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Abstract. In this paper, we describe the kinematical and evolutionary properties of the impulsive cool jets in the solar atmo-

sphere using numerical simulation by Godunov-type PLUTO code at two different strength of the quiet-Sun magnetic field

(B=56, 112 Gauss). These types of chromospheric jets are originated by the pressure pulse, which mimics after effects of the

localized heating in the lower solar atmosphere. These jets may be responsible for the transport of mass and energy in the

localized upper atmosphere (i.e., corona). The detection of the height-time profiles for the jets, originated by imposing the5

different pressure pulses, exhibit the asymmetric near parabolic behaviour. This infers that the upward motion of the jet occurs

under the influence of pressure perturbation. However, its downward motion is not only governed by the gravitational free fall,

but also due to the complex plasma motions near its base under the effect of counter propagating pulses. Maximum height

and life-time of the jets w.r.t. the strength of the pressure pulse show a linear increasing trend. This suggests that if the extent

of the heating and thus pressure perturbations will be longer then more longer chromospheric jets can be triggered from the10

same location in the chromosphere. For the certain amplitude of pressure pulse, the strong magnetic field configuration (B=112

Gauss) leads more longer jet compared to the weaker field (B=56 Gauss). This suggests that the strong magnetic field guides

the pressure pulse driven jets more efficiency towards the higher corona. In conclusion, our model mimics the properties and

evolution of variety of the cool impulsive jets in the chromosphere (e.g., macrospicules, network jets, isolated repeated cool

jets, confined & small surges etc).15

Copyright statement. TEXT

1 Introduction

Observations reveal that various types of plasma jets are ubiquitous in the solar atmosphere at diverse spatio-temporal scales

(e.g., Sterling 2000; Katsukawa et al. 2007; Shibata et al. 2007; Nisticò et al. 2009; Wedemeyer-Böhm et al. 2012; Tian et

al. 2014; Raouafi et al. 2016,Kayshap et al. 2018, and references cited therein). These jets may play a significant role in20

transporting energy and mass in the localized upper atmosphere (i.e., corona) of the Sun. As far as the complex magnetic

structuring of the solar chromosphere is concerned, it triggers various types of cool plasma jets (e.g., spicules, macrospicules,

surges, magnetic swirls, network jets, evolution of plasma twists etc), which attribute to the association of exotic wave and
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plasma processes (e.g., De Pontieu et al. 2004, 2007, 2014; McIntosh et al. 2011; Wedemeyer-Böhm et al. 2012, Tian et al.

2014, Kayshap et al. 2018, Srivastava et al. 2017, 2018, and references cited therein).

In the recent observations, it is found that quiet solar chromosphere triggers various kinds of localized solar jets (e.g.,

magnetic swirls, network jets, spicule-like rotating plasma structures, etc) apart from the typical spicules (e.g., Wedemeyer-

Böhm et al. 2012; Tian et al. 2014; Shetye et al. 2016, and references cited therein). Moreover, solar macrospicules, confined5

surges, anemone jets etc are also some other flowing magnetic structures typically observed in the solar chromosphere (e.g.,

Roy 1973; Wilhelm 2000; Morita et al. 2010, and references cited therein). The evolution of such a variety of chromospheric

jets at diverse spatio-temporal scales provides a very detailed picture of the ongoing different plasma processes triggering these

jets in an abundant measure in the localized solar atmosphere (e.g., De Pontieu et al. 2004, 2007; McIntosh et al. 2011; Kayshap

et al. 2013; Murawski et al. 2011, 2018, Srivastava et al. 2017, 2018; Martínez-Sykora et al. 2017; Iijima & Yokoyama 2017;10

Kayshap et al. 2018, Liu et al. 2019 and references cited therein).

It is well established that complex magnetic structuring of the solar chromosphere enables small-scale magnetic reconnection

and thus the localized heating and generation of the solar jets (e.g., Yokoyama & Shibata 1995). However, the height of the

reconnection and its magnitude decides the evolution of the inherent physical processes. If the reconnection occurs in the

chromosphere, then the evolution of the shocks and plasma motions may be evident (e.g., Shibata et al. 1992; Kayshap et15

al. 2013a, and references cited therein). However, the reconnection height lying in the inner corona may result in the jet

propagation due to the direct influence of Lorentz force, and Alfvén waves can also be evolved (e.g., Nishizuka et al. 2008,

Jelińek et al. 2016, and references cited therein).

Recently, observations and modeling of the chromosphere revealed that many localized jets (e.g., spicules and macrospicules,

network jets, confined surges, jets in the twisted or straight magnetic spires, chromospheric jets near flare ribbons etc) exhibit20

the brightening and heating at their footpoints before their evolution (e.g., Isobe et al. 2007; Murawski et al. 2011; Uddin

et al. 2012; Kayshap et al. 2013b, 2018; Li et al. 2019, and references cited therein). There may also be the shock related

brightening in the lower solar atmosphere at the site of the evolution of such jets. Martinez-sykora et al. (2011) and Judge et

al. (2012) have studied the structure and evolution of the spicule-like jets that are triggered by the pulses which are launched

in the vertical velocity component from the upper chromosphere. The vertical velocity pulse is converted into a shock that25

propagates in the upward direction and chromospheric plasma follows these shocks to form the jet (e.g., Martinez-Sykora

et al. 2009, McIntosh et al. 2007 and references cited therein). These shock-driven jets show a thin linear plasma structure

that reaches a few Mm above the chromosphere and can transport mass and energy in the overlying solar atmosphere. B.

Kuźma et al. (2017) have also proposed the two fluid spicule model. These spicules are triggered by the velocity pulse in

vertical direction, while radiative cooling and thermal conduction do not play any significant role in the dynamics of such30

plasma ejecta. Recent observations reveal that the network jets are found to be associated with the impulsive origin in the

chromosphere (Kayshap et al. 2018), and they morphologically overlap with each other and with type-I/type-II spicules as well

in the quiet Sun chromosphere (Tian et al. 2014). In the present paper, we present a model of the pressure-pulse driven jets and

their evolutionary properties, which may mimic the variety of impulsive chromospheric jets (e.g., macro spicules, network jets,

confined smaller jet-like surges of moderate length etc) originating at the top of the photosphere. The pressure pulse acts as a35
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driver mimicking that heating is already occurred locally and activated the pressure perturbations launching these jets. We have

also estimated typical parameters (height, width, lifetime) of the jets triggered by different pressure pulses. The kinematics and

evolutionary properties of such jets have also been estimated for two magnetic field strengths of the quiet-Sun and comparison

has been made. In Sect. 2, we describe the MHD model of the jet, equilibrium model of the solar atmosphere, perturbations,

and numerical methods. The results are described in Sect. 3. The discussion and conclusions is outlined in the last section.5

2 MHD Model of the Pressure Pulse Driven Jets

In order to model the pressure pulse driven solar jets in the quiet-Sun, we consider and implement a gravitationally-stratified

and magnetized solar atmosphere. This atmosphere is approximated by the ideal MHD equations in their conservative form as

outlined below (e.g., Mignone et at., 2007, 2012, Woloszkiewicz et al. 2014):
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In the above representation of the set of ideal MHD equations, the symbol ρ depicts mass density in the solar atmosphere,

v denotes the velocity, B is the magnetic-field satisfying ∇.B = 0 divergence free condition, and µ depicts the magnetic

permeability. The parameter pt = p+ B2/(2µ) defines the total pressure which is an addition of thermal (p) and magnetic

(B2/2µ) pressure. I is 3 × 3 unit matrix. The quantity E describes the total energy, which is given as follows in the Eq. (2)

(e.g., Mignone et at., 2007, 2012; Woloszkiewicz et al. 2014).15

E =
p

γ− 1
+
ρv2

2
+

B2

2µ
(2)

In this equation, γ is the specific heats ratio. PLUTO code also satisfies an ideal gas equation under the MHD approximation.

p=
kB
m
ρT (3)

In this Eq. (3), T symbolizes temperature while kB is the Boltzmann constant. The symbol ’m’ denotes the mean particle20

mass. We take typical value of ’m’ for the model atmosphere that is equal to 1.24 . We do not consider the non-ideal conditions

such as velocity of the background plasma flows, dissipative effects like viscosity and resistivity, magnetic diffusivity, cooling

and/or heating of the plasma, because we are interested in understanding the kinematics and evolutionary properties of these

pressure driven jets. We consider∇· B equals to zero or a very negligible values of it in the numerical domain.
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Figure 1. Equilibrium open and expanding magnetic field lines in the model quiet-Sun solar atmosphere. X-axis and Y-axis are given in Mm.

2.1 Equilibrium Model of the Solar Atmosphere

We consider the numerical simulation box mimicking a realistic solar atmosphere covering the region from the photosphere to

the inner corona. In the case of the initial solar atmosphere subjected to the hydrostatic equilibrium, the realistic temperature

profile Te(y) is shown in Fig. 2, which is inferred from the observed line profiles by Avrett and Loeser (2008) and also

depicted in Konkol et al. (2012) and Woloszkiewicz et al. (2014).5

In the case of the static equilibrium of the solar atmosphere, i.e., when there is no background initial flows (Ve = 0), it is

approximated as a force free as well as a current free magnetic field. Therefore, we can abbreviate the initial magnetic field

condition as
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∇×Be = 0, (∇×Be)×Be = 0 (4)

In the given expression, the subscript ′e′ represents the equilibrium quantities. The vector magnetic potential can be estimated

with the magnetic flux function given as (Konkol et al. 2012, Woloszkiewicz et al. 2014):

5

Be(x,y) = [Bex,Bey,0] =∇× (Aeẑ) (5)

Where, the magnetic flux function is given as follows,

Ae(x,y) =
x(yref − b)2

(x− a)2 + (y− b)2
Bref (6)

In the above mentioned expression, we fix the vertical coordinate of magnetic pole, b = -5 Mm in the convection zone. The10

jet is triggering from the chromosphere (1.8 Mm) along the open magnetic field lines and the pulse is initially lunched there.

Thus, there is no dynamics occurred in the convection zone related to the evolution of these isolated chromospheric jets. Our

realistic temperature model (Fig. 2) smoothly extends from the convection zone to the photosphere and thereafter it couples

to the chromosphere, TR, and corona. In order to save the computing time, we do set lower boundary of the simulation box

at the photosphere. For the visualization, we have already given the magnetic field variations in the plot (see Fig. 1 for B=11215

Gauss pole strength) starting from the phtosphere to the corona. It clearly shows that the magnetic pole is set somewhere in

the convection zone deeper, and the magnetic field is smoothly extended into the solar atmosphere at higher heights with an

exponential decay. Putting the pole deep below in the convection zone is the requirement, of the numerical simulation as we

keep the magnetic singularity away from the simulation box in order to set an appropriate initial force and current free magnetic

atmosphere. The quiet-Sun cool chromospheric jets are simulated in our model. We set the source magnetic field of the typical20

order in the quiet-Sun. Moreover, the chosen magnetic fields smoothly extend to the inner corona and appropriately set the

reasonable values of plasma beta and Alfvén speed (Fig. 3, 5). This helps in the evolution of the perturbations and the launch

of the collimated jets. In this model, we have chosen two different configurations of magnetic field strength, i.e., B=56 Gauss

and B=112 Gauss. The reference level is taken in the overlying corona at yref = 10 Mm. The magnetic field lines exhibit open

and expanding field behaviour as shown in Fig. 1. We take the magnetic field strength typical of the regions at the Sun where25

chromospheric jets are formed in the quiet-Sun.

In the hydrostatic equilibrium of the solar atmosphere set in the simulation box, the gravity force balances the pressure gradient

force. This can be written as follows:

−5p+ ρg = 0 (7)30

Here we keep fix the value of g as 27400.0 cm s−2. Using the vertical component of the hydrostatic equilibrium in the model

solar atmosphere and ideal gas law, we determine the equilibrium plasma gas pressure and mass density as follows (Konkol et
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Figure 2. Temperature variation with the height in the initial static solar atmosphere.

al. 2012 and Woloszkiewicz et al. 2014):

pe(y) = prefexp

− y∫
yref

dy′

Λ(y′)

 , ρe(y) =
pe(y)

gΛ(y)
(8)

where

Λ(y) =
kBTe(y)

m̂g
(9)5

In these expressions, Pref is the gas pressure at reference level yref , which is attributed as the pressure scale height.

For considering the gravitationally stratified and longitudinally structured solar atmosphere, we obtain the plasma temperature

profile Te(y) which is derived by Avrett and Loeser (2008) and displayed in Fig. 2. It should be noted that the typical value

of the temperature Te(y) at the top of the photosphere is about 5700 K. This temperature corresponds to y = 0.5 Mm at the

photosphere, while it falls gradually and attains its minimum about 4350 K at higher altitudes about y = 0.95 Mm which10

represents a temperature minimum. As we move higher up in the solar atmosphere, Te(y) increases gradually with the height

up to the transition region which is located at y ' 2.7Mm. Te(y) sharply increases up to the corona and finally attains the
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Figure 3. Magnetic field profile (left) and plasma-beta profile (right) vs. height (y) in the model quiet solar atmosphere.

constant value of mega-Kelvin at the coronal heights as shown in Fig. 2.

The magnetic field and plasma-beta at y = 2.7 Mm (at the transition region) are 6.884 Gauss and 0.0005 respectively while they

grow with the depth and attains 7.646 Gauss and 0.219 respectively at y = 1.5 Mm, which is located within the chromosphere

(Fig. 3).

Using Eq. (8), we obtain the equilibrium mass density and gas pressure profiles w.r.t. height (Fig. 4). We found that the5

equilibrium mass density and gas pressure at 2.7 Mm (at the transition region) are 4.595 × 10−12 kg m−3 and 1.26 × 10−3

Pascal respectively. They grow with the depth and attain 1.537 × 10−7 kg m−3 and 6.411 × 10−1 Pascal respectively at y =

1.5 Mm which is located within the chromosphere. Fig. 5 shows the trend of Alfvén speed and sound speed w.r.t. height in the

solar atmosphere. The Alfvén speed is calculated by VA =
√

B2

µρ , which is 1015.583 km sec−1 at y = 2.7 Mm (i.e., transition

region) while it decrease with the depth and attains 6.167 km sec−1 at y = 1.5 Mm located within the chromosphere. The sound10

speed calculated by Vs =
√

γp
ρ at the transition region i.e. 2.7 Mm is 21.392 km sec−1 while it decreases with the depth and

attains 2.638 km sec−1 within the chromosphere at y = 1.5 Mm.

These background physical quantities (i.e., density, pressure, magnetic field plasma-beta, Alfvén speed and sound speed) for the

model gravitationally-stratified and magnetized solar atmosphere are appropriately set in the model solar atmosphere. We have

shown these profiles for the atmosphere which have source magnetic field value of 112 Gauss. The various physical quantities,15

their values, and variations with the height (y) in the structured solar atmosphere clearly indicate their smooth extension into

the inner corona. Their reasonable values are set for the model atmosphere, and are appropriate for launching the perturbations

and associated jets.
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Figure 4. Equilibrium profiles of mass density (left) and gas pressure (right) vs. height in the model quiet solar atmosphere.

Figure 5. Sound speed (left) and Alfvén speed (right) vs. height (y) in the model quiet solar atmosphere.
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2.1.1 Perturbations

We consider the initial solar atmosphere as in the hydrostatic equilibrium and gravitationally-stratified. We perturb the equi-

librium atmosphere by the initial pulse in the vertical direction in equilibrium gas pressure. The Gaussian form of the pressure

pulse in the vertical direction is given as follows:

5

P = P0

[
1 +Ap× exp

(
− (x−x0)2 + (y− y0)2

w2

)]
, (10)

Here (x0,y0) is the initial position of the pressure pulse. w is the width of the pulse, and Ap denotes the pressure amplitude.

We fix the value of x0,y0 as 0 and 1.8 Mm respectively, therefore, launching the pressure perturbations in the chromosphere.

We take w equals to 0.2 Mm. We imply different pressure pulse strengths Ap = 4-22, which account for the generation of the

variety of solar jets.10

Observations reveal that these types of chromospheric jets are found to be associated with the impulsive origin in the chromo-

sphere, and their footpoints are usually associated with the brightening. The chosen pressure pulses in this modeling mimic the

after effect of the heating scenario at their footpoints before evolution. This is not a direct implementation of the heating as we

use the ideal set of MHD equations in the numerical simulation. However, the Gaussian pressure pulse implies the disturbance

that represents the response in the form of the pressure perturbations once the underlying heating episode is completed. This15

perturbation locally alters the equilibrium and generates the propagating disturbances. The pressure pulse is chosen with the

varying amplitude Ap = 4-22 to understand the evolutionary and propagation properties of the cool chromospheric jets. We

perform the numerical simulation at two strength of magnetic fields (i.e., B=56, 112 Gauss), typical of quiet-Sun atmosphere.

2.2 Numerical Methods

PLUTO code is a Godunov-type, non -linear, finite-volume / finite-difference code which takes into account ideal and non-20

ideal sets of governing equations (e.g., Mignone et at., 2007, 2012, Woloszkiewicz et al. 2014). It is constructed to integrate

numerically a system of conservation laws, which can be shown as follows:

∂U
∂t

+∇ ·F(U) = S(U) (11)

In this equation, U denotes a set of conservative physical fields (e.g., magnetic field, density, velocity, pressure etc), while F(U)

is the flux tensor and S(U) is the source term.25

PLUTO code considers to utilize a second-order unsplite Godunov solver and Adaptive Mesh Refinement (AMR) of the system

of conservation laws as shown in the Eq.(11). In order to solve the set of ideal MHD equations (Eq. 1) numerically, we set

the simulation box as (-6, 6) Mm × (1, 21) Mm. This represents a realistic localized solar atmosphere of 12 Mm and 20 Mm

span respectively in the horizontal and vertical directions. This solar atmosphere is constructed within the simulation box, and

all four boundary conditions by fixing the simulation region to their equilibrium values. Numerical simulation is done with30

double precision arithmetic using multiple passage interface (MPI) (Mignone et al., 2007). The eight processors are used in the
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Figure 6. Evolution of the plasma jets at different pressure pulse in two different strength of the magnetic fields B=56 Gauss and B=112

Gauss. The Mosaic diagram shows the maximum height of the evolved jets at different pressure pulses, e.g., Ap = 4-22. Horizontal (x) and

vertical (y) axes are in Mm.

parallel calculations. It took approximately 12 hours of CPU time for each set of the calculations. We adopted a static uniform

grid which is divided into 384 equal cells in x-direction. we also adopted a static uniform and stretched grid which are divided

into 128 equal and 256 equal cells respectively in y-direction. The resolution of the simulation domain is 31 km per numerical

cell. We have obtained the numerical simulation data every 10 seconds.

In our modelling, we set the Courant-Friedrichs-Lewy (CFL) number equals to 0.25. We use Roe solver for the flux compu-5

tation, which is lineraized Riemann solver based on the characteristic decomposition of the Roe matrix (cf., Mignone et at.,

2007, 2012]

3 Results

The pressure perturbations in the solar chromosphere launch the thin and localized plasma jets (Fig. 6). These jets carry the mass

from the chromosphere to the outer corona along the expanding open field lines. The pressure perturbations mimic the impulsive10

origin of these jets due to the localized heating episodes that might occur at some time epoch in the solar chromosphere

and that cause the direct pressure disturbance in the equilibrium atmosphere. As the pressure pulse is launched, the plasma

gets essential velocity perturbations guided along the vertical and expanding field lines. These perturbations are converted in

magneto acoustic shocks in the stratified atmosphere which is followed by the motion of cool plasma behind. Shock leaves the
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Figure 7. Automated detection of the plasma jet in the numerical simulation data to establish its time-distance profile and termination point.

domain quickly, and resulting effect that remains behind is the formation of the jet. The pressure pulse driven cool jets depend

on the amplitude of the initial pulse (Ap) as well as the height of its triggering. This further converts into the acoustic shocks

that trigger plasma into the upward direction. The low-pressure region is created behind the slow magnetoacoustic shock, which

drives the cool plasma from the chromosphere upward mimicking cool jet. Therefore, the amplitude of the pressure pulse as

well as its triggering site are important factors upon which the evolution of the jets depends. In this model, we have studied5

chromospheric cool jets, so we can take a certain amplitude of the pressure pulse at the chromospheric height below the TR to

generate these plasma ejecta.

We have analyzed the kinematical and evolutionary properties of these pressure pulse driven solar jets by their detection

(Fig. 7). Fig. 8 displays the height-time profile of various jets at two different configurations of the magnetic field (B = 56

Gauss and B = 112 Gauss). It shows that the jets exhibit asymmetric parabolic paths, which is different than the normal10

parabolic path of any ejecta in the gravitational field. We develop a code in Matlab to find the height of the single isolated jet

with time and its termination point. For calculating the height of the jet, we took the time-series of the numerical simulation

data (Fig. 7a). In this density map, we estimate the assigned RGB values corresponding to the density variations over the colour

scales. Highest density corresponds to the fixed value of the green with G=255 and the value of it decreases towards blue (B)

as we go towards the tip of the jet with decreasing density. Ultimately it becomes 245 as the jet ends. Although it fades away15

slowly and there is no sharp boundary, so we take B=245 as the approximate boundary value for the jet. We have used this

observation to calculate the required parameters by fixing G=255, B<= 245 and generated a masked image with only G=255,
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B=56 Gauss B=112 Gauss

Figure 8. Height of the jets and their evolution w.r.t. the time.

B<=245 and rest of the portion is left as black (Fig. 7b). Then, we have generated the contour of the masked image to get

Fig. 7c, and thereafter we found the height variations automatically w.r.t. time. We took the snapshots of density map for the

calculation of height when the jet has reached above the transition region, and the snapshots of pressure map for the calculation

of the height of the jet when it was below the transition region. Also at time t=0 s, we took the value of height as 1.8 Mm as

was set in the simulation. The lifetime of the isolated jet is estimated in the masked time-series where only the jet’s motion is5

visible. We calculate the time when the height of the jet again starts increasing after the fall, and this point we consider as the

termination point of the first isolated jet. For Ap=14 (time=190 sec and corresponding density map), we have demonstrated the

above mentioned procedure in Fig. 7, to detect the jet.

We investigate the evolution of the pulses and associated jets at two different strength of the magnetic field (B = 56, 112

Gauss). The automatically detected height-time profiles for the jets originated by imposing different pressure pulses clearly10

exhibit the asymmetric near parabolic profiles (Fig. 8). This infers that the upward motion of the jet under the influence of

pressure perturbations does occur, however, its downward motion is not singly governed by the gravitational free fall. The

downward propagating counterpart of the perturbation when reflects from the photosphere, it goes up and causes its interaction

with the falling jet plasma. This creates the complex scenario near the base of the jet where we observe the complex plasma

motion and evolution of the multiple jets one by one (e.g., Murawski et al. 2011; Kayshap et al. 2018, Li et al. 2019). We aim15

to study the evolution of the first isolated jet that is generated due to the forward propagating component of the disturbance.
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Figure 9. Maximum height of the model jets vs. pressure pulse strength.

The down-drafting disturbance is usually weak while moving towards the denser lower solar atmosphere, therefore, it is not

seen well in form of significant density perturbations below in the density maps. However, its effect can be visible only once

it rebounds back at certain later time and helps in the formation of the secondary jets and interaction with the falling material

of the first jet. We study the propagation and evolutionary properties of the first upward propagating isolated jet (at different

pressure pulse strength and different magnetic field), therefore, we do not consider other secondary jets and their evolution.5

Fig. 9 displays an interesting correlation between maximum height of the jets and strength of the pressure pulse, which shows

a linear increasing trend. This directly infers that if the extent of the heating and thus pressure perturbations will be higher then

more longer jets can be generated from the same location in the chromosphere. For the strong magnetic field, the height of

the jet will be longer at a particular pressure pulse strength compared to the same for the weaker magnetic field strength. The

width of the jets may be determined by the conservation of mass in the cross section of the flowing jet spire, however, many10

other factors, i.e., the configuration of the magnetic field, the interaction of counter-propagating disturbances near the base of

the jet etc can affect its value. The width of the jets is measured by using Gaussian fit to the spatial profile of the jets when

they attain maximum height. The example spatial profiles of various jets when they reach at their respective maximum

heights are shown in Fig. 10 (top-panel). Since the base of these jets exhibits complex shape and motions, therefore,

the triple or single Gaussian profiles are fitted on their spatial profiles and the respective FWHMs are estimated after15
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(a) (b) (c)

Figure 10. Top-panel: The example spatial profiles of various jets when they reach at their respective maximum height In the top-

panel, figures ’a’, ’b’, ’c’ respectively show spatial profiles of the jet at B=56 Gauss, Ap=16; B=56 Gauss, Ap=6,B=112 Gauss, Ap=18.

Since the base of these jets exhibits complex shape, therefore, the triple or single Gaussian profiles are fitted and the respective

FWHMs are estimated after determining the Gaussian width. Bottom-panel: Width of the jets vs. pressure pulse strength (Ap) in the

solar atmosphere for magnetic field B= 56 Gauss (blue-diamonds) and B=112 Gauss (red circles). The FWHM of various jets lie between

0.42 to 0.48 Mm. They show mild increasing trend though for both the magnetic fields.
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Figure 11. Life-time of the model jets vs. pressure pulse strength.

determining the fitted Gaussian width. Width of the jets vs. pressure pulse strength (Ap) in the solar atmosphere for the

magnetic field B= 56 Gauss (blue-diamonds) and B=112 Gauss (red circles) are shown in the bottom panel of Fig. 10.

The FWHM of various jets lie between 0.42 to 0.48 Mm. Although, they exhibit on average mild increasing trend for

both the magnetic fields. The life-time of the jets shows linear variation with a positive slope w.r.t. the pressure pulse strength

(Fig. 11). This scenario depicts that more the localized energy release in the chromosphere, occurs the more larger perturbation5

will lead longer jets with long life-time. Moreover, the lifetime of the jet for a particularly larger pressure pulse strength will

be smaller in the presence of strong magnetic field and vice-versa (Ap ≥ 10). However in our simulation under the given

initial condition, the life-time is almost same for the two field strengths, particularly at low amplitude pressure perturbation

(Ap ≤ 10).

4 Conclusions10

There are several jets in the chromosphere (e.g., macrospicules, network jets, isolated repeated jets, confined surges; Wilhelm

2000; Murawski et al. 2011; Uddin et al. 2012; Kayshap et al. 2013b,2018, Li et al. 2019, and referencec cited therein). The

common resemblance point in the evolution of these jets is the presence of heating at their base. Sometimes these jets are so
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abundant that they over-impose on the co-spatial presence of classical chromospheric ejecta like type-I and type-II spicules

(Tian et al. 2014). Therefore, we can not ignore the role of such episodic jets in determining the mass as well as energy

transport in the corona. It should be noted that we attempt here to model the above mentioned episodic and impulsive jets in

terms of their kinematical and evolutionary properties. However we exclude the classical chromospheric spicules (type-I and

type-II), spicule-like structures, anemone jets, etc in this physical model as they may require additional driving mechanisms5

for their launch and in the non-linear regime complex plasma flows, and wave activity may present there (e.g.,De Pontieu et al.

2004; Shetye et al. 2016; Srivastava et al. 2017; Martínez-Sykora et al. 2017, and references cited there). Therefore, we simply

include those jets and their kinematical properties in our model, which evolve due to heating at their footpoints and associated

pressure pulse.

It should be noted that our results demonstrate that the elongation and life-time of these jets are directly proportional to the10

heating pulse, and their shape depends upon the complex plasma motions near their base as well as magnetic field configurations

of their spire. Therefore, in general we see the brightening and mass motions starting at their base and evolution of the plasma

motion occurs at the Jet’s spire. Our model represents the formation of such chromospheric jets which are evolved due to the

pressure perturbations near their footpoints. The pressure pulse driven jets are most likely driven by the localized heating at

their footpoints lying in the lower solar atmosphere. These perturbations are converted into magneto-acoustic shocks when15

they move up in the stratified solar atmosphere. The low-pressure region created behind the shock is followed by the motion of

cool plasma along the field lines that form the jet. The wave-driven jets are usually launched by the evolution of the magnetic

as well as plasma perturbations both. When the velocity, as well as pressure perturbations, are launched higher in the solar

atmosphere, they can generate MHD modes in the structured solar atmosphere. In the case of only the Lorentz magnetic force

and related velocity perturbations, the Alfvén modes can be generated (e.g., ). These waves under the non-linear effects can also20

be associated with the ponderomotive force guiding vertical plasma flows in form of jets (e.g., Murwaski et al. 2014, 2018). The

strong magnetic field guides more longer jets with a comparatively shorter life-time particularly at large pressure perturbations

(Fig. 9, 11). However, the width of these jets for different pressure pulse strength lie in the range of 0.42 to 0.48 Mm

range for strong (e.g., B=112 Gauss) and weaker (e.g., B=56 Gauss) magnetic fields (Fig. 10). Although, we present the

kinematics and evolutionary properties of the a single isolated jet, but usually such sites where pressure perturbations do occur,25

exhibit the formation of multiple jets associated with the significant brightening at their base. Such locations are very common

sites for the origin of the impulsively generation of isolated chromospheric jets as mentioned above.
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