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Abstract. In this study, Taylor statistical diffusion theory and sonic anemometer measurements collected at 11 levels on a 140-

m high tower located at a coastal region in southeastern Brazil have been employed to obtain quasi-empirical convective eddy

diffusivity parameterizations in a planetary boundary layer (PBL). The derived algebraic formulations expressing the eddy dif-5

fusivities were introduced into an Eulerian dispersion model and validated with Copenhagen tracer experiments. The employed

Eulerian model is based on the numerical solution of the diffusion-advection equation by the Fractional Step/Locally One-

Dimensional (LOD) methods. Moreover, the semi-Lagrangian cubic-spline technique and Crank-Nicholson implicit scheme

are considered to solve the advection and diffusive terms. The numerical simulation results indicate that the new approach,

based on these quasi-experimental eddy diffusivities, is able to reproduce the Copenhagen concentration data. Therefore, the10

new turbulent dispersion parameterization can be applied in air pollution models.

1 Introduction

Eulerian models are powerful tools to study and investigate the air pollution dispersion in the planetary boundary layer (PBL)

(Hanna, 1982; Tirabassi, 2009; Zannetti, 2013). These models are based in the solution of the classical advection-diffusion

equation, containing the turbulent eddy diffusivities, which provide the simulated contaminant concentration data (Batchelor,15

1949; Pasquill and Smith, 1983).
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where C is the concentration and S a source term. These Eulerian models describe the concentration turbulent fluxes as the

gradient of the mean concentration employing the eddy diffusivities (K-theory):
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where Kx, Ky , Kz are the eddy diffusivities in the x, y, z directions and u, v, w represent the longitudinal, lateral and vertical

mean wind components, respectively. Thus, Eq. 1 can be written in the form:
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From the numerical point of view, to solve the Eq. 3 it is required to provide the wind and turbulence physical description.

For the turbulent diffusion it is needed to specify Kx, Ky and Kz . These turbulent parameters with dimensions of length times25

velocity, therefore describe the eddy dimension size and eddy velocity (Panofsky and Dutton, 1984).

Most of the eddy diffusivities employed in current operational dispersion models are based on PBL similarity theories

(Leelőssy et al., 2014). However, a better description of the turbulent properties, associated with eddy diffusivities, is based on

direct measurements of wind data with high vertical resolution (Martins et al., 2018).

In the literature, different experimental K parameterizations have been proposed to be employed in the Eq. (3) to simulate30

the passive scalars dispersion in the PBL. Such parameterizations, frequently, are obtained from micrometeorological measurements in the PBL.

A better description of the turbulent properties, associated with eddy diffusivities, is based in turbulent wind data with high

vertical resolution. In the present study we use eddy diffusivities that were derived from the observations of the turbulent wind

components (u, v, w), in a convective PBL, at a coastal site.

The coastal internal boundary layers (CIBL) are generated by differences in surface temperature and aerodynamic roughness35

occurring between land and water atmospheric environments. Considering that a large number of power plants and industrial

complexes and hence polluting installations are constructed in coastal regions it is necessary to obtain CIBL turbulent param-

eters that are employed in dispersion models to describe the coastal air pollution. The growing interest in the dispersion issues

regarding pollutants emission in coastal areas demands the knowledge of the turbulent structure of the planetary boundary

layer in this region. However, the characteristics of the turbulence in these boundary layers vary complexly in space and time40

due to the sudden changes in the surface characteristics, as heat flux and roughness, in the sea-land interface. In the occurrence

of sea-breeze, the stably stratified air mass over the water reaches the coast and starts to be heated by the land surface. Thus,

a convective boundary rises from the surface developing a Thermal Internal Boundary Layer (TIBL) that increases in height

as it advances over the land. The TIBL is topped by a stably stratified inversion layer that affects the atmospheric diffusion

in coastal regions. Therefore, to improve the response of the dispersion models is necessary to provide a truthful description45

of the turbulence through the TIBL. In this sense, several observational experiments are performed using airborne, tethered

balloons and fixed mast measurements techniques (Smedman and Hoegstroem, 1983; Ogawa and Ohara, 1985; Durand et al.,

1989; Shao et al., 1991). Wind-tunnel experiments and numerical simulations are found in Hara et al. (2009)

In this present study, we use eddy diffusivities that were derived from the observations of the turbulent wind components (u,

v, w) in a convective CIBL to simulate the dispersion of contaminant released from an elevated continuous point source in a50

coastal region.

The turbulent observations were performed at a 140 m micrometeorological tower positioned 240 m north of a natural gas

power plant and 4 km southwest of the ocean coastal environment in the city of Linhares (southeastern Brazil). The turbulent
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wind data were obtained from high frequency measurements (10 Hz) accomplished by tridimensional sonic anemometers at

heights of 1, 2, 5, 9, 20, 37, 56, 75, 94, 113 and 132 m (Martins et al., 2018). Therefore, the study of Martins et al. (2018) em-55

ploys these measurements, the turbulent energy spectra and some few mathematical relations to determine turbulent dispersion

parameters (Taylor Statistical diffusion Theory, Degrazia et al. (2000, 2001)).

These turbulent wind data were obtained from high frequency measurements (10Hz) accomplished by tridimensional sonic

anemometers at heights of 1, 2, 5, 9, 20, 37, 56, 75, 94, 113 and 132 m (Martins et al., 2018). The Kx,y,z turbulent parameters

were calculated from these turbulent wind data utilizing the Taylor statistical diffusion theory (Degrazia et al., 2000, 2001).60

Differently, of previous studies in which the vertical profiles of turbulent parameters have been calculated using surface

observations to throughout similarity-based relationship, our eddy diffusivities were locally calculated from the detailed mea-

surements accomplished along the entire vertical extension occupied by the surface internal boundary layer. As a consequence,

they can be called quasi-experimental eddy diffusivities. The aim of this work is to obtain algebraic formulation from the fitting

curves, that reproduce the observed vertical profile of these quasi-experimental eddy diffusivities. As a test and to evaluate the65

quasi-experimental eddy diffusivities for a convective CIBL we substitute these turbulent diffusion parameters into Eq. 3 to

simulate the contaminant concentration originated from an elevated continuous point source in a coastal environment. The

simulated concentrations are compared to those measured in the Copenhagen diffusion experiments.

From this analysis the vertical profiles of these quasi-empirical determined eddy diffusivities were obtained by Martins et al. (2018).

The aim of this study is to obtain algebraic formulations, from the fitting curves, that reproduce the observed vertical profile70

of these quasi-experimental eddy diffusivities. An additional aim is to employ these algebraic formulations for the eddy

diffusivities into Eq. 3 to simulate the contaminant concentration released from a continuous point source. The simulated

concentrations are compared with those measured in the Copenhagen diffusion experiment. Therefore, the novelty in this work

is to use coastal eddy diffusivities in a Eulerian numerical model, called APUGRID (Rizza et al., 2003; Rizza et al., 2006), to

simulate the contaminant observed concentration.75

From the point of view of originality and novelty the present development, from some asymptotic equations and detailed

turbulent spectral observations of the surface coastal internal boundary layer, provides a general methodology for obtaining

algebraic expressions that reliably represent the eddy diffusivities in the coastal internal boundary layer.

2 Eulerian grid-dispersion model

In this section to simulate the contaminant concentrations using Eq. 3, we present the Eulerian grid-dispersion model proposed80

by Rizza et al. (2003), so-called APUGRID. The APUGRID model employs a Fractional Step/Locally One-Dimensional

(LOD) methods (Yanenko, 1971; McRae et al., 1982; Mařcuk, 1984) to solve the diffusion-advection equation. In the LOD

numerical method, Eq. 3 is separated into time-dependent equations, each one locally one-dimensional (LOD)(Yanenko, 1971;

Rizza et al., 2003; Yordanov et al., 2006). As a consequence:
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Employing Crank-Nicholson time integration (McRae et al., 1982; Yordanov et al., 2006; Rizza et al., 2010) we obtain that:
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with I being the unity matrix and ∆t the time step. The second order accuracy can be obtained following Rizza et al. (2010)90

by:
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In Eq. 6 Ai = ui
∂
∂i , Di =

∂
∂i

(
Ki

∂
∂i

)
with i= x,y,z and F representing the filter operation.

The advection terms were solved employing a quasi-Lagrangian cubic-spline technique (Long and Pepper, 1981), and the

numerical model stability is carried out by Courant-Friedrichs-Lewy condition (cfl):95

cfl = Ū
∆t

∆x
(7)

being Ū the mean wind speed, ∆x the grid spacing with the stability condition cfl ⩽ 1 satisfied.

In order to calculate the concentration advective transport by the mean wind speed, we use the wind speed profile described

by the following similarity law (Berkowicz et al., 1986) :

Ū(z) = (u∗/κ)log(z/z0)−ψm(z/L)+ψm(z0/L) (8)100

Eq. 8 is valid for z < zb, where zb = 0.1zi, where zi is the convective boundary layer height, u∗ is the friction velocity, κ is

the von Kármán constant and z0 is the surface roughness. ψm is a stability function defined as:

ψm = 2ln

[
1+A

2

]
+ ln

[
1+A2

2

]
− 2tan−1(A)+

π

2
(9)

with A= (1− 16z/L)
1/4 and L being the Obukhov length. For z > zb the wind profile is the wind speed at z = zb

2.0.1 QUASI-EMPIRICAL EDDY DIFFUSIVITIES MODELS: EVALUATION IN APUGRID105

The eddy diffusivities can be found by the following relationship:

Ki = σ2
i TLi (10)
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where σ2
i is the turbulent velocity variance quantifying the turbulence mixing degree and TLi is the decorrelation local time

scale that takes into account the characteristic time in which a fluid control volume maintains its motion in a particular direction

(Hinze, 1975).110

To obtain the Lagrangian Ki from the Eulerian measurements the relation between the Lagrangian TLi and the Eulerian

decorrelation TEi time scales are employed (Hanna, 1981; Degrazia and Anfossi, 1998):

βi =
TLi

TEi
=

0.55U

σi
(11)
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0

1
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u
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]
dτ. (12)115

where ui′ is the wind speed turbulent fluctuation and τ is the temporal lag. Recently, Martins et al. (2018) used Eqs. 10, 11

and 12 to derive experimental vertical profiles for Kx, Ky and Kz . To obtain such profiles, 1-h observation wind velocity

time series intervals are tested for quality control requirements. Unstable conditions were considered as daytime time series

which −150≤L< 0. From a total of four months of observations (August - November 2016), 343 1-h unstable intervals are

retained. The variances and time scales profiles used to estimate the Ki vertical profiles are obtained averaging the whole 343120

individuals profiles.

From these set of eddy diffusivities vertical profiles we use the best fit curves approach to obtain the following simple

algebraic formulations:

Kx(z) = 7.83× 101 − 6.42× 101z (13)

Ky(z) = 7.35× 101log(z)+ 4.25z− 3.73× 10−2z2 (14)125

Kz(z) = 8.34× 10−1z (15)

In order to test these eddy diffusivities, we perform contaminant concentration simulations and compare the simulated data

with the Copenhagen tracer dispersion experiments (Gryning and Lyck, 1984).

In these experiments the contaminant was released at 115 m above the ground

The tracer sulphur hexa fluoride (SF6) used in the Copenhagen dispersion experiments, was released at a height of 115 m130

from the TV tower in the Gladsaxe (Copenhagen) and the ground level contaminant concentrations were measured at 3 arcs

located in the distance of 2000 to 6000 m from the elevated continuous point source.
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The experiments site is limited by the Øresund coast, approximately 7 km east of the TV tower. Therefore, the turbulent

effect acting on the tracer dispersion are characteristic of CIBL. The width of Øresund strait, the water portion separating

Denmark and Sweden, is about 20 Km. On the western side of Øresund lies Copenhagen with its urban area. This area has135

high surface roughness due to the urban character. Thusly, a turbulent environment occurring in a region with relatively cold

water and warm land surface. As a consequence, the turbulent structure acting on the tracer dispersion can be considered as

one present in the coastal inner boundary layer.

Furthermore, Copenhagen data set provides wind and turbulence data at 10 and 115 m. Meteorological parameters for

the Copenhagen runs are shown in Table A1, being Ū115m and Ū10m the mean wind velocity measured at 115 m and 10 m,140

respectively, σw the vertical wind velocity variance and zi the convective boundary layer depth. Although some Copenhagen

dispersion experiments occurred in conditions quasi-neutral theL parameter was negative. The presence of a slightly convective

stratified boundary layer can be seen in u and v turbulent energy spectra (Kaimal et al., 1972; Martins et al., 2018). In this

situation, it can be observed in spectral curves a structure that contains two peaks; one low-frequency peak and one high-

frequency peak. This reflects the impact of the larger convective eddies on the turbulent structure (Garratt, 1992).145

The choice of the Copenhagen experiment was motivated by the fact that the region in which the experiment occurred is

located near the Øresund coast. Therefore, we expect that our eddy diffusivities obtained at a coastal site localized in south-

eastern Brazil are adequate to reproduce contaminant data in coastal regions.

In Table A2, the predicted crosswind-integrated concentrations obtained from the APUGRID model are compared, with

Copenhagen diffusion experiments, over the different distances of the release point source. The performance of the APU-150

GRID model employing the quasi-experimental eddy diffusivities as given by Eqs. 13, 14 and 15 to simulate the Copenhagen

observation data can also be evaluated by analyzing the results shown in Table A3 and Figure A1.

Table A3 exhibits Hanna’s statistical indices, which are commonly used to calibrate air pollution dispersion models. Such

indices are defined as:

normalized mean square error (NMSE) =
(Co −Cp)

2

CoCp

(16)155

correlation coefficient (R) =

(
Co − C̄o

)(
Cp − C̄p

)
σoσp

(17)

fractional bias (FB) =

(
C̄o − C̄p

)
0.5

(
C̄o + C̄p

) (18)

160

fractional standard deviations (FS) =
σo −σp

0.5(σoσp)
(19)

where Cp is the predict concentration, Co is the observed concentration, σp is the predict standard deviation, σo is the observed

standard deviation, and the overbar represents an averaged value.
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The observed and predicted scatter diagram of concentrations in Fig. A1 demonstrates that the simulated concentration

reproduces fairly well the measured concentration data. Furthermore, the statistical analysis of the results (Table A3) shows165

a good agreement between the results of the proposed approach with the experimental ones. The indices are found within an

acceptable interval with NMSE (normalized mean square error), FB (fractional bias) and FS (fractional standard deviation)

close to zero and R (correlation coefficient) near to one.

Thus, the present development based on an analysis of high resolution turbulence data from an elevated micrometeorological

tower provides suitable eddy diffusivities that describe the turbulent transport patterns in a CIBL.170

3 Conclusions

The Eulerian operational air dispersion models that simulate contaminant observed concentration data need to incorporate

into their formulation the characteristics of the PBL turbulent diffusion process. To accomplish this parameterization they use

turbulent transport terms known as eddy diffusivities. These turbulent parameters represent approximate quantities which intend

to reproduce the complex natural dispersive effects. In this study, algebraic expressions for quasi-experimental convective eddy175

diffusivities for a coastal site are derived. The derivation employed the Taylor statistical diffusion theory and sonic anemometer

observations with high vertical resolution in a CIBL.

The complexity of the subject does not allow a direct confrontation between experiment and model. However utilizing the

APUGRID Eulerian dispersion model and a concentration data set of dispersion experiments performed in a CIBL, the derived

eddy diffusivities have been tested and validated. The comparison results show that there is a fairly well agreement between180

simulated and measured concentrations. As a consequence, the results provided in this investigation are encouraging. Thus, the

new eddy diffusivities for a coastal site may be suitable for applications in regulatory air pollution modeling.

Table A1. Meteorological conditions during the Copenhagen dispersion experiments.

Exp. Ū115m(ms−1) Ū10m(ms−1) u∗(ms−1) L(m) σw(ms−1) zi(m)

1 3.4 2.1 0.37 -46 0.83 1980

2 10.6 4.9 0.74 -384 1.07 1920

3 5.0 2.4 0.39 -108 0.68 1120

4 4.6 2.5 0.39 -173 0.47 390

5 6.7 3.1 0.46 -577 0.71 820

6 13.0 7.2 1.07 -569 1.33 1300

7 7.6 4.1 0.65 -136 0.87 1850

8 9.4 4.2 0.70 -72 0.72 810

9 10.5 5.1 0.77 -382 0.98 2090

7



Figure A1. Scatter diagram between Copenhagen observed (Co/Q) and predict (Cp/Q) ground-level cross wind integrated concentration

normalized by the emission rate.
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Table A2. Observed Co and predicted Cp crosswind-integrated concentrations normalized by the emission rate (Q) for Copenhagen experi-

ments.

Exp. Sampler distance (m) Q (gs−1) Co/Q (104sm−2) Cp/Q (104sm−2)

1 1900 3.2 6.48 8.44

1 3700 3.2 2.31 6.72

2 2100 3.2 5.38 1.34

2 4200 3.2 2.95 1.00

3 1900 3.2 8.20 8.88

3 3700 3.2 6.22 7.34

3 5400 3.2 4.30 4.34

4 4000 2.3 11.66 10.27

5 2100 3.2 6.71 7.98

5 4200 3.2 5.84 6.59

5 6100 3.2 4.96 2.81

6 2000 3.1 3.96 3.30

6 4200 3.1 2.22 2.58

6 5900 3.1 1.83 1.19

7 2000 2.4 6.70 3.70

7 4100 2.4 3.25 2.83

7 5300 2.4 2.22 1.73

8 1900 3.0 4.16 5.19

8 3600 3.0 2.02 4.34

8 5300 3.0 1.52 2.67

9 2100 3.3 4.58 4.28

9 4200 3.3 3.11 3.21

9 6000 3.3 2.59 1.22

Table A3. Statistic evaluation of the APUGRID model employing the quasi-experimental eddy diffusivities.

NMSE R FB FS

0.10 0.82 -0.07 -0.006
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