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Abstract. It is generally believed that field aligned currents (FACs) and the ring current (RC) are two dominant parts of the 10 

inner magnetosphere. However, using the Cluster spacecraft crossing of the pre-midnight inner plasma sheet in the latitude 

region between 10°N and 30°N, it is found that, during large storm eventsintense geomagnetic storms, in addition to FACs 

and the RC, there also exist strong southward and northward currents, which cannot should not be FACs, because the 

magnetic field in these regions is mainly along the XY plane. Detailed investigation shows that both magnetic field lines 

(MFLs) and currents in these regions highly fluctuatedynamic. When the curvature of MFLs changes direction in the XY 15 

plane, the current also alternatively switches between southward and northward. Further analysis of the current generation 

mechanism indicates that the most reasonable candidate for the origin of these southward and northward currents is the 

curvature drift of energetic particles.  

1 Introduction 

Abundant current systems existing in the Earth’s magnetosphere play a very important role in energy transformation in 20 

different regions (Kuijpers et al., 2014). Recently, through simulations and observations, numerous studies have shown that 

the inner magnetosphere currents have a more complicated structure and distribution than originally thought. For example, in 

the low latitude, the magnetic field geometry can be altered significantly into tail-like during storm time (Tsyganenko et al. 

2003); One or multi banana current can exist in the inner magnetosphere, which makes the link of the current systems more 

complicated (Liemohn et al. 2013). In the high latitude, field-aligned currents (FACs) have more sophisticated structures 25 

except the known large scale region 1 and region 2 currents (Mishin et al., 1997; Tsyganenko et al. 2003; Liemohn et al. 

2013; Dunlop et al., 2015a; 2015b). Therefore, more work is still needed to reveal the true nature of these current systems.  

The huge progress in satellite deployments makes it possible for direct observation of the inner magnetosphere current 
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system. It is believed that the magnetosphere and ionosphere are linked through a ring current (RC) and field-aligned 

currents (FACs) (e.g., Le et al. 2004; Zhang et al. 2011). Therefore, many investigations are mainly focused on these two 

current systems, respectively, from high latitude (e.g., Iijima and Potemra 1976; 1978; Wang et al., 2006; Dunlop et al., 

2015b) and low latitude, respectively (e.g., Vallat et al. 2005; Shen et al. 2014; Yang et al. 2016). The region from low to 

middle latitude, which is the key area for the inner magnetosphere current link, however, has received less attention. Cartoon 5 

plots and some statistical results (e.g., Le et al., 2004) show that FACs should be the dominant current in these areas. 

Through Cluster satellite observations, Vallat et al. (2005) pointed out that the RC could exist at middle (or even high) 

latitudes. Despite the results achieved by these various research efforts, so far, there are still no findings enabling a 

conclusion about the complete current morphology in low and middle latitudes. For example, are FACs and the RC the only 

currents in these regions? If there are other currents, what is the corresponding generation mechanism for them? To address 10 

these questions, the current distribution and magnetic field geometry during two storm events are investigated in the latitude 

regions from 10°N to 5030°N.  

In the following, we will use Cluster fluxgate magnetometer (FGM) (Balogh et al., 1997) data to conduct the analysis for 

two reasons: 1. the polar orbit of Cluster offers an opportunity to go through both the low-latitude and middle-latitude 

regions and 2. the The configuration of the four Cluster satellites makes it possible to directly calculate the current via 15 

Maxwell-Ampère’s law and obtain the magnetic field geometry. Moreover, in many previous works, it was thought that an 

asymmetric RC linked with the FACs, which is generally believed to occur during storm time, so storm events are our 

primary focus here. 

Throughout this paper, solar magnetospheric (SM) coordinates are used. To better describe angles, spherical coordinates (θ, 

 ) in the SM frame are also defined, i.e., the polar angle θ (0° ≤ θ ≤ 180°) is the angle between the + Z axis and the 20 

vector direction while the azimuthal angle   (0° ≤   ≤ 360°) is anticlockwise rotated from the + X axis in the XY 

plane when seen from + Z axis. For current density analysis, the local cylindrical coordinate system (j

,j


,
z
j ) (Vallat et al. 

2005) is also utilized. Where 
z
j  is parallel to the +Z axis; j


 represents the radial component of the current on the plane 

parallel to the X-Y plane, oriented anti-earthward; j


 points eastward, describing RC. 

2 Methodology 25 

In this study, magnetic curvature analysis (MCA) (Shen et al., 2003) and magnetic rotation analysis (MRA) (Shen et al., 

2007) are used; these techniques have the unique ability to reveal the three-dimensional geometric structure of the magnetic 
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field directly as well as provide more detailed magnetic-field-related parameters, such as magnetic field gradient, curvature, 

and the binormal of magnetic field lines, rotation rates, and current density. The magnetic unit vector b̂ B B= / , curvature 

vector ˆ ˆ ( ( )   c c b b ), and the binormal vector ˆ ˆ ˆ ˆˆ ˆ ( )c c/  N N b b   are orthogonal to each other in the analysis, 

and the radius of curvature is 
c1/ cR . The magnetic vector b  has maximum, median, and minimum rotation rates of 

1/2

1 , 
1/2

2 , and 
1/2

3  along 
(1)ê , 

(2)ê , and 
(3)ê , respectively, where 

(1)ê , 
(2)ê , and 

(3)ê  are the three characteristic 5 

eigenvectors of the magnetic field. Note that, because the strong geomagnetic field in the region of interest will produce 

artificial currents in the basic MRA calculation (nonlinear contributions), the International Geomagnetic Reference Field 

(IGRF)dipole field is subtracted when using the MRA method to minimize truncation error (Shen et al., 2014).  

To make a comparison with the nondisturbed geomagnetic field, the local dipolar values of magnetic field strength tDipB , 

radius of curvature, cDipR , magnetic field gradient strength 
DipB , and three rotation rates 

1/2

1 , 
1/2

2 , and 
1/2

3  
are 10 

also presented. They are calculated (Shen et al., 2014) by using: 

3 2(1 3cos ),tDipB Mr  
 

2 3 2(1 3cos ) / [ sin (1 cos )],
3

cDip

r
R      

 

4 2 2 23M 1 cos (7 8cos ) / (1 3cos )DipB r         ,
                      ( 1 ) 

1/2 1/2 2 2

1 3(1 cos ) / [ (1 3cos )]r       ,
 

15 

1/2 1/2 2

2 3 cos / [ (1 3cos )]r      ,
 

1/2 1/2

3 0r   ,
 

where 
0 / 4M m     (with 

22 27.78 10  A mm     being the earth's magnetic dipole moment) and r is the radial 

distance in SM coordinates. 

3. Event Analysis  20 

The chosen events occurred, respectively, on 12 April 2001 and 31 March 2001. These were the two largest storms from 

2001 to 2004 during which the four Cluster satellites had a small (best) tetrahedron separation distance (1000 km). The 

minimum Dst indexes for the two events were −271 and −387 nT, respectively. During the two events, Cluster was in the 
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pre-midnight sector and traversed the RC region vertically from the southern to northern hemispheres. The region of 

interested is in the northern hemisphere. Figure 1 gives the proton density and differential flux for H
+
, He

+
, O

+ 
during the 

concerned interval, which are obtained from Cluster Ion Spectrometer (CIS, Rème et al., 2001). The figure indicates that 

Cluster is mainly in plasma sheet region (e.g., Vallat et al. 2005). 

 5 

Figure 1: Cluster CIS data for 12 April 2001 (left) and 31 March 2001 (right) event. (a, e) the proton density variation for three 

satellites C1 (black), C3 (green) and C4 (blue). (b-d, f-h) H+, He+, O+ energy time spectrograms in particle flux units ions/(cm2 sr s 

Kev) from C4. 

3.1 12 April 2001 event 

The time interval of interest for the first event is from 05:00 to 05:25 UT, with latitude ranging from 16.9° to 25.7°. Figure 2 10 

presents some of the main physical quantities. Figure 2a shows the average magnetic field tB  detected from the four 

Cluster satellites and the local dipolar magnetic field strength. It can be seen that the local magnetic field is enhanced in this 

area. Figure 2b indicates that the polar angle of the magnetic field is close to 90°, indicating that the magnetic field lies 

approximately in the XY plane. The polar angle and azimuthal angle of dipolar fields is also show in dashed lines in Figure 

2b, which indicates a large deviation of the azimuthal angle with observations. Figure 2c shows that the radius of curvature,
 

15 

, has large variations. It is interesting to see that c


 
(the angle of  in Figure 2d) changes direction alternately 

during the whole period. Therefore, eight regions (numbered from NH1 to NH8) were chosen according to the changes in 

c


 
direction to investigate their features. The variations of some physical quantities are also summarized in Table 1. For 

c


 
and 

e1
 , the average values (with a few large abnormal points removed) during this period is given. ‘-’ denotes that the 

value has large oscillations. For z
j , the maximum or minimum value during each interval is presented.  20 

cR cR
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Figure 2: Geometry of the magnetic field and the current distribution in the NH region on 12 April 2001. (a) Average magnetic 

strength 
tB  at the center of the Cluster tetrahedron (black solid line) and the calculated strength 

tDipB  of the dipole geomagnetic 

field (black dashed line). (b) Direction angles (
B

 , 
B
 ) of the magnetic field. 90°and 315º are reduced respectively for 

B


 
and 

B
  to better indicate the magnetic field variation. The polar angle and azimuthal angle of dipolar fields is also show in dashed 5 

lines. (c) Radius of curvature, 
cR  (red solid line), and the calculated radius of curvature, 

cDipR , of the dipole geomagnetic field 

(black dashed line). (d) Direction angles (
c , 

c
 ) of the curvature of the MFLs. (e) Value of the gradient of magnetic field strength 

for the real magnetic field (red solid line) and dipole geomagnetic field (black dashed line ). (f) Direction angles (
gB
 , 

gB
 ) of the 

gradient of magnetic field strength. (g) Maximum, median, and minimum rotation rates of the measured magnetic field (solid lines) 
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and dipole geomagnetic field (dashed lines). (h) Direction angles (
e1
 , 

1e
 ) of the maximum rotation rate. (i) Total current density 

t
j  (black line) and the three components j

  
(magenta line),j


 (green line),

 z
j

 
(blue line)  in local cylindrical coordinate 

system, respectively. The red line is the field-aligned component Bj  (red line).and the three components (
B
j ,

R
j ,

N
j ) of the current 

density at the local natural coordinates, where 
B
j  is the field aligned component (red line), 

R
j

 
the component along the 

curvature (green line), and 
N
j  along the binormal. If the polar angle of 

N
j  is smaller than 90°, then 

N
j  is along northward, 5 

otherwise, it is along southward. 

 

As shown in Figure 2c, the radius of curvature of MFLs in the eight regions is basically decreasedvaried compared with 

that of the dipole field. Another feature observed in Figure 2c is that 
cR
 

peaks at the vertical dashed lines. It is reasonable 

since the curvature radius in transition region should be larger than the region where the curvature radius has opposite 10 

directions. Figure 2d and c
 row in Table 1 give the average value of the azimuthal direction c


 

during each interval. It 

quantitatively reveals that c
  alternatively varied between 30.3°–51.9° and 230.3°–292.0°. It is noted from Figure 2d that, 

for some regions, the variation of polar angle 
c


 
has larger fluctuation (than azimuthal angle c

 ). This feature reflects 

larger changes of the magnetic field in Z component. Figure 2g shows that 
1/2

1  
has an enhancement in each region, 

illustrating a stretched MFL structure. Figure 2h and row 
e1
  in Table 1 show that, for most regions, the largest value of the 15 

polar angle 
e1
  for 

1/2

1  
is close to 90°; therefore, the largest deviation of MFLs is along the XY plane. Figure 2i indicates 

that the current oscillates and that the dominant current is along j  
the MFLs B

j
  

and north (or south) 
z
j N
j  direction, 

while the current along the curvature R
j  

 
ij  

is basically small compared with j B
j

 
and 

z
j N
j .  To show FACs, 

B
j  component is also given in Figure 2i, it can be seen that the value of B

j
 

close to that of j , because the direction of 

the magnetic field points approximately to the radial direction (see Figure 2b). The maximum values for B
j

 
and 

z
j N
j

 
20 

were ~50 40 and ~80 nA/m
2
, respectively. From Table 1 and Figure 2, it is interesting to see that, from region NH1 to region 

NH8, the 
z
j N
j

 
component changed from positive (northward) to negative (southward) as c


 

varied from <6050° 

to >230°.  

 

Table 1: Variation of physical quantities for two storm events 25 
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Event
a
 PQ

b
 NH1

c
 NH2

d
 NH3

e
 NH4

f
 NH5

g
 NH6

h
 NH7

i
 NH8

j
 NH9

k
 NH10

l
 NH11

m
 

20010412 

 ( )c  292.0 41.4 244.1 35.3 251.9 36.9 230.3 44.8    

e1  ( )  29.5 27.0 74.7 57.7 51.9 61.0 70.8 69.7    

2

zm  (nA/m )j

2

Nm  (nA/m )j  

419.3

-22.5 

25.327.

2 

49.3-

50.8 

-21.523

.3 

30.9-

28.8 

-43.146

.6 

81.8-

82.6 

-61.963

.1 

   

20010331 

 ( )c  59.9 241.9 59.6 244.7 58.5 240.3 63.2 235.1 60.5 238.6 62.8 

e1  ( )  71.3 - 65.4 73.2 71.8 59.8 73.4 71.7 78.8 59.9 80.2 

2

zm  (nA/m )j  
106.9

95.6 

−42.5−

45.9 

60.15

6.1 

−128.3

−125.6 

95.99

8.0 

−126.3

−123.8 

198.2

225.6 

−294.3

−328.9 

118.2

118.9 

−193.9

−202.4 

204.720

4.4 

a
Storm events considered in this work. 

b
The physical quantity c

  is the average azimuthal direction of the curvature radius, 
e1
  is the average polar angle of 

maximum rotation rates of the magnetic field, and 
 zm
j represents the maximum or minimum value of the 

z
j

 
current 

component. 

c–m
Regions for each storm event. 5 

3.2. 31 March 2001 event 

Another larger storm occurred between 07:30 and 08:00 UT on 31 March 2001. (The event was once reported by Shen et al. 

(2014), but they only concentrated on the interval from 07:00 to 7:25 UT). Observations are shown in Figure 3 for the 

latitude region from 13.1°N to 3431.62°N, the interval during the main phase of the storm. Here, 11 regions designated from 

NH1 to NH11 are divided also according to azimuthal direction changes of
 c
 . The variations of some relative physical 10 

quantities are also shown in Table 1. From Figure 3 and Table 1, it can be seen that these parameters behave the as same as 

those that of the 12 April 2001first event, but with strong magnetic field strength. Figure 3 indicates that the magnetic field 

strength is stronger than that during the first event. The magnetic field is in the XY plane (see Figure 3b). The radius of 

curvature of MFLs (see Figure 3c), the magnetic field gradient (Figure 3e), a. And the largest rotation rate (Figure 3g) 

oscillates significantly and exhibits large deviations compared with those of the dipole field. Figure 3f shows that the 15 

magnetic field gradient is in the XY plane and directed toward the dayside. Figure 3h and row 
e1
  demonstrate that the 
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largest variation of MFLs is near the XY plane. In Figure 3i, it is clear that the 
z
j N
j

 
component is the dominant current, 

with a maximum value of 300 nA/m
2
. This value is more than triple that of the 12 April 2001 event. It is clear to see that 

the j R
j

 
component is the smallest among these currents. Similar to first event, 

z
j N
j  is simultaneously observed to 

vary from northward to southward when 
c


 

changes direction.  

 5 
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Figure 3: Geometry of the magnetic field and the current distribution in the NH region on 31 March 2001. The format is the same 

as that of Figure 2. 

4 Summary and Discussion 

During the 12 April 2001 and 31 March 2001 strong storm events, the Cluster satellites were located in the pre-midnight 5 

sector and crossed from ~13.10°N to 42.6~30°N. In these regions, both the magnetic field parameters and the current density 

fluctuated significantly. The MFLs, which were mainly in the XY plane, severely deviated from the dipole field and changed 

(stretched) along the XY plane. Figure 4 displays the total magnetic field strength and its three components. It can be seen 

that the X and Y components of the magnetic field have the largest fluctuations, which is consistent with the results obtained 
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from Figure 2 and 3. To further investigate the fluctuation, the continuous 1-D wavelet transform method is applied in X and 

Y component of the magnetic field. It is found that the ULF wave covering a range of frequencies spanning 4 mHz to 10 

mHz can be observed (not shown here), which is consistent with the typical current density variation in ~2 -4min period. 

Actually, ULF wave in the plasma sheet region has been extensively reported in previous works (see Keiling, 2009 and 

references therein). So, it seems that ULF wave is a possible way to cause the variation of curvature radius (and the field 5 

aligned current). 

 

Figure 4: Magnetic field observed by the four Cluster spacecraft during 12 April 2001 and 31 March 2001 storm events. 

 

The most obvious phenomenon in the two cases is that the existence of three current systems, i.e., FACs B
j , an azimuthal 10 

current (RC) j Rj  
and a northward (or southward) current 

z
j Nj . Among them, 

z
j Nj  is basically the strongest current 

component. In previous studies (e.g., Le et al., 2004; Vallat et al., 2005), the existence of B
j  and j Rj  

has been proved. 

However, the occurrence of such a strong 
z
j Nj  in the inner plasma sheet has not been reported before. In the work of 

Vallat et al., (2005), they also found a southward current (see Fig 14 and corresponding text). But it is in equatorial ring 

current region (with no direction changes) and mainly caused by an asymmetry between the ionospheric conductivities of the 15 
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two hemispheres. It is very clear that the southward current in their paper is different with what we report here. 

As introduced in previous studies (e.g., Parker, 1957), the current in the inner magnetosphere generally arises from gradient 

drifts as well as curvature drift and the gyromotion of energetic particles. They can be calculated by using (e.g., Lui et al., 

1987; De Michelis et al., 1999):  

3
,

B
P

B
 




B
j                                           ( 2 ) 5 

c2C

P

B
  j B,                               ( 3 ) 

2 2
( ) ,G

P P
P B

B B B

 


 
       

 

B
j B B                   ( 4 ) 

where j , Cj , and Gj  represent the gradient current, curvature current, and gyromotion current, respectively, and 
P  

P  are the pressure tensor components perpendicular and parallel to the magnetic field, which can be deduced from:  

3= 2m sin     P J d d

,                   ( 5 ) 

10 

2=2 2m cos sin     P J d d
,                   ( 6 ) 

where m is mass of particle, J  is the differential flux intensity,   and   is respectivelyare the particle energy and pitch 

angle, respectively. Since the magnetic field gradient B  and curvature c  
have been obtained by using MRA method, 

the above three currents can be calculated when the pressure tensor components are given.  

For the two events in this study, both the magnetic field and magnetic field gradient are directed toward the dayside. 15 

Therefore, the current deduced from BB  (the gradient drift current) should be small. To analyze the current 

contribution from gyromotion drift and curvature drift, we first show the three components of − c B  for the two events 

in Figure 5a and 5b. It is clearly seen that the (− c B )z component is the dominate part and has the same variation trend 

with z
j . Therefore, the curvature drift current is a possible candidate. For gyromotion current, it is originated from three 

terms, i.e., 
PB , - BB  and - ( ) B B B . Firstly, according to previous works (e.g., Lui et al., 1987; De Michelis 20 

et al., 1999), P  is along the radial direction, which means that it has the similar direction with magnetic field for two 
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events concerned here. So, the contribution from
 

PB  should be small. Secondly, − BB  is similar to the gradient 

drift current and can be negligible. Thirdly, since ( )B B  has the same direction with c (
c

ˆ ˆ ˆ( ) ， b b  b B B = / ), 

according to Figure 5a and 5b, the product of - ( ) B B B  (similar to c B ) will behave oppositely to z
j . 

Consequently, the gyromotion current has little possibility of contributing to a strong z
j . Figures 5a and 4b show the −

c B  result for the two events. It is clearly seen that the −( c B )z component has the same variation trend as z
j . For 5 

the gyromotion contribution, because P  is generally believed to be along the Z direction, PB  should be in the XY 

plane. − BB  is similar to the gradient drift current and should be small. According to the − c B  result in Figure 5, 

c B  behaves oppositely to z
j . Consequently, the gyromotion current has little possibility of contributing to a strong z

j  

and According to the above analysis, the most reasonable candidate for strong z
j

 
should be the curvature drift.  

Based on the above analysis, cartoon plots are given in Figures 5c and 5d to explain the possible generation mechanism for 10 

z
j . During the strong storm time, turbulent turbulences, (e.g., ULF waves,) result to in the fluctuation of the MFLs, then, the 

radius of curvature of the MFLs decreases, leading to an increase in the curvature drift current. During this process, the 

direction of the magnetic field is nearly unchanged because the background field is very strong. However, the curvature will 

alternately change directions along with the variation of the MFLs, resulting in alternating variations of − c B , i.e., 

leading to the oscillation of z
j .  15 
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Figure 5: (a) and (b) The three components of − c B
 

for two concerned events. c  is calculated from MRA method and B  is 

the averaged magnetic field measured by four Cluster. Results deduced from the radius of curvature of the cross magnetic field. (c) 

and (d) Cartoon plots of the origin of the N
j

 
current variation. 5 
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Figure 5 (a) and (b) can only illustrates that the direction of − c B  is consistent with northward current. To 

quantitatively check if curvature current calculated through Eq. (3) is consistent with result obtained from MRA method, 

further investigation deserve to be tried. The CIS/CODIF (Composition and Distribution Function analyzer) can provide the 

differential flux intensity for energy below 40kev. Through Eq. (3) and (5, 6), the curvature current can be estimated. The 5 

result shows that the main variation trend is consistent with result from MRA, but the intensity is very small (less than 1 

nA/m
2
, not show here). However, it should be noted that, for Cluster CIS/CODIF, only low energetic particle data are 

available, therefore, large bias may exist when calculating storm time current. In contrast, much higher energy is used in 

previous studies (e.g., to 1Mev in the work of Lui et al., 1987). Cluster RAPID can provide energy spectrograms for high 

energetic particle from ~27.6kev to ~3056 kev. Unfortunately, there is no available data for the two concerned events. The 10 

statistical study from Kronberg et al. (2015) proves that, in the near earth plasma sheet, higher energetic hydrogen and 

oxygen are greatly enhanced during geomagnetic activity. In the work of Ma et al. (2012), they also indicated that the flux 

for higher energetic particles could comparable or larger than that of the low energetic particles.  

Though, there is no available differential flux for high energetic particles on Cluster, the curvature current still can be 

estimated through simulations. Previous works has proved that the particle distribution in plasma sheet can be described as 15 

Kappa distribution functions (Pierrard and Lazar, 2010, and references therein):  

1 12/3 1
1

0 1 1 1 0

( 1)1
f= ( ) (1 )

2 ( 1/ 2)



   

  


 

E
N

mE E
                ( 7 ) 

Where 1N  and 0E  denotes to particle density and temperature, and 1  is a constant. For energy satisfying 0E E , 

Eq. (7) can be written as: 

1 1 
f aE

                                   ( 8 ) 

20 

Since the differential flux intensity J  and particle velocity distribution function f  is related by 
2J fp , Eq. (8) is 

also the function of J , namely: 

1 12  
J ap E

                              ( 9 ) 

Where p  is the momentum of the concerned particles, and a  is a constant. Thus, with the known differential flux 

intensity from low energetic particle, the parameter a  and 1  can be determined. Then, the differential flux intensity for 25 
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high energetic particles (to 1Mev) can be estimated using Eq. (9). Though, particles are accelerated during the storm, we 

have confirmed that the Kappa distribution is still satisfied using CIS/CODIF observations (not shown here). However, it 

should be noted that, during the storm, a  and 1  are no longer a constant but varied with time. Besides, to check if the 

estimated high energetic particle differential flux (using low energy particle data) is reasonable, we select a storm event 

occurred on 20 April 2002, which has similar position with two concerned events in this study, and has CIS/CODIF and 5 

RAPID observations at the same time. The result shows that the fitted result (from CIS/CODIF measurement) can basically 

reflect the main trend of the high energetic particles, which can demonstrate that our estimation used here is reasonable.  

Now, we can re-estimate the curvature current using Cluster CIS/CODIF observations for energy between 25ev-40kev and 

simulation values for energy >40kev-1Mev. Figure 6 shows the estimated z component of curvature current (the red dotted 

curve). It is close to result from MRA (the blue curve). 10 

 

Figure 6: The z component current density calculated from MRA method (the blue curve) and the estimated curvature current (the 

red dotted curve).  

It should be noted that both two events concerned here is in the north hemisphere. Actually, we have checked that the 

southward and northward current also can be observed in the southern low and middle latitudes . So, such currents should be 15 

observable both in north and south inner plasma sheet during strong geomagnetic storm events. 

According to previous analysis from plasma data (Baker et al., 2002; Korth et al., 2004; Vallat et al., 2005; Ohtani et al., 

2007), most NH regions should correspond to the plasma sheet region. Using the T96 model (Tsyganenko, 1995, 1996), we 

have tried to trace Cluster footprints in the northern hemisphere, it is found that When the Cluster footpoint traces the T96 

model, the position is 55°–60° in the northern hemisphere (not shown here), which just corresponds to the position of the 20 

FACs (Papitashvili et al, 2002; He et al, 2012). Because the MFL shapes in the plasma sheet have been changed considerably, 

the particle motion in Earth’s magnetic field will be altered correspondingly, which may affect the particle distribution in the 
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polar and equatorial regions, hence, leading to the variation of the FAC and RC distributions. These effects, however, need to 

be evaluated in future work. 

When calculate current density using MRA method, it should be noted that Cluster is not a regular tetrahedron shape around 

the perigee area, but suffers to an elongation, which can produce an unnatural currents.  These unnatural currents are included 

in our analysis and cannot be removed. To evaluate this component, methods from Robert et al. (1998) and Vallat et al. (2005) 5 

are used. Figure 7 gives the Cluster tetrahedron parameters for two concerned events. Then, the current influence of the 

tetrahedron shape can be estimated as a function of elongation and planarity (Figure 7c and Figure 7d). It can be seen that the 

error caused by tetrahedron is never more than 30%. 
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Figure 7: Panel a and b: Cluster elongation and planarity for two studied events. The red vertical lines show demarcate the 

concerned time interval. Panel c and d are picked from Robert et al. (1998) to evaluate the influence of the tetrahedron shape. Black 

lines mark the elongation and planarity obtained from panel a and b. 

5 Sumamry 5 

In this work, the magnetic field geometry and current density in the inner plasma sheet during two intense geomagnetic 

storms have been investigated. It is found that, the magnetic field and current density are highly fluctuated in this region. 

Generally, both three components of current can be observed during the concerned interval. However, the northward (or 

southward) current is basically the strongest one. Detailed study shows that, the MFLs line in XY plane, so, the northward 

(or southward) current should not be FACs. This property has not been reported before.  10 

The most prominent feature of the northward (or southward) current is the alternative changing of its direction, which is 

found to vary simultaneously with that of the curvature. To reveal the generation mechanism of the northward (or southward) 

current, gradient current, curvature current, and gyromotion current are analyzed, respectively. The result shows that the 

curvature current has the same variation trend with the northward and southward current. Then, using low energetic particle 

observations from Cluster CIS/CODIF, combined with simulations based on Kappa distribution, the curvature current is 15 

calculated. It shows that the estimated curvature current coincides very well with the current density directly obtained from 

MCA and MRA. Therefore, the curvature drift of the energetic particle is the most reasonable mechanism of the southward 

and northward current.  
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For the two events concerned in this work, we can observe ULF waves, which is consistent with the typical current density 

variation period. These turbulences excited during the strong storm can result to the decrease of curvature radius and 

changing of direction of MFLs, then leading to an increase of the curvature currents and variation of their direction.  
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