tude. Since ion sound is a basic plasma eigenmode, balance 60

between spontaneous emission and collisionless damping al-
ways leads to the presence of ion sound noise at measurable
intensity, for instance in the magnetosheath (cf., e.g., Ro-
driguez & Gurnett, 1975; Treumann & Baumjohann, 2018b,
for additional arguments concerning mirror mode observa- 65

tions). Hence, for the interaction discussed in this commu-
nication it is not necessary that the ion sound is excited by
an instability. If the conditions for an ion-acoustic instabil-
ity are satisfied, the pairing condition may become positively
affected. 70

2 Electron trapping

Once the ion-mirror mode starts growing at the well known
(cf., e.g., Noreen et al., 2017) ion-mirror growth rate

γm(k)

ωci
≈

k‖λi

1 +A

√
β‖

π

[
A+

√
Te⊥
Ti⊥

Ae−
k2

k2⊥β⊥

]
(1)

A ≡ Ti⊥
Ti‖
− 1 & 0, Ae ≡

Te⊥
Te‖
− 1 75

with approximately vanishing real frequency ωm ≈ 0, ne-
glecting the effect of density gradients, which would cause
a finite real part on the frequency, λi = c/ωi ion inertial
length, a magnetic bottle evolves in slightly oblique direc-
tion k‖� k⊥ with magnetic disturbances |δB‖| � |δB⊥|. 80

This bottle is elongated or stretched along the ambient mag-
netic field B and has a narrow opening angle θ given by
tanθ = k‖/k⊥� 1. Instability corresponds to a second or-
der phase transition in plasma which happens whence the
magnetic field locally drops below a critical threshold value 85

B <Bc ≈
√

2µ0NTi⊥A |sinθ | (2)

where we neglected the electron contribution. Though sub-
stantial, this growth rate is just a fraction of the ion cyclotron
frequency ωci = eB/mi for k‖λi� 1 and B respectively A
near threshold, the usual case (Treumann & Baumjohann, 90

2018a). As noted above, the instability readily stabilises
quasi-linearly (Noreen et al., 2017; Treumann & Baumjo-
hann, 1997) at very low level |δB|2�B2 via depleting the
anisotropy A. One may note that a marginally stable case is
obtained for 95

Aβ⊥ = k2/k2⊥ (3)

which defines a particular marginally stable angle of propa-
gation.

More interesting is that, for an initially negligible electron
contribution Ae�A, the electron anisotropy at quasilinear 100
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stability may become important in the growth rate for the
mirror instability to surpass the stable quasilinear state, in
which case the ion mirror instability may further grow.

It is thus of particular interest, whether a substantial elec-
tron anisotropy Ae can self-consistently be generated in the5

mirror mode as this could cause growth of the ion mirror
mode to large amplitudes.

Below we propose such a mechanism. We may, however,
note in passing that this same mechanism can also, by itself,
drive an electron mirror mode after quasilinear stability of10

the ion mode has been reached. The electron mirror mode is a
short-scale magnetic fluctuation on the ion mode background
with fast growth rate

γe
ωce
≈ k‖λe

√
βe‖

π

[
Ae−

k2

k2⊥βe⊥

]
(4)

a fraction of the electron cyclotron frequency ωce. The15

marginal stability condition again requires vanishing of the
bracket for one particular angle of propagation. The electron
mode also stabilises quasi-linearly, causing short wavelength
depletions of the magnetic field on the course of the above
ion mirror mode, as have been observed previously (cf., e.g.,20

Treumann & Baumjohann, 2018b).
In the following we do not further investigate the electron

mirror mode, even though it will also be affected by the pro-
posed electron pairing which might be responsible for its sur-
prisingly large amplitudes it achieves. Our focus here is on25

the main ion mode.

2.1 Electron dynamics, energy limit, trapped density
fraction

The conventional ion mirror mode provides a quasi-
stationary magnetic bottle (see, e.g., Constantinescu, 2002,30

for a analytical geometric model) structure, which neces-
sarily traps electrons of sufficiently small magnetic moment
µe. Because the mirror mode frequency practically vanishes
and the mirror mode grows slowly compared to the elec-
tron dynamics, electrons react adiabatically to the presence35

of the mirror instability. They conserve their magnetic mo-
ment µe = Ee⊥/B = const when moving along the magnetic
fieldB(s). Trapping occurs between the two mirror magnetic
fields B±m =B(±sm), with s coordinate along the mag-
netic field. The trapped-electron perpendicular kinetic energy40

Ee⊥(s) = µeB(s)≡ V (s) plays the role of a retarding poten-
tial

Ee‖(s) = Ee−V (s) (5)

At the mirror points the parallel energy of trapped electrons
vanishes, and Ee⊥(±sm) = Ee. Thus trapping occurs for all45

µe ≤ µm ≡ Ee/B±m, a well-known fact. Though it does not
bunch them, mirroring keeps these electrons together by con-
fining them to the volume of the bottle, inside which they
perform the oscillatory bounce motion between mirror points

±sm. The parallel electron equation of motion is 50

dv‖(s, t)

dt
=− µe

me
∇‖B(s), ∇‖ =

∂

∂s
(6)

For symmetric bottles and motion around and not too far
away from the minimum B(s0) = min{B(s)} ≡B0 of the
magnetic field we have

B(s)≈B0 + 1
2B
′′
0 (s− s0)2, B′′0 =

∂2B

∂s2

∣∣∣
s0

(7) 55

which immediately gives the bounce frequency

ωb =

√
µe
me

B′′0 � ωce (8)

a frequency much less than the electron cyclotron frequency
ωce = eB/me.

We shall show below that this kind of trapping, in the case 60

of the mirror mode, becomes advantageous for electron pair-
ing, an effect otherwise observed only under solid state con-
ditions in superconducting metals.

In order to get an idea on the trapping energy condition,
we consider the mirror point s=±sm. Here all the energy 65

is in the perpendicular direction, i.e. the local gyro motion
of electrons. Hence de-trapping of electrons occurs, once
their gyroradius exceeds the opening radius of the bottle neck
rce,s &Rs = L‖ tanθ, where L‖ ∼ 2π/k‖ is the half length
of the ion mirror bottle. This yields immediately that elec- 70

trons remain trapped as long as their energy satisfies the con-
dition

Ee .
1

4π2

Te
k2⊥r

2
ce

≡ Etrap , rce = ve/ωce,s (9)

with rce is the electron gyro-radius and k⊥ the perpendicular
wave number of the ion-mirror mode. All electrons of such 75

energy remain trapped in the magnetic mirror bottle. Larger
energy electrons escape from the bottle along the magnetic
field. (We do not discuss the subtle problem that quasi-
neutrality requires them to be replaced by low-perpendicular-
speed electron inflow along the magnetic field which, how- 80

ever, has an effect on the additionally required pressure bal-
ance.)

2.2 Fractional trapping condition

The fractional number density of maxwellian mirror trapped
electrons is 85
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where C is a normalisation constant, and γ(a,b) is the in-
complete Gamma function.

Constancy of the trapped electron magnetic moment (cf.,
e.g., Baumjohann & Treumann, 1996, for a textbook presen-
tation), yields the parallel energy5

E‖(s) = Ee
(

1− B(s)

B(sm)

)
(11)

which defines the angle between velocity and magnetic field
for the trapped electrons

θ(s) = cos−1

√
1− B(s)

B(sm)
(12)

These or the equivalent expressions we will need below.10

3 Single electron wake potential

In preparing for the investigation of ion-mirror-mode trapped
electrons, we consider the interaction of an electron with the
bath of ion sound waves. This is most easily done in the
naked test particle picture, assuming that we grab one of the15

electrons and ask for its reaction to the presence of the dielec-
tric in which it moves. This approach requires subsequent in-
tegration over the electron energy distribution.

The electron is a point charge −e with velocity v that is
located at its instantaneous position x′ = x−vt in the ob-20

servers frame (x, t). This is represented by the point charge
density functionN(x, t) =−eδ(x−vt). We assume that the
electron is non-relativistic which for trapped electrons un-
der the conditions in the magnetosheath (Lucek et al., 2005)
or the solar wind is good enough. The relative dielectric25

constant of the plasma it experiences is ε(ω,k) where ω,k
are frequency and wavenumber of the plasma wave which
changes the dielectric properties. In general, we have a whole
spectrum of waves which is taken care of below by inte-
grating over the entire spectrum. The naked charged electron30

polarises the plasma. The total electric potential the moving
non-relativistic charge at location x′ causes at location x is
obtained from Poisson’s equation with above charge density
and has the form

Φ(x, t) =− e

(2π)3ε0

∫
dωdk

δ(ω−k · v)

k2ε(k,ω)
eik·(x−vt) (13)35

This can easily be shown (originally given by Neufeld &
Ritchie, 1955; Krall & Trivelpiece, 1973, for a textbook de-
scription) by Fourier-transformation. One may note that this
expression also holds for ions. In this representation the ac-
tion of the δ-function on the exponential has been taken care40

of. Integration is over wave numbers and frequencies, the
wave spectrum responsible for the dielectric properties ex-
perienced by the test electron. Integration with respect to fre-
quency ω implies ω→ k ·v also in the dielectric response

function ε(ω,k), which we shift until having discussed the 45

latter.
In solid state physics it is assumed that the oscillations of

the ion lattice generate a thermal spectrum of phonons. In
plasmas these waves are not restricted to the Brillouin zones
but are freely propagating waves either forming a thermal 50

background noise or, for Te� Ti providing a broad spec-
trum of unstably excited ion sound for which the plasma re-
sponse function accounts. In high temperature thermal equi-
librium it is the jitter motion of electrons which leads to spon-
taneous emission of sound and modifies the dielectric prop- 55

erties of the plasma. The general electrostatic response func-
tion reads

ε(ω,k) = 1 +
1

k2λ2e
+χe(ω,k) +χi(ω,k) (14)

with χe,i(ω,k) the electron and ion susceptibilities. Under
nonlinear conditions the susceptibilities depend, in addition, 60

on the wave amplitude. This electrostatic dispersion relation
contains both the effects of electrons and ions.

One may wonder why for wavelengths usually much
longer than the Debye length λe� λ the second term in
this expression is not neglected. The reason that it must be 65

retained here, is that the uncompensated charge of the test
particle when immersed into the plasma excites short wave-
lengths waves on the Debye scale in order to screen the
charge. Therefore, independent of the wavelength of plasma
waves, the test particle dielectric response must include the 70

Debye term.
The dielectric response function of the thermal spectrum

of ion-sound waves at frequencies far below the electron
plasma frequency ω� ωe is

ε(ω,k) = 1 +
1

k2λ2e
−
(ωi
ω

)2
(15) 75

where ωi is the ion plasma frequency, λe ≈ ve/ωe the Debye
screening distance, and the frequency of ion sound waves ωk

is obtained putting the real part of this expression to zero,
which as usually yields(ωk

ωi

)2
=

k2λ2e
1 + k2λ2e

or ω2
k =

c2sk
2

1 + k2λ2e
< ω2

i (16) 80

Here c2s = ω2
i λ

2
e ≈ (me/mi)v

2
e ≈ 2Te/mi is the ion-sound

speed square. It is simple matter to show that the inverse re-
sponse function becomes

1

ε(ω,k)
=

k2λ2e
1 + k2λ2e

(
1 +

ω2
k

ω2−ω2
k

)
(17)

Actually, this is also the general inverse form of any dielec- 85

tric response, if only ωk is understood as the solution of the
general response function

ε(ω,k) = 0 (18)
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for electrostatic waves, and

ε(ω,k)− k2c2/ω2 = 0 (19)

for very-low frequency electromagnetic waves like magneto-
sonic or (kinetic) Alfvén waves. In the latter case one has
(cf., e.g., Treumann & Baumjohann, 1997), including kinetic5

effects,

εA(ω,k) = 1+
1

k2λ2e
+
c2

V 2
A

[
1+
(
k·rci

)2(3

4
+
Te
Ti

)]−1
(20)

with rci = vi⊥/ωci the vectorial ion gyro-radius. The rele-
vant wave frequency is ω2

kA ≈ k2V 2
A for the ordinary Alfvén

wave, with VA� c the Alfvén speed (if wanted including the10

bracketed modification factor).
The kinetic Alfvén wave propagates fast along the mag-

netic field almost at Alfvén speed, and roughly ten times
slower perpendicular to it. The weak wave electric potential
resulting from its kinetic nature is along the magnetic field15

and is being believed to be responsible for electron acceler-
ation. Any attractive pairing effect in resonance with those
fast parallel electrons will be in this direction as well, a very
interesting fact in itself which we do not investigate here,
leaving it for a separate investigation. It may be applicable20

to particles in the auroral magnetosphere with its magnetic
trapping configuration.

Inserting Eq. (17) into the above electrostatic potential of
the test electron

Φ(x, t) = − eλ2e
(2π)2ε0

∫
dωk⊥dk⊥dk‖

1 + k2λ2e
×25

(21)

×
(

1 +
ω2
k

ω2−ω2
k

)
δ
(
ω−k ·v

)
eik·(x−vt)

shows that Φ consists quite generally of two contributions,
the screened Coulomb potential of the test electron, and an-
other wave induced term which multiplies the screened po-30

tential by the frequency dependent term in the last expres-
sion. (We note again that a similar form trivially holds as
well for ions.) This form demonstrates the well known self-
screening Debye effect of the naked point charge, which
leads to the first term in the above expression and causes the35

Debye-Yukawa potential to exponentially compensate for the
electron charge field in a spherical region of radius λe. We are
not interested here in the deformation of the Debye sphere
introduced by the electron motion as this is a higher order
effect.40

The zero order effect of the test electron contained in the
wave-independent term, the proper self-screening is, in the
wave-dependent term, multiplied by the wave-induced factor.
For frequencies ω2 = k2·v2 > ω2

k higher than ion sound, this
factor is positive adding to the screening but changes sign for45

frequencies ω2 = k2 ·v2 < ω2
k, thereby indicating the possi-

bility of over-screening at wavelengths larger than the Debye
radius λe (cf. Treumann & Baumjohann, 2014, their Fig. 1).

Under certain conditions it may come into play outside the
Debye radius where the charge-electric field is practically al- 50

ready compensated, and the long range wave electric field
adds up over some distance, may dominate and cause a spa-
tially restricted deficiency of repulsion. In this case the poten-
tial may even turn negative, eliminates the repulsive nature
of the electron locally and becomes attractive for electrons. 55

This was first shown (Neufeld & Ritchie, 1955) for high fre-
quency Langmuir waves even before the discovery of Cooper
pairs in superconductivity and solid state physics. In a bath of
Langmuir waves this attraction turned out to be unimportant
however, while in an isotropic non-magnetic plasma it sur- 60

vives for low-frequency ion sound, first suggested by Nambu
& Akama (1985). With θk the angle between electron speed
and wavenumber, it happens at resonant electron speeds

v2 cos2 θk . ω2
k/k

2 (22)

requiring the parallel electron speed to be less than the wave 65

phase velocity. The above expression depends on angle θk
between velocity v and wavenumber k, which in our case
will turn out to be of crucial importance.

For completeness we note that in magnetised plasma the
ion acoustic wave is azimuthally symmetric with respect to 70

the magnetic field B. However, its frequency depends itself
on the angle of propagation between k = (k⊥,k‖) and B ac-
cording to (Baumjohann & Treumann, 1996)

ω2
k =

c2sΛ0(ηi)k
2
‖

Λ0(ηe) + k2λ2e
(23)

with Λ0(ηj) = I0(ηj)exp(−ηj), ηj = 1
2k

2
⊥r

2
cj , and the index 75

j = e, i on the gyroradius is for electrons and ions. I0(ηj) is
the Bessel function of imaginary argument. rcj = v⊥,j/ωcj is
the gyroradius, and ωcj is the cyclotron frequency. One has
that, moreover, k⊥λe� k⊥rci� 1 and k‖/k⊥ < 1. Long-
wavelength ion sound in magnetised plasma thus propa- 80

gates essentially along the magnetic field, a well known fact
which in observations, for instance in the magnetosheath
(Rodriguez & Gurnett, 1975), manifests itself as a complete
drop out of the electrostatic low frequency thermal ion noise
spectrum when the antenna points strictly perpendicular to 85

the ambient magnetic field (cf., e.g., Treumann & Baumjo-
hann, 2018b, for an example and discussion).

The interaction between electrons and ion sound waves
thus opens up the option that electrons in a Debye-screened
potential may, under certain conditions, experience an at- 90

tractive potential which compensates and overcomes the
Coulomb repulsion between two negatively charged elec-
trons, resembling a the famous effect of Cooper pairing in
solid state physics though here in the realm of classical
physics. The paired electrons and the propagating ion sound 95

wave form a quasiparticle in both these cases.
It is important to insist that this attraction is not due to

trapping of the electron by a large amplitude wave in the
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wave potential trough; on the contrary, it is an electron-
induced change in the dielectric properties of the wave-
carrying plasma causing the electron to evolve an attractive
electrostatic wake potential which it carries along when mov-
ing across the plasma. We have previously shown (Treumann5

& Baumjohann, 2014) that this can happen also with other
waves than ion-sound. Below we demonstrate that it becomes
crucial in the evolution of mirror modes to which plasma
wave trapping does not contribute in no sense.

Since the waves are propagating along the magnetic field10

and the bounce motion of the electrons is as well along the
magnetic field, the coordinate s of interest is parallel to the
magnetic field ŝ‖B, and the gyration of the electrons decou-
ples from the interaction. In this case we have for the wave
number k = (k‖,k⊥) and velocity15

k‖ ≡ k · ŝ, v‖(s)≡ v · ŝ = v cosθ(s)

parallel to the local magnetic field. The problem then con-
sists in solving Eq. (21) under the conditions of a bounc-
ing test electron. This task resembles the solution under non-
magnetised conditions which had been given in our previous20

paper (Treumann & Baumjohann, 2014). In the known form
it cannot be applied here but has to be substantially modi-
fied in order to become adapted to the conditions of electron
trapping in mirror modes.

3.1 Conditions for an attractive potential25

In the light of the previous discussion we rewrite Eq. (21) in
the magnetic field as

Φ(x, t) = − eλ2e
2(2π)2ε0

∫
ωk dωdk e

ik·(x−vt)

(1 + k2⊥λ
2
e + k2‖λ

2
e)
×

×
[
δ(ω− k‖v‖)

(ω−ωk)
−
δ(ω− k‖v‖)

(ω+ωk)

]
(24)

Here we left the Debye-potential term out as it is of no inter-30

est, and resolved the denominator. We also refer to the paral-
lel particle velocity v‖ = v cosθ which in our case of mirror
trapped test particles is along the magnetic field. It selects the
parallel wavenumber of the wave in the Dirac δ-function to
replace the frequency ω. In the same spirit the argument of35

the exponential becomes ik ·(x−vt) = ik⊥ρsinφ+ik‖(s−
tv cosθ) with ρ the independent perpendicular spatial coor-
dinate. It is assumed that the magnitude v of the velocity re-
mains constant in this kind of interaction, which holds for the
adiabatic motions along the magnetic field where no further40

external force acts on the electron except for the stationary
restoring magnetic force. (Note also that the wave frequency
ωk depends on k‖,k⊥ but not anymore on angle φ because it
has been determined independently from kinetic wave theory
not using the test particle picture.)45

These assumptions reduce the integral to integrations
over the perpendicular wavenumber k⊥,φ, and frequency ω.
Moreover, since the problem has become cylindrically sym-
metric with respect to B, integration over φ can easily be

performed by using the representation of the exponential as 50

a series of Bessel functions (Gradshteyn & Ryzhik, 1965)
which reduces to the zero-order Bessel function J0(k⊥ρ).
The formal result before final integration is

Φ(s,ρ, t) = − eλ2e
2(2π)2ε0

∫
ωk dωk⊥dk⊥dk‖

(1 + k2⊥λ
2
e + k2‖λ

2
e)
×

×
[
δ(ω− k‖v‖)
ω−ωk

−
δ(ω− k‖v‖)
ω+ωk

]
× (25) 55

× J0(k⊥ρ)eik‖(s−v‖t)

where one understands v‖ = v cosθ(s). We note again that
this form is still valid also for electromagnetic waves if only
the frequency is understood as the solution of the electromag-
netic dispersion relation. In view of later application to the 60

mirror mode we now restrict to purely electrostatic waves, in
our case ion sound which, in contrast to other electrostatic
waves like Bernstein modes, has the right property of prop-
agating along the magnetic field with parallel electric field.
The ion sound wave frequency is 65

ω2
k ≈

Λ0(ηi)c
2
sk

2
‖

Λ0(ηe) + k2λ2e
≈

Λ0(ηi)k
2
‖c

2
s

1 + k2λ2e
(26)

with the right-hand side holding since the electron term in
the denominator is Λ0(ηe)≈ 1. In the low frequency approx-
imation applicable here, the frequency is proportional to the
parallel wave number. In the following we simplify this dis- 70

persion relation setting Λ0(ηi)≈ 1, which is its maximum
value, and in the resonant denominators neglecting the in-
verse dependence of ωk on kλe, only keeping it in the nom-
inator of the integral. Then one may perform the integration
with respect to k⊥ which gives, with ξ = λek⊥, ρ′ = ρ/λe, 75

ζ = k‖λe,

I(ρ′, ζ)≡
∞∫
0

ξdξJ0(ξρ′)(
1 + ζ2 + ξ2

)3/2 =
exp

(
− ρ′

√
1 + ζ2

)√
1 + ζ2

(27)

In order to perform the integral, its singular properties
have to be elucidated. The dominant contribution will come
from the resonant denominators in the bracketed terms. Any 80

possible resonances in the Coulomb factor do not play any
role here. The Dirac δ-functions prescribe replacing the fre-
quency everywhere with k‖v‖. It is, however, convenient to
delay this action until integrating out the singularities in the
complex ω plane. To see their effect, one temporarily re- 85

places k‖ in the argument of the exponential with ω as the
δ-function prescribes as an inverse action. Then we have for
ik‖(s−v‖t) = iω(s/v‖−t). Since the waves are damped, the
imaginary part of the frequency is required to be negative.
This forces demanding s/v‖−t < 0, consequently taking the 90

ω-integration over the lower complex ω-half plane, which in
surrounding the poles in the positive sense adds a factor 2πi
to the integral and includes the sum of residua ω =±ωk in
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the integral in this order. The result is

Φ(s,ρ, t) = − ie

4πε0λe

cs
v‖

∫
ζ dζ e−ρ

′
√

1+ζ2+iζ(s−v‖t)/λe√
1 + ζ2

×
[
δ
(
ζ − ωkλe

v‖

)
− δ
(
ζ +

ωkλe
v‖

)]
(28)

Performing the substitution prescribed by the delta functions
in the exponential only yields the sum of two exponentials5

which turns into a sine function. One then obtains for the
potential of the particle in the presence of ion sound waves

Φ(s,ρ, t) =
e

2πε0λe

cs
v‖

1∫
0

ζ dζ e−ρ
′
√

1+ζ2√
1 + ζ2

(29)
×sin

[
ζ(s− v‖t)/λe

]
10

What remains is the ζ integration with ζ = k‖λe < 1 limited.
To simplify, we can either neglect ζ or replace it by unity in
the arguments of the roots. To be conservative and decide for
the weakest case, we chose the latter, what yields the integral

Φ(s,ρ, t) = − e

4
√

2πε0λe

cs
v‖
e−
√
2ρ′ ×15

×
1∫

0

dζ2 sin
[
ζ
∣∣s− v‖t∣∣/λe] (30)

The argument of the sine function is negative. So we have
taken its sign out and use its absolute value. Integration gives

Φ(s,ρ, t) = − e

2
√

2πε0

cs
v‖

e−
√
2ρ/λe

|σ|2
×

×
{

sin |σ| − |σ|cos |σ|
}

(31)20

where

σ = (v‖t− s)λ−1e > 0

The condition for an attractive potential follows immediately
as

tan |σ|> |σ| or 0< σ <
π

2
mod (2π) (32)25

Depending on the parallel velocity v‖ > 0 there is an entire
range of distances s < v‖t < πλe/2 in which the conditions
for an attractive potential are satisfied. We may note that for
negative velocities v‖ < 0 there is no range where the poten-
tial can become attractive as the braced expression is always30

positive. It is the scalar product k ·v between the wave num-
ber of the ion-sound and the test particle velocity which se-
lects those speeds which are parallel to the sound velocity,
not anti-parallel. One should keep in mind that this attraction
has nothing in common with wave trapping, however! It is35

the over-screening effect of the particle, which is moving on
the background of the wave noise and experiences the modi-
fied dielectric properties of the plasma.

It should also be noted that in this condition the time ex-
plicitly appears because the test electron is seen from the sta- 40

tionary observers frame in which the electron moves. Instead,
σ is measured in the moving electron frame. This distinction
is important to make as it will be picked up again below.

The restriction on the velocity is obtained from that ω2 <
ω2
k when referring to the replacement ω = k‖v‖ = k‖v cosθ 45

prescribed by the δ-functions. Rescaling ωk ∼ csk‖, it fol-
lows that the parallel particle speed is limited as

|v‖|. cs or |cosθ|. cs
v

(33)

This is in fact a condition on the angle θ. For small speeds
v < cs the condition is trivial. The largest effect is caused 50

when the particle speed is parallel, below and close to the
phase velocity cs of the ion-sound wave. For large velocities
v > cs the angle between the phase speed and velocity must
be close to π/2, in agreement with the above requirement on
the potential becoming attractive. 55

This is an important point in application to a plasma. In
thermal plasmas we have generally cs ≈

√
me/mi ve which

is far below the thermal speed. Hence there are only few elec-
trons in the distribution sufficiently far below thermal speed
which would satisfy the resonance condition v < cs. Higher 60

speed electrons can be in resonance and thus contribute to
attraction only at strongly oblique wave and electron speeds.
Consequently under normal conditions in a plasma the gener-
ation of attractive potentials becomes obsolete, a point which
had been missed in previous work (Neufeld & Ritchie, 1955; 65

Nambu & Akama, 1985). In the particular case of mirror
modes it becomes the crucial ingredient, as will be demon-
strated below.

3.2 Correlation length

In all cases the attraction exceeds the repulsion outside the 70

Debye sphere of the electron in its wake and, therefore and
most important, can be felt by other electrons. From here it
is clear that two electrons must move at distance somewhat
larger than λe and at nearly same speed in the same direction
in order to be held together by their attractions and form a 75

pair. This is the important point when applying our model to
the mirror mode below.

Having obtained the conditions under that the wake poten-
tial behind the moving test electron becomes attractive, we
would like to know the distance over that the negative poten- 80

tial extends. This distance is measured in the instantaneous
frame of the electron and is, hence, given by the above abso-
lute normalised value of |σ|< π/2 which repeats itself peri-
odically. It is, however, clear that it is only the zeroth period
which counts as the effect of the dielectric polarisation on 85

the electron diminishes with increasing distance s′ = σλe. In
absolute numbers this distance becomes

λcorr = |s− v‖t|<
π

2
λe ≈ 1.57λe (34)
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which can be understood as an electron “correlation length”
between neighboured electrons. Any electrons within such
a distance will behave about coherently, an important con-
clusion which, however, has to be extended below to many
electrons.5

This correlation length is to be compared with the parti-
cle spacing in the plasma. Plasmas are defined for particle
densities Nλ3e� 1, which implies that the distance between
the particles is � λe. Consequently the extension of the at-
tractive potential in the electron wake is much larger than the10

spatial distance between two electrons. It thus affects many
electrons, an effect which cannot be neglected when speak-
ing about attraction.

As for an example, in the magnetosheath which is the pre-
ferred domain where the mirror mode is permanently excited,15

the average density is, say, N ≈ 3× 107 m−3 at temperature
Te ≈ 50− 100 eV. For the Debye length we have λe ≈ 10
m, while the inter-particle distance is a mere of ≈ 0.005 m.
Roughly ≈ 104 electrons should experience the presence of
the attraction behind the test particle, which thus becomes a20

many-electron effect. Because pair formation depends on the
quite severe condition on the particle velocity, not all those
electrons of course will form pairs though however, in real-
ity, the attractive potential involves a substantial fraction of
electrons which necessarily will cause modifications of the25

plasma conditions. Normally such modifications will only
cause minor effects in the wave spectrum and will be neg-
ligible. Below we show that in the evolution of the mirror
mode they become important.

3.3 Ensemble averaged potential30

If we understand the plasma as a compound of a large number
of electrons, we can ask for the ensemble averaged potential
〈Φ〉 of the single electron averaging over the particle energy
distribution. In an isotropic plasma this is the Boltzmann dis-
tribution. Writing for the parallel velocity v‖ = v cosθ the av-35

erage potential becomes

〈
Φ
〉

=
e

ε0

Ccs√
2λe

e−
√
2ρ/λe

∞∫
0

vdv e−v
2/v2e ×

(35)

×
(s+πλe/2)/tv∫

s/tv

dcosθ

σ2 cosθ

[
sinσ−σ cosσ

]
which immediately tells that the mean potential taken over40

the full Boltzmann distribution in repulsive. This is clear,
however, because it accounts for all electrons in the Debye
sphere. To calculate the cos-integral we expand the trigono-
metric functions to obtain

π

6

∫
σdcosθ ≈ π

6λe

[
π2

12
vt− s log

(
1 +

π

2

vt

s

)]
(36)45

We now exclude the Debye sphere by restricting the integra-
tion with respect to v over a shell between the thermal and

trapped speeds. This gives

Etrap∫
Te

dEe−E/Te

[
π2t

12

√
2E
me
− s log

(
1 +

πt

2s

√
2E
me

)]
≈

(37) 50

−
(

1− π

6

)
πt

2

√
2T 3

e

me

y∫
1

x
1
2 e−xdx

For a mean attractive potential the last integral should be pos-
itive. Doing it yields (Gradshteyn & Ryzhik, 1965)

y∫
1

x
1
2 e−xdx=

2

3

(
y2e−y − e−1

)
≈−y3 + 2y2− 1 (38)

which is positive only if y = 1 + ∆ and ∆ =
(
Etrap − 55

Te
)
/Te < 1 in which case there is a narrow energy range (or

energy “gap”) for trapped electrons where the mean potential〈
Φ
〉
< 0 becomes attractive for the electrons when averaging

over their energy distribution and warranting that they be-
have coherently. The latter we will show can under certain 60

condition be the case.

4 Two-electron potential

We saw that, under a certain condition, an electron moving
in the plasma in resonant interaction with an ion-sound back-
ground may give rise to an attractive potential in its wake 65

where another electron can be captured and thus be forced to
accompany the first electron. First of all, in plasma all elec-
trons are in permanent motion. Hence, if an electron satisfies
the resonance condition with an ion sound fluctuation, it acts
attracting on another one moving nearly at same speed. We 70

have seen that this attractive potential in the presence of a
large number of thermally distributed electrons becomes de-
pleted. This holds when just one electron contributes to the
potential. We now extend this to the combined effect of two
electrons in the interaction, in which case we can immedi- 75

ately use the above solution when, however, accounting for
the slightly different velocities v‖1,v‖2 and initial locations
s1,s2 of the electrons along the magnetic field. In view of
the later application to mirror modes, we again consider only
motion along the magnetic field not yet specifying to the pec- 80

ularities introduced by bouncing in the mirror field. Then the
two-electron potential becomes

Φ(s,ρ, t) = −
∑
j

e

2
√

2πε0

cs
v‖j

e−
√
2ρ/λe

|σj |2
×

(39)
×

{
sin |σj | − |σj |cos |σj |

}
85

with j = 1,2 counting the electrons. Here

σj = (v‖jt− sj)λ−1e > 0
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As before, the requirement σj > 0 results from the condi-
tion that the waves in resonance with the electrons must be
damped. In order to obtain the combined effect of the two
electrons, we transform to their centre-of-mass frame

2Z = s1 + s2, 2z = s1− s25

(40)
2U = v‖1 + v‖2, 2u= v‖1− v‖2

From the previous we saw that the large correlation length
implies that many electrons are affected. Any attractive po-
tential couples two ore more particles together. The most10

probable state to be formed is the two-particle (singlet) state.
These will be distributed over the plasma, resembling the
Cooper states in solid state superconductivity while not be-
ing a quantum effect here. Rather it is the polarisation effect
moving particles produce in the high temperature collision-15

less plasma which causes singlet states of pairs.
In order to be realistic, we now derive the condition for

singlet states to evolve. To simplify the algebra, let us define

Σ =: 1
2

(
σ1 +σ2

)
≡

(
Ut−Z

)
λ−1e > 0

(41)20

σ′ =: 1
2

(
σ1−σ2

)
λe ≡

(
ut− z

)
λ−1e

The restriction on Σ> 0 maps the ω-resonance onto the new
variables. At the contrary, σ′ can be positive or negative.
With these expressions and after some rather tedious though
simple calculations, Eq. (39) can be brought into the form25

Φ(s,ρ, t)≈ −
√

2e

π ε0

cst

(λeΣ +Z)

e−
√
2ρ/λe

|Σ|2
×

(42)
×

{
sin |Σ| − |Σ|cos |Σ|

}
cosσ′

where we made use of the above representations and replaced
30

v‖1,2t= 1
2λe
(
Σ±σ′

)
+Z ± z (43)

This expression for the potential holds under the reasonable
assumptions σ′� Σ and z� Z that the difference between
the two electrons in location is small enough to be found
within the correlation length.35

Only under this condition one expects that the electrons
will be correlated. Interestingly, the form of the potential re-
mains the same as that for the one-particle case with the only
difference that the potential is multiplied by cosσ′. Hence the
condition for attraction depends on the value of σ′.40

Closely spaced electrons of similar and, as required, reso-
nant speeds not differing too much from the phase speed of
the ion-sound give indeed rise to attraction between the two
electrons if the following conditions are satisfied:

tan Σ > Σ if cosσ′ > 045

(44)
tan Σ < Σ if cosσ′ < 0

which yields

0 < Σ <
π

2
if cosσ′ > 0

(45) 50

−π
2

< Σ < 0 if cosσ′ < 0

These conditions are essentially the same as in the one-
electron case. There modification is due to cosσ′ being pos-
itive or negative and that they apply to the centre of mass
coordinate system Z and mean particle speed U which both 55

are contained in the variable Σ.
We remark that these conditions are very general. They

substantially generalise the conditions found earlier by
Nambu & Akama (1985) to the much more important inter-
action between two electrons, the lowest order singlet state 60

and thus most realised state in a plasma. Actually, the attrac-
tive potential of one single electron makes little sense as it
has an effect only if it affects another electron. This is exactly
what happens in the case of Cooper pairs where the attraction
becomes important only in an assembly of many electrons, 65

as was realised in BCS theory (Bardeen et al., 1957). In the
same vain we are proceeding here.

Higher order states like interaction of three electrons lead-
ing to triplets and so on are in principle also possible but will
not play any important role, because the interaction decays 70

with distance, even though they may be located within the
correlation length and form “quasi-particles”. In the singlet
state, the paired electrons behave like one particle of double
charge and double mass for the time of their interaction, the
time they remain inside one correlation length. This length 75

for the singlet is the same as was given above, produced by
one electron, with the only difference that it now applies to
the centre of mass of the two electrons. Measured from the
centre of mass it extends to its both sides over a length of
roughly λcorr ≈ 1.5λe. 80

In physical units the first singlet state, for instance, is re-
alised for

0< Ut−Z < π

2
λe, |ut− z| � π

2
λe (46)

In these cases resonant electrons, in the presence of an ion-
sound wave background, will arrange into loosely bound 85

electron pairs. In high temperature plasmas, a substantial
number of such pairs will exist. However, they will mostly
not play any role in the dynamics. In order to do so, the
plasma must offer additional ways for the bound singlet pair
states to cause any susceptible effect in the plasma. Such con- 90

ditions are provided by the quasilinearly stable mirror mode
and will be exploited below.

5 Mirror bottle and pairs

Being in the possession of the conditions under which elec-
tron pairs can form in a high temperature plasma in interac- 95

tion with a thermal background of ion sound waves, we now
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intend to apply them to the case of mirror modes. We saw that
the correlation length between electrons provided by one sin-
gle test electrons is of the order of λcorr ∼ 1.5λe. This value
is only slightly increased by the interaction of two electrons,
such that we can roughly take λcorr ∼ 2λe for the singlet.5

A mirror bottle is a preferred place for pair formation. This
is in contrast to any spatially extended plasma. Firstly, the
bottle confines trapped electrons which cannot easily escape.
Secondly, the parallel velocity of a bouncing electrons varies
along the mirror magnetic field and at some place may get in10

resonance with the thermal ion-sound spectrum present in the
entire plasma volume. If this happens at some location along
the mirror magnetic field, electrons might form pairs and re-
main correlated for some time, bunch, perform like bound or-
bits and thus represent resonant correlated states which due15

to the correlation become coherent states.

5.1 Centre of mass pair bounce motion

The application of these finding to mirror modes is not an
easy task. The electrons perform a complicated bounce mo-
tion along the inhomogeneous magnetic field with period-20

ically changing bounce velocity and bounce frequency de-
pending on the value of their constant magnetic moment. Un-
der these conditions we need to know the variation of their
bounce velocity as function of the location along the mag-
netic field between the mirror points.25

We moreover need to satisfy the common resonance condi-
tion of the pairs with respect to the phase velocity of the ion
sound. Since the electron velocity is generally much larger
than the latter this immediately suggests that the best condi-
tions for attraction will be found near the mirror points sm.30

There the parallel velocity of the electrons drops to zero, and
there will be a certain range ∆s at distance s. sm where
the resonance condition is satisfied most easily. Near sm one
expects that attraction will become important.

In order to understand this process we thus need to trans-35

form to the moving frame of the pairing electrons. For this
purpose we use the electron bounce motion to define the new
pair-electron quantities

M=: 1
2

(
µ1 +µ2

)
, µ=: 1

2

(
µ1−µ2

)
(47)

Ω2 =:MB′′0 /me, $2 =: µB′′0 /me (48)40

U2 =:
2

m
E −Ω2Z2, E =: 1

2

(
E1 + E2− 2MB0

)
(49)

u2 =:
2

m
ε̃−$2z2, ε̃=: 1

2

(
E1−E2− 2µB0

)
(50)

The mean bounce velocity U of the pair becomes a function
of the location Z of the centre of mass along the magnetic
field. This requires knowledge of its displacement as a func-45

tion of the bounce phase which again requires solution of the
two dynamics of the two electrons. Note the adiabatic con-
stants E ,M,µ,Ω,$. The only variables are the mean and
difference velocities U(Z),u(z).

In the magnetic mirror symmetry, U(t) is the bounce ve- 50

locity of the trapped electron pair, and Z(t) is its location
along the magnetic field at time t. The difference speed u(z)
is measured in the centre of mass frame relative to Z and U .

The mean speed U along the magnetic field must be ex-
pressed either as function of time t or distance Z. For this to 55

accomplish one needs to solve the parallel equation of mo-
tion:

dU

dt
=−Ω2Z −$2z ≈−Ω2Z, U =

dZ

dt
(51)

which is given in the reasonable approximation of small
$2z. Obviously the mean speed along the field obeys 60

the mean bounce equation, an oscillation at frequency Ω.
Integrating the bounce equation of motion with U(Z) =√

2E/m−Ω2Z2 yields

Z(t) = Zm sin

(
πt

2tm

)
, Zm = Ω

√
2E
me

(52)

Zm is the distance of the centre of mass mirror point reached 65

by the pair at mirror time Ωtm = 1
2π along the magnetic field.

Symmetric mirror bottles have been assumed, implying time
symmetry ±tm.

For the lag in distance z, as measured relative to the centre
of mass Z, we obtain similarly 70

z(t) = zε sin

(
πt

2tε

)
, zε =$

√
2ε̃

me
(53)

with $tε = 1
2π the lag in time in the electron pair to reach

the mirror point at relative location zm to the mirror location
of the centre of mass Zm.

These expressions give the centre of mass and jitter veloc- 75

ities as functions of time

U(t) =
π

2

Zm
tm

cos

(
πt

2tm

)
(54)

u(t) =
π

2

zε
tε

cos

(
πt

2tε

)
(55)

It is important to remark that at this point we have only
transformed to the centre of mass motion. We have not yet 80

determined the paring conditions. The first of the former ex-
pressions thus gives the two-electron bounce velocity in the
centre of mass frame, the second the jitter velocity around
this centre.

In order to apply to the quasilinear stable mirror mode, 85

one must transform to the bounce motion. This can easily be
done inside the mirror bottle by using the parallel equation
of motion and the magnetic trapping conditions. It implies
substituting the parallel bounce solution for t(s). We shall do
it later below. Instead, here, it is first more important to obtain 90

the condition of pair formation in the two-electron potential.
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5.2 Condition for pair formation

Electron pair formation proceeds if, in addition to the con-
ditions for attraction which have been given above, the pair
electron are in resonance with the ion sound. This condition
is non-trivial. We mentioned already that electrons partici-5

pating in attraction move at speed comparable to the thermal
speed ve which exceeds cs substantially. Under non-mirror
conditions pair formation will thus barely take place. How-
ever, magnetic mirrors as provided by the mirror instability
are a rare exception.10

The resonance condition is in fact not a condition on U(Z)
but on the angle between the pair velocity and the direc-
tion of the magnetic field, as the latter is the direction of
the propagation of the ion sound. During the bounce mo-
tion the particle velocities are adiabatically conserved. It is15

only the angle θ(s) that changes along the magnetic field.
Thus writing U(s) = 1

2v
(

cosθ1(s) + cosθ2(s)
)
, assuming

that v1 ≈ v2,µ1 ≈ µ2, we have

cosθ1 =
U +u

v
, cosθ2 =

U −u
v

(56)

Introducing the mean angles Θ = 1
2 (θ1 + θ2),ϑ= 1

2 (θ1−20

θ2)�Θ we obtain

〈U〉
v

= cos
Θ

2
cos

ϑ

2
≈ cos

Θ

2
(57)

〈u〉
v

= −sin
Θ

2
sin

ϑ

2
≈−ϑ

2
sin

Θ

2
Note that u can be negative as it is measured in the centre25

of mass frame. The condition of resonance U(Z) . cs then
reduces to

〈U〉 . cs −→ cos
Θ

2
.
cs
v
� 1

(58)∣∣∣∣ ϑ2
∣∣∣∣ ∼ 〈u〉

v
� 130

This condition shows that our assumption of about equal
magnitudes v1 ≈ v2 is not crucial because of the smallness
of this ratio. It shows moreover that the resonance condition
is nicely satisfied near the mirror points sm, where the aver-
age angle Θ/2≈ π

2 .35

As for an example, cs/ve ≈
√
me/mi ≈ 0.023 which

shows that the average cosine is very small, and the effective
angle Θ/2≈ 88.7◦ is close to 90◦. Allowing for a deviation
in the ratio of∼ 0.002 the angular variation would amount to
ϑ≈ 0.2◦ as obtained from the average jitter velocity 〈u〉, as40

is suggested by the second above condition with sinΘ/2≈ 1,
which gives the angular spread in case of attraction.

Once a mirror bottle evolves, there is a narrow spatial
range near the mirror points ±sm along the magnetic field
for the trapped electrons to generate attractive potentials in45

their wake during their bounce motion inside the magnetic
mirror trap. This is the range of resonance where the paral-
lel speed matches the slow speed of ion sound. This attrac-
tive potential extends over approximately one to two Debye

lengths along the magnetic field outside the Debye sphere of 50

the acting electrons (roughly some ten meters in the magne-
tosheath!) whose charge fields are compensated by the bulk
of the surrounding electrons populating the Debye sphere.

This length is however much larger than the mutual parti-
cle distance. It thus affects a substantial number of electrons 55

which, in case their velocities do not differ much, form pairs
within a correlation length which the attractive potential at-
tributes to them.

As a consequence, there is a substantial number of paired
electrons inside the mirror bottle along the magnetic field 60

around all the many mirror points of trapped electrons of
different initial angle and velocity. The distribution of those
mirror points depends on the (equatorial) pitch angle distri-
bution of the electrons trapped in the field minimum B =B0

at the centre of the mirror bottle. One thus expects that over 65

a certain length along the mirror magnetic field an almost
homogeneous distribution of electron pairs will evolve.

The attractive potential acts to combine two electrons into
a pair at location close to Z = sm, where the centre of mass
velocity of the electrons goes into resonance with U ≈ cs� 70

ve. This effect attaches the pair to the particular group of ion
sound waves in resonance with the pair and thus locks the
pair to them.

In addition there is a small jitter velocity u around the res-
onance left over which is required to be small in order not to 75

destroy the resonance. Investigation of the stability of pairs in
this case is a separate problem which we do not attack in this
communication, even though it is important for the further
considerations.

However, we may note that even if pairs will not be stable 80

for long time, not becoming locked completely to the group
of ion sound waves with resonant wave numbers, they will
stay for some finite time in resonance and will always be re-
placed by other, newly formed, pairs when dispersing. Since
the electrons and pairs are all completely indistinguishable, 85

a fluctuating population of pairs will thus always be present,
if only the conditions for pairing exist. In this sense, a mirror
mode is the ideal and possibly the only place in high temper-
ature plasma physics, where pairing can and probably will
occur. We may also point on a similar mechanism for ions. 90

Our basic expression for the potential for ions would be sim-
ilar to that for the electrons. It moreover holds for any kind
of waves while pairing in addition requires that the particle
candidates for pairing must be capable of resonating with the
waves. This latter condition is rather severe and therefore the 95

necessary condition to have pairing.

5.3 Dynamics of pair population

So far we just derived the conditions for pairing in the centre
of mass system of the bouncing electrons. It is most inter-
esting what happens after pairing. Naively thinking nothing. 100

Pairs form and may dissociate. Those formed and do not dis-
integrate, may perform a combined bounce motion as pre-
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scribed by the centre of mass bounce equation given above.
In this case, they remain pairs but bounce between their cen-
tre of mass mirror points. Thus, for some pairs, both disinte-
gration and common bounce may be the case.

In addition there will be a number of pairs, who are sta-5

ble, at least for some longer time. They neither disintegrate
nor bounce, because they remain stable at resonance with the
group of phonons of resonant wave numbers k near Z ≈ sm
and centre of mass speed U ≈ cs. As long as this interaction
holds they will not be able to return into bouncing simply,10

because the phonons, which are independent of the particle
motion, not being subject to bounce or any mirror force, do
not allow the paired electrons to return into bouncing. These
phonons continue their slow motion along the magnetic field
and, in this way, lock the pair.15

Vice versa, by locking the pair, they become themselves
locked near the pair’s mirror point. Thus such pairs drop out
of bouncing and, for their life time, become locked near sm.
The length of this time is a question of their stability in which
not only the two electrons, but also the ion sound phonons are20

involved, while these are independent of the bounce. Stable
pairs still posses a small jitter speed u around sm, which is
insufficient for re-injecting them into the bounce. They move
together with the phonons further up the field at reduced par-
allel speed ∼ cs.25

The condition on the jitter energym|u|2 for stability is that
it should not exceed the trapping potential 1

2m
∗u2 . e|Φ|.

Pairs of smaller jitter energy should thus be stable. A more
precise selection rule requires the solution of the stability
problem.30

We consider a mirror bottle. The pitch angle distribution
of trapped electrons in a mirror bottle is not known a priori.
The equatorial pitch angle θ0 is given as

sin2 θ0 =B0/B(sm) (59)

the ratio of minimum magnetic field to the mirror field of35

trapped electrons. Electrons with large equatorial pitch angle
mirror very close to the minimum magnetic field. Electrons
with small equatorial pitch angle mirror near the end of the
bottle. It is thus clear that there is practically a continuous
distribution of mirror points along the mirror magnetic field40

in the bottle depending on the given initial distribution of
equatorial pitch angles. Moreover this applies to all magnetic
field lines inside the bottle, not only the central one.

The dependence of the mirror points sm on electron veloc-
ity v <

√
Etr/me, location s, and pitch angle θ0 is obtained45

from the bounce frequency ωb, the location along the field

s(t) = sm sin ωbt (60)

and the time to reach from s= 0 to s within the bounce mo-
tion

t(s) =

s∫
0

ds/cosθ0√
1− s2(B′′0 /2B0)tan2 θ0

(61)50

Solving the latter integral and resolving for the mirror point
yields the wanted expression

sm(v,s,θ0) =
s

sin
[
η(s,v,θ0)

]
(62)

η(s,v,θ0) ≡ v sin−1
(
s
√

1
2B
′′
0 /B0 tan θ0

)
55

This is a complicated though continuous dependence on
s and θ0. The distribution of mirror points on the mirroring
electron velocity respectively its energy can, in principle, be
integrated over the range of velocities 0< v− ve < vtrap − 60

ve contributing to pairs. Assuming an equatorial isotropic
gaussian-velocity distribution ∼ f(θ0)exp(−ε/Te) yields

〈
sm(s)

〉
∝
(

∆Epair

Te

) π/2∫
0

s dθ0 sinθ0 f(θ0)

sin−1
(
s
√
B′′0 /B0 tanθ0

) (63)

with ∆Epair = Etrap−Te > 0. For any given equatorial pitch
angle distribution f(θ0) there is a corresponding distribution 65

of mirror points inside the mirror bottle along s, i.e. along the
magnetic field B(s).

As a consequence, the entire narrow volume of the quasi-
linearly stable mirror bottle will be subject to the presence of
pairs, each of which is located at and along the magnetic field 70

line centred around its common pair-mirror point. (One may
note that the point s= 0 does not contribute to the integral,
neither mathematically nor physically because it is not a real
mirror point. Also θ0 = 0 does not contribute because those
particles do not participate in mirroring.) 75

Under these conditions the pairs become an important part
of the population of a mirror bottle and might contribute to
its dynamics. The locked pairs have twice the electron mass
m∗ = 2me and twice the electron charge q∗ =−2e. Ener-
getically, their parallel motion condensates in the lowest en- 80

ergy bounce level ε̃∼ (m∗/2)〈u2〉 � Etrap , the energy in
their average jitter motion around the mirror point, negligi-
bly small with respect to their gyration energy which, near
the mirror point, has absorbed almost all kinetic energy into
the gyration. 85

At same magnetic field strength B(sm) they thus have
equal gyroradii, concentrating in a current shell which repre-
sents a surface current J⊥pair =−e∗Npairve∆r on the time-
scale of the bounce, which averages over all particle phases.
This shell has width ∆r ∼ (ve/ωce)∆B/B. The surface cur- 90

rent it carries might give rise to an integrated localised orbital
diamagnetism. In the last subsection below we explore its ef-
fect.

5.4 Pair induced mirror growth

The promising macroscopic effect is the direct contribution 95

of pairs to both, the evolution of an electron anisotropy and
its effect on the ion mirror mode, which is the content of the
following subsections.
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A gyrating locked pair population has large perpendicular
energy ∼ 2Te and very small parallel energy ∼me|u|2. It
hence possesses a large anisotropy

Apair =
2Te

me|u|2
− 1 ≈ 2Te

me|u|2
� 1 (64)

which contributes to the evolution of mirror modes through5

the growth rate (1) of ions as this growth rate contains the
anisotropy of all electron components, including pairs, while
the ion anisotropy A≈ 0 is about zero in the stable quasilin-
ear state.

It is thus clear that a large electron pair anisotropy Apair10

will directly contribute to the growth of the ion mirror mode,
once quasilinear stabilisation of the ion mode has eaten up
the ion anisotropy, and the conditions in favour of trap-
ping and pair formation have emerged. (In addition pair
anisotropy will also destabilise the electron mirror mode15

in the stable quasilinear state of the ion mirror mode.) In
both stable quasilinear cases the remaining ion (electron)
anisotropy is negligibly small, and the quasilinear growth
rate of the ion mirror mode is zero by definition.

With further evolution of the mirror mode starting from20

the quasilinear level, one must use the pair anisotropy in Eq.
(1)

γm,pair (k) ≈ k‖VA,ql

√
β‖i

π

(
Te⊥
Ti⊥

) 1
2

Ae (65)

including the expression for the electron anisotropy Ae. This
applies to the quasilinear level where the depletion of the25

magnetic field is remarkable though not large, and the Alfvén
speed VA,ql is based on the weak quasilinear magnetic field
Bql , while β‖i is on the quasi-linearly heated plasma level.
Since, quasi-linearly, Ti⊥ ≈ Ti‖ has decreased to approach
Ti‖, the temperature ratio Te⊥/Ti⊥ ≈ Te⊥/Ti‖ increases.30

However, one has to determineAe as function of the pairs.
Since Ae is a pressure ratio, one must take into account also
the non-paired isotropic electron component.

Let the fraction of pairs be α, then one has approximately

Ae ≈
(1−α)Te + 2αTe

(1−α)Te +αme|u|2
− 1≈ 2α

1−α
(66)35

which gives for the electron-pair generated ion-mirror
growth rate

γm,pair (k)≈ 2α
√

1 +α

1−α

√
βe,ql

π
k‖VA,ql (67)

where βe,ql = 2µ0NTe/B
2
ql is the electron-β based on Bql

at quasilinear stability, and the root
√

1 +α arises from the40

combination of electron and pair pressures.
Since α < 1, the pair induced electron anisotropy is not

large but will be sufficient to break the quasilinear state and
cause further growth of the ion mirror mode. This further
growth violates pressure equilibrium and, if not immediately45

restored by breaking the pairs off and heating the plasma to
restore isotropy, pressure equilibrium must be restored other-
wise.

Under closed boundary conditions stabilisation proceeds
again quasi-linearly through heating the plasma on the ex- 50

pense of the pair anisotropy Apair and possibly, in addi-
tion, by radiation of resonant whistlers. On the other hand,
if open boundary condition allow inflow of cold charge-
neutralised plasma from the environment, pressure balance
will be achieved in this way by sucking in a selection of low- 55

perpendicular energy particles of both signs. Mirror modes
will in both cases quickly restore pressure balance, while
growing to substantially larger than quasilinear amplitudes
because, at any quasilinear level, new electron pairs will con-
tinuously be newly and readily produced. 60

5.5 Evolution of magnetic energy density

The magnetic energy density W =B2/2µ0 will then about
exponentially decrease

W (t− tql) =Wql

{
1− exp

[
2γm,pair

(
t− tql

)]}
(68)

from its quasilinear level Wql(tql) until reaching its final 65

minimum value Wmin(tfin) at final time tfin which is in
equilibrium with the environmental pressure Pext =Wext +
β⊥,ext according to

Wmin

Wext
=

1 +β⊥ext

1 +β⊥fin
(69)

Combining the last two equations gives an estimate for the 70

time tfin when the mirror mode reaches its final equilibrium
state

2γm,pair (tfin − tql) = log
(

1− Wmin

Wql

1 +β⊥ext

1 +β⊥fin

)
(70)

With tfin � tql and Wmin �Wql this expression simplifies
to become 75

γm,pair tfin ≈
Wmin

2Wql

1 +β⊥ext

1 +β⊥fin
(71)

Moreover, β⊥fin = (1+α)βqlWql/Wmin � 1. One then ob-
tains the following estimate for the final saturation time

tfin

τA
≈
√
π

2α

1−α
(1 +α)3/2

1 +βext

β
3/2
ql

(
Wmin

Wql

)2

(72) 80

≈
√
π

2αβql

(
Wmin

Wql

)2

where τA =
(
k‖VAql

)−1
is the parallel Alfvén time based on

the quasilinear saturation field Bql.
In a mirror bubble of a few 103 km parallel length, density

a few 10 cm−3 and some 10 nT internal field the Alfvén time 85
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is of the order of τA ∼ 1 min, sufficiently long. Hence, if the
final saturation time is al least about one Alfvén time we have
for an estimate of the fraction of pairs in the mirror bubble

α≈
√
π

2βql

(
Wmin

Wql

)2

∼ O(10−4) (73)

contributing both to the growth beyond the quasilinear sat-5

uration limit and maintenance of pressure balance with the
external plasma and field, with measurable right-hand side.

This fraction is sufficiently small: Not more than roughly
≈ 103 pairs per m3 suffice for producing the desired effect,
for instance in the magnetosheath, a rather small, unfortu-10

nately probably barely detectable fraction. Again similar to
superconductivity, it is only the macroscopic effect of pairs
that indicates their presence.

We have not included yet any probable inflow of plasma
along the magnetic field, to help restoring the required pres-15

sure balance. Such an inflow is expected to occur, because
the different mirror bubbles which form chains of bubbles
along the magnetic field, again for instance in the magne-
tosheath, will evolve on different time scales. Being mag-
netically connected, they compete and tend to exchange low20

energy plasma along the field, which goes on their mutual ex-
penses. Bubbles containing the largest number of pairs will
grow fastest by sucking in plasma from the smaller ones in
order to make up for their pressure balance with the environ-
ment.25

An analogous mechanism should work also for the elec-
tron mirror mode which, on the quasilinear level, will grow
fast, within few electron cyclotron times, and also attract cold
electrons from the environment. This will all happen inside
the ion mirror mode on the spatial electron scale.30

In addition, the perpendicular pressure anisotropy of the
pairs may in both cases, the ion as well as the electron mirror
mode, excite resonant whistlers as well as Bernstein modes,
the latter propagating in the perpendicular direction and hav-
ing a characteristic banded structure following the electron35

cyclotron harmonics. Observation of these wave spectra, in
particular Bernstein modes, should provide direct informa-
tion on the presence of electron pairs. Since for pairs the
fraction q∗/m∗e = e/me is unchanged, the electron cyclotron
frequency is not affected. Those waves would, from the fre-40

quency, not be distinguishable from ordinary Bernstein or
whistler modes, except for being restricted to the spatial vol-
ume of the mirror bubbles. It is clear that ion pairs, if formed,
would behave similarly in the ion mirror mode. We have,
however, not checked this possibility here.45

5.6 Magnetic susceptibility

Above we developed a dynamical physical evolution model
for the mirror mode, which allows it to grow beyond the
quasilinear limit. The final state is an equilibrium that should
be treated in the framework of thermodynamics or statisti-50

cal mechanics of open systems. Open systems does not mean

open boundary conditions. It means that the system is em-
bedded into a very large system with that it exchanges in-
formation and possibly energy, and for that the distortion it
causes is negligibly small, for example say, a mirror mode 55

train in the magnetosheath.
In this ultimately achieved (observed or measured) equi-

librium state the mirror mode should be described by thermo-
dynamic quantities, and the localised expulsion of the mag-
netic field should be accounted for by a diamagnetic suscep- 60

tibility χ. This susceptibility

χpair = µ0
∂Mpair

∂B
(74)

is defined as the derivative of the total pair-magnetic moment
with respect to the magnetic field, with the former not known
and difficult to determine. It requires knowledge of the grand 65

partition functionQ of which it is the logarithmic derivative

Mpair = TeNpair
∂ logQ
∂B

∣∣∣∣
N,T,µ

(75)

with µ chemical potential, which is related to the average
density 〈N〉. Thus the susceptibility is the second derivative
of the logarithm of the grand partition function with respect 70

to the magnetic field at constant density, temperature, and
chemical potential. Calculation requires knowledge of all en-
ergy states of the pairs in the volume and, in addition, the spa-
tial pair distribution. The former can be restricted to only one
state, the perpendicular final temperature Te, while the spa- 75

tial distribution requires model assumptions on the geometry
of the ultimate mirror bubble and the diamagnetic surface
current. Both are barely known. Thus we are basically un-
able to solve this fundamental physics problem, whose solu-
tion would provide insight into the most important thermody- 80

namic connections in mirror modes, which clearly must hold
under stationary conditions.

Referring to a heuristic approach, we can, however, at least
determine the sign of the susceptibility when assuming that,
to some extent, the total magnetic moment of all pairs that 85

are localised in the mirror bubble would be proportional to
the sum of all single moments of the pairs, while the depen-
dence on the magnetic field reasonably remains unchanged.
This may not be completely true though, because in analogy
to superconductivity and superfluidity, the mirror mode dia- 90

magnetism is a second order phase transition and, therefore,
the dependence on B must be modified to some power B−δ ,
with δ 6= 1 not an integer number. Neglecting this complica-
tion, we write

Mpair = αN
〈Epair 〉
B

(76) 95

where 〈Epair 〉 ∼ Te essentially is the electron temperature
and, as above, α accounts for the fraction of pairs in the vol-
ume. Then we obtain that

χpair =−µ0αN
〈Epair 〉
B2

(77)
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This important result shows that the magnetic susceptibility
is negative, which is required for observing a local diamag-
netic effect in excess of the always present general, though
weak and about unremarkable, bulk diamagnetism of any
plasma that is caused by the orbital gyration of all the charged5

particles in the magnetic field and that is of the order of Lan-
dau diamagnetism (Huang, 1987), a fraction of Bohr’s mag-
neton.

Though the precise dependence on the magnetic field is
not known, this argument suggests that the process leading10

to pair formation in mirror modes indeed causes the diamag-
netism required for blowing up the mirror bubble, expelling
the magnetic field, and causing chains of mirror bubbles.

Of course, such an estimate suffers from the involved
uncertainties and the impossibility of constructing the con-15

ditions of phase transition in the high temperature mirror
plasma which also accounts for pressure balance with the
surrounding plasma and determines the final magnetic am-
plitude Bfin in saturated thermodynamical equilibrium from
the general relation Bfin =Bql

(
1+χpair

)
. This becomes an20

implicit third order equation

x
3
2 ≈ x−α βql

2
(78)

for the final magnetic field, where x=Wfin/Wql , and βql =
NTe/Wql .

Neglecting the left-hand side yields approximately25

Wfin

Wql
≈ α βql

2
(79)

for a very rough estimate. From the previous subsection,
which includes the condition of the required pressure balance
with the surrounding environment, we conclude that the left-
hand side is of same order as α, say. Thus30

βql/2∼O(1) (80)

which, in spite of the severe assumptions made, is not an un-
reasonable value for the quasilinear equilibrium where pair
formation sets on.

However, the main important result is the negative sign of35

the susceptibility which, independent on the real numerical
value of χ(B), suggests that the mirror mode is not a sim-
ple plasma instability as such. Rather it is a particular plasma
state occurring in high temperature plasmas. This kind of dia-
magnetism resembles a phase transition (Binney et al., 1999)40

whose precise physics has still to be developed.
Our discovery of the possibility of the involvement of elec-

tron pairing in the ion mirror mode in this case is an interest-
ing though but a first step into that direction.

6 Conclusions45

Mirror modes seem to be an exception in high-temperature
collisionless plasmas. They start from a simple magnetohy-

drodynamic instability in an anisotropic pressure configura-
tion far from thermal equilibrium that has been produced for
instance in the magnetosheath (Constantinescu et al., 2003) 50

by the forced flow across the bow shock (for a compre-
hensive review cf., e.g., Tsurutani et al., 2011; Balogh &
Treumann, 2013, for the relations around the bow shock) and
may be a general property of shocked plasma flows (Lucek et
al., 2005). Linear theory shows that this instability produces 55

magnetic field-elongated magnetic bottles which stabilise by
quasilinear interaction between the anisotropic ions and the
magnetic field in which course the thermal anisotropy is de-
pleted and settles at a low stable rudimentary value. The am-
plitude of the magnetic depletion, as numerical simulations 60

with periodic boundary conditions demonstrate, is very low.
It is in fact so low that the quasilinear mirror mode would in
observations not be noticed but added to the ordinary ther-
mal fluctuations of the magnetic field and thermal pressure.
It does not explain the notorious though not persistent obser- 65

vation of very large amplitude chains of mirror modes of up
to 50% magnetic depletion.

Open boundary simulations (Shoji et al., 2012) show the
evolution of large amplitude mirror modes with electron dy-
namics reduced to a neutralising fluid. Dynamics is purely 70

ionic then, and pressure balance is provided by forced in-
flow of plasma from the external surrounding. This suggests
that ions are capable of generating large amplitude structures,
and that pressure balance is achieved by external plasma in-
flow. However, the assumption of fluid electrons is strong in 75

this case and may not apply to real natural plasmas where
electrons are far from being a fluid. For this to happen ion
anisotropies must be large enough for pressure deficit to en-
force inflow prior to quasilinear stabilisation. As noted above
ion pairing would be a reason to generate such a deficit. 80

In the present communication we have not considered
ion pairing except for pointing on its possibility. Instead
we demonstrated that the physics of large amplitude mir-
ror modes can be affected by a pairing mechanism which is
unique in application to mirror modes as these provide the 85

rare conditions where it may happen. We demonstrated this
on the example of electrons but the theory can indeed be ex-
tended to include ions as well.

A possible resolution of the large mirror amplitude prob-
lem is thus found when accounting for the dynamics of the 90

electron (or possibly ion) component trapped in the mag-
netic mirror bottle. Electrons perform their bounce motion
and can, in the vicinity of their mirror points, where the par-
allel speed drops to near zero, get into resonance with the
always present thermal ion-acoustic noise spectrum. Expe- 95

riencing a modified dielectric constant they generate an at-
tractive potential difference in their wake outside the charge-
compensating Debye sphere that may affect another close
electron, attract it and form an electron singlet pair which
consists of the primary and attracted electrons in interaction 100

with the resonant spectrum of ion sound background waves.
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Formation of triplet pairs are of higher order and thus sub-
stantially less probable. The conditions for this to happen
have been obtained. The electron pairs are not spin compen-
sated because at the high temperatures in classical plasmas
the Pauli principle plays no role. The remaining electron jitter5

energies are still high above spin energies but may be in many
cases too low for letting the pair, which near its common
mirror point Z(sm) is at average velocity U(zm) = cs� ve,
return into bounce motion as this would require that the jit-
ter energy exceeds the attractive pair potential. We have not10

solved the stability problem of this process as this would be-
come a separate investigation.

However, a group of pairs fulfils an important function
in mirror modes. Trapped in attraction, they drop out of the
bounce motion, become locked near mirror points along the15

quasi-linearly stable mirror bottle, and spend all their ki-
netic energy into their gyration. Thus the pair distribution
in mirror modes becomes highly and narrowly peaked just
above and near the perpendicular thermal velocity, an effect
which is very interesting to investigate in all its further con-20

sequences. These may be manifold, since the pairs contribute
a highly anisotropic population which, as noted, may become
unstable to electrostatic and electromagnetic plasma modes.
Among those are both whistlers, and electrostatic Bernstein
modes. Whistlers are actually known to exist in observations25

and may be related to electron pairing. In the case of ion
paring one would expect similar effects, in particular kinetic
Alfvén waves.

Closer investigation has been given to two effect, the direct
production of diamagnetism via the magnetic susceptibility30

(see the last subsection), and the contribution of the tempera-
ture anisotropy of the pairs to the envisaged further evolution
of ion-mirror modes.

It has turned out that this effect may be realistic. It is
based on two observations, the dependence of the ion mirror35

growth rate on the electron anisotropy which under normal
conditions would not be of any interest as it provides just a
small negligible electron contribution. However, in the case
of quasilinear stabilisation the ion anisotropy is depleted and
the growth rate vanishes. It is just this case when electron40

(and possibly ion pairs) are produced and come into play,
as we have demonstrate above. (Considering the ion effect
which we did not do leads to the result that ion pairs would
restore an ion anisotropy and in this way break the quasilin-
ear state and cause further growth of the mirror mode. This45

may have happened in the simulations of Shoji et al. (2012)
where it neither has been discussed nor taken into account
and where just large mirror modes have been demonstrated
to develop in open boundary simulations.)

We suggested that electron pairs produce such an effect50

just in the ion mirror mode. This seems reasonable because
of the high vulnerability of the mobile electrons to interact
strongly with a background field. The production of even a
small fraction of electron pairs breaks the quasilinear stabil-
ity condition and causes further growth of the ion mirror in-55

stability. Pressure balance is restored as we have shown even
for a small fraction of electron pairs per unit volume being
created. It can also be warranted by forced inflow of cold
plasma from the environment along the magnetic field, which
probably happened in the cited simulations, and effect we are 60

aware of but have not included in any detail here.
Altogether, the present communication discovered an in-

teresting new effect in a high-temperature plasma which
might have other consequences as well. It brings the the-
ory of mirror modes to an intermediate physical conclusion 65

by contributing to the so far badly understood generation of
large magnetic amplitudes of mirror bubbles, the deep dia-
magnetic holes in the magnetic field. It also provides an im-
portant unexpected, at least interesting application of the ap-
parently superficial attractive electron potentials in a plasma. 70

Here we have demonstrated its possible importance in the
evolution of mirror modes when electron-pair singlets form
in close analogy to superconductivity.

It would be of interest investigating which effects the pro-
cess elucidated here might have in turbulence theory and as 75

well in astrophysical applications, in particular in view of
our above finding that kinetic Alfvén waves would also be
capable of generating attractive potentials to form electron
pairs. Since they naturally have high phase speeds, satisfac-
tion of the resonance condition seems to be natural for them 80

with bouncing electrons for instance in the auroral magne-
tosphere. An example where kinetic Alfvén waves could be-
come involved is auroral-plasma sheet coupling where elec-
trons are naturally trapped in the geomagnetic field and per-
form large-scale bounce motions. The relaxed kinetic Alfvén 85

pairing condition may generate a fraction of trapped pairs
along the auroral magnetic field in this case to produce ob-
servable effects for instance in the aurora, generation of radi-
ation, and in reconnection.

In mirror-modes kinetic Alfvén waves are of little inter- 90

est, as there is no obvious reason for them to be generated.
They have, moreover, never been identified in relation to mir-
ror observations while ion sound waves are generally present
within and outside them. In ion-inertial range turbulence ki-
netic Alfvén waves seem to play some role as various ob- 95

servations indicate and theory also supports for the reason
that the scale of the ion-inertial range coincides with the per-
pendicular wave lengths of kinetic Alfvén waves. Our pair-
singlet mechanism should work in those cases as well and
might have consequences for turbulence, entropy generation, 100

and turbulent dissipation.
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