Reply to Reviewer 3 1

2

Thank you for your attention and useful comments.

3 The aim of the paper is to present characteristics of ionospheric irregularities near the EIA crest from GPS observations during 2003, 2008, and 2014. In this manuscript major modifications 4 5 are as following: (1) Another GPS receiver located at (31.10 N, 121.20 E) was also used to study 6 the irregularity. According to the latitudes of the IPPs, five latitudes belt are divided. The 7 characteristics of the irregularity in the five latitude belts are studied and the latitude dependence 8 is analyzed. (2) The figures from the two stations are plotted. The descriptions to the figures and the results from them are revised according to the new figures. (3) Discussion and conclusion are 9 10 modified according to the results and the figures. (4) In addition, we improve the English writing.

11 After the modification, the major contributions of this paper are summarized as: (1) Local 12 occurrence rate (LOR) is proposed to describe the spatiotemporal range of the irregularities. (2) 13 The monthly occurrence rate (MOR) is generally large in May/June than that in the equinox months. (3) LOR is the larger in the equinox months than in June for the lower latitudes. But for 14 15 the higher latitudes, LOR is larger in June. (4) MOR and LOR in March and September/October decrease with the latitudes. But in June, they are large in the higher latitudes and small in the 16 17 lower latitudes. (5) The characteristics of the irregularities in 20~23 N and 23~26 N are similar to 18 the EPBs. But in the higher latitudes, they are different from the EPBs.

19

1. The

r	n	
Z	υ	

	responses to the cor	nments are presen	ted in Table 1.
--	----------------------	-------------------	-----------------

	Table 1 Response to the comments		
No.	Comments	Modification/explanation	
1	The geomagnetic latitude of the station is 18.20 N	The EIA did vary with the solar	
	north, which cannot always be called the crest	activity. TWTF is not always located	
	location under varying levels of solar activity. The	in the EIA crest. It is more accurate to	
	crest of EIA has been used as a misnomer in	mention it as near the EIA. In the	
	several studies before, however, in reality this crest	modified manuscript, we change "in	
	is a dynamic latitudinal peak in TEC that varies	the EIA crest" to "near the northern	
	even day-to-day, season-to-season and moves	EIA".	
	grossly towards dip equator during low solar		
	activity periods. The peak in NmF2 may again		
	differ from what one observes from TEC. Hence,		
	for year 2008, the location cannot be granted for		
	the crest of EIA. Authors shall mention this and		
	carry necessary corrections in the manuscript.		

No.	Comments	Modification/explanation
2	5-minute ROTI index has been calculated using	The method to obtain relative slant
	estimated TEC. However, it has not been shown	TEC is stated in the manuscript.
	how TEC is estimated? If the GPS carrier phase	During the calculation of ROTI, the
	data is used then how cycle slips are corrected	difference between two adjacent slant
	which is an oft occurring event due to equatorial	TECs is used. The relative slant TEC
	plasma bubbles passing over the site. Thus, ROTI	and ROTI are calculated in every
	itself can be ill-defined index to present the	continuous arc. The cycle slip will
	statistics. Result then become doubtful. Authors	cause ROTI outage in 5 minutes, but it
	must clarify this issue by detailing.	does not affect the value of ROTI. The
		method to get ROTI referred the paper
		by Pi et al (1999).
3	Coming to the criterion used to declare traverse	The criterions to calculate the
	(occurrence) of EPB is not established by any	threshold and detected the irregularity
	means. Authors must provide 3-4 examples of	are described in the revised
	estimation of TEC from RINEX data, then	manuscript. An example is presented
	estimation of ROTI in panel below and then the	in the left panel of Figure A-1 to show
	criterion plotted along with the threshold. Thus,	the traverse irregularity event detected
	they may establish the validity for using it for all	by ROTI.
	the data sets.	
4	What are the physical rationales behind choosing	This is a good question. I agree with
	1-hr gape to reset the counter of EPB event? This	you. Sometimes the irregularity events
	seems gross qualitative measure. Now I cannot	are intermittent as shown in Figure
	understand the statistics what it really represents?	A-1. 1 hour gape is based on a lot of
		examples. Whether other time gape is
		suitable is a question worth studying.
		In this manuscript we choose 1 hour to
		distinguish the irregularity after sunset
		or post midnight.
5	MOR and LOR are ill-defined. There must be a	The definition of the MOR and LOR
	plot to showcase how many days of observations	are presented by equations. The data
	were made in each month for all 3 years. Then	outage is declared in the new
	MOR shall statistically significant and this must be	manuscript.
	quantified. At this level, nothing is known. In case	
	of LOR, the number of irregularity counters are	
	already proven wrong because of ill-defined	
	criteria as mention in point 3 above. So how LOR	
	is significantly true ?	

No.	Comments	Modification/explanation
6	I have studied several years of GPS observations	As you mentioned, ROTI has been
	using scintillation S4 index as well as ROTI index.	used to study the irregularity popularly
	The start time of irregularities can never be	in these years. The accurate starting
	uniquely defined using a gross averaging index like	time is difficult to be determined by
	ROTI? How much accurate will be this and this	one way of observations for any event.
	must be clarified?	Here we get the start time in statistics
		of hundreds of irregularity events. The
		coarse statistic is enough for analyzing
		the staring time in hour scale.
7	Coming to the seasonal changes in variation of	The main contribution of this paper is
	LOR and MOR, what is new that authors provide	described in the first paragraph of the
	to a reader. All such variations are known.	document.
	Amplitudes may vary that also is known. What is	
	contribution of authors to add to existing	
	knowledge is nowhere established.	
8	How an average index of daytime solar radio F10.7	The published paper showed that the
	cm flux is related with ROTI amplitude?	occurrence of EPBs is related to the
		solar activity. Under magnetically
		quiet conditions, higher solar activity
		implies greater pre-reversal eastward
		electric field, earlier occurrence and
		earlier decay of EPBs (Fejer et al.,
		1999; Hysell et al., 2002). Solar flux
		number and the sunspot number have
		been as the input to the global
		ionospheric scintillation model
		(GISM) and the WBMOD ionospheric
		scintillation model. In this manuscript,
		we tried to analyze the relation
		between the F10.7 and ROTI
		maximum near the northern EIA.

No.	Comments	Modification/explanation
9	Discussion section is highly flimsy. With help of	The effect of solar activity on EPBs is
	some previous reports from very different	described as stated above.
	durations than the present study covers, the	
	discussion claims to the effect of solar activity of	
	production of EPBs. This cannot be allowed in any	
	sane scientific report. Production of EPBs depends	
	upon two major physical processes that occur in	
	post sunset duration over dip equator. One is	
	triggering of EPB with seed perturbation and then	
	non-linear growth of EPB. Then only it will be	
	traversing over the low latitudes. Again, the fate of	
	EPB depends upon background zonal drift, space	
	weather events and electric field within the bubbles	
	along with some secondary processes that produce	
	a break the irregularity turbulence spectrum.	

