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Abstract. Earth’s ionosphere is an important medium of radio wave propagation in modern times. However, the effective

use of ionosphere depends on the understanding of its spatio-temporal variability. Towards this end, a number of ground and

space-based monitoring facilities have been set up over the years. This is also complemented by model-based studies. However,

assessment of the performance of the ionospheric models in capturing observations needs to be conducted. In this work, the

performance of IRI-2016 model in simulating total electron content (TEC) observed by network of global position System5

(GPS) is evaluated based on RMSE, bias, mean absolute error (MAE), skill score, normalized mean bias foctor (NMBF),

normalized mean absolute error factor (NMAEF), correlation and categorical metrics such as Quantile Probability of Detection

(QPOD), Quantile Categorical Miss (QCM), and Quantile Critical Success Index(QCSI). IRI-2016 model simulations are

evaluated against gridded IGS GPS-TEC and TEC observations at a network of GPS receiver stations during the solar minima

2008 and maxima 2013. The phases of modeled and simulated TEC time series agree strongly over most of the globe as10

indicated by high correlation during all solar activities with the exception of the polar regions. In addition, lower RMSE, MAE

and bias between the modeled and measured TEC values are observed during solar minima than solar maxima from both sets of

observations. The model performance is also found to vary with season, longitude, solar zenith angle and magnetic local time.

These variations in model skill arise from differences between seasons with respect to solar irradiance, direction of neutral

meridional winds, netural composition and longitudinal dependence of tidal induced wave number four structures. Moreover,15

the variation of model performance as a function of solar zenith angle and magnetic local time might be linked to the accuracy

of the ionospheric parameters used to characterize both bottom and top side ionospheres. However, when NMBF and NMAEF

are applied to the data sets from the two distinct solar activity periods, the difference in the skills of the model during the

two periods has decreased suggesting that the traditional model evaluation metrics exaggerate the difference in model skills.

Moreover, the performance of the model in capturing highest ends of extreme values over geomagnetic equator, mid- and high-20

latitudes is poor as noted from a decrease in QPOD, QCSI and an increase in QCM over most of the globe with an increase

in the threshold percentile TEC values from 10% to 90% during both solar minimum and maximum periods. The performance

of IRI-2016 in simulating observed low (as low as 10th percentile) and high (high than 90th percentile) TEC correctly over

Equatorial Ionization Anomaly (EIA) crest regions is reasonably good given that IRI-2016 is a climatological model. However,

it is worth noting that the performance of IRI-2016 model is relatively poor in 2013 compared to that of 2008 at the highest25
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ends of the TEC distribution. Therefore, this study reveals the strength and weakness of the IRI-2016 model in simulating the

observed TEC distribution correctly during all seasons and solar activities for the first time.

1 Introduction

Radio wave has turned into indispensable and spectacular means in the progress of space satellite communication and nav-

igation. Because Earth’s ionosphere is an essential medium for the propagation of radio wave signals (Mengistu Tsidu and5

Abraha, 2014, and references therein). As a result, Kumar et al. (2014) noted that dual-frequency global position system

(GPS) receivers have increased over the whole world with numerous networks in order to enhance applications based on space

satellite communications and navigations. However GPS signals are influenced by ionospheric disturbances due to the exis-

tence of electron. Total Electron Content (TEC) is a parameter which provides full picture of the ionosphere. It is an essential

ionospheric property for the investigation of ionospheric variability and dynamics since TEC changes as a function of ge-10

ographic location, time of the day, day of the season, season of the year, and solar and geomagnetic activities. As a result,

several authors have investigated the distribution and characteristics of TEC variations (Mukherjee et al. , 2010; Sethi et al.,

2011; Mengistu Tsidu and Abraha, 2014; Bardhan et al., 2014; Saranya et al., 2014; Grynyshyna-Poliuga et al., 2015; Themens

and Jayachandran, 2016; Sharma et al., 2017; Venkata Ratnam et al., 2017; Perna et al., 2017; Rao et al., 2018; Perna et al.,

2018). Moreover, the coupling of lower atmosphere and ionosphere as well as coupling of thermosphere and magnetosphere15

contribute to the complexity of the TEC variability in the ionosphere (Oberheide and Gusev, 2002; Takahashi et al., 2005, 2006,

2007, 2009; Luhr et al., 2007; Wu et al., 2009; Liu et al., 2010; Onohara Batista and Takahashi, 2013; Mengistu Tsidu and

Abraha, 2014; Fekadu et al., 2019). Understanding TEC variability allows us to characterize time delay in radio wave signals

induced by ionosphere as the delay is directly proportional to TEC and develop ionospheric model for TEC prediction.

20

Historically, as early part of these efforts to understand the Earth’s upper ionosphere, the first satellites radio-measurement

recorded some crucial results of the upper atmosphere. Measurements of Orbital period through radio-locations revealed that

temperature and density show high discrepancies in the upper atmosphere (Bilitza et al., 1990). Hence, decision has been taken

by the formerly established Committee on Space Research (COSPAR) to develop a set of empirically based tables expressing

these new results. Thus, the new results are presented under the name of COSPAR International Reference Atmosphere (CIRA)25

since 1961. A few years later after the achievement of CIRA, S. Bowhill proposed a reference to be named as International

Reference Ionosphere (IRI) to represent the ionized constituents of the atmosphere (Rawer et al., 1978; Bilitza , 1986; Rawer,

1988; Bilitza et al., 1990). The International Union of Radio Science (URSI) begun to cooperate with COSPAR on the IRI

since 1969. Thus, IRI models are managed by COSPAR and URSI.

30

IRI, one of the empirical modeling tools currently available to a wider scientific community, portrays spatial and temporal vari-

ability of the ionosphere, for a specific solar variability (Bilitza et al., 1990; Bilitza, 2001; Bilitza et al., 2014). IRI may forecast

monthly TEC variability better than TEC daily variability since IRI model is a climatological model and its parameters are de-
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rived based on the availability of ground, in-situ and space-based measurements. Therefore, IRI is globally recognized as the

guideline for ionospheric parameters and is applied by various scholars in comparison studies with TEC derived from GNSS

GPS networks and in other studies (Kouris and Fotiadis, 2002; Kouris et al., 2004; Zhang et al., 2006; Mukherjee et al. , 2010;

Sethi et al., 2011; Bilitza et al., 2011; Bardhan et al., 2014; Yekoye et al., 2014; Saranya et al., 2014; Grynyshyna-Poliuga

et al., 2015; Mengistu Tsidu et al., 2016; Wang et al., 2016; Themens and Jayachandran, 2016; Perna et al., 2017; Venkata5

Ratnam et al., 2017; Sharma et al., 2017; Perna et al., 2018; Rao et al., 2018). For instance, in the older versions ( IRI-2000,

IRI-2001), it is found that IRI is overestimating both ionogram and GPS TEC values (Mosert et al., 2007). Praveen et al. (2010)

found that the estimations of IRI-2007 model have seasonal and longitudinal discrepancies in TEC over low-latitude stations.

Kenpankho et al. (2011) have also noted that IRI-2007 underestimates GPS TEC over an equatorial region in Thailand with

poorer performance during day than night times. Venkata Ratnam et al. (2017) have found that IRI-2007 and IRI-2012 models10

capture observed GPS-TEC at two low latitude GPS stations in India except during dawn hours (01:00-06:00 LT) when the

models overestimate TEC. The authors have also revealed presence of higher percentage deviations during equinoctial months

than summer. Moreover, the authors noted limited skill of the models in capturing observed TEC changes during June storm

2013 although there is some difference between the two versions of the model. In fact, the poor skill of IRI in simulating TEC

during geomagnetic storms has been reported by numerous other authors as well (e.g., Yekoye et al., 2014; Tariku, 2015). The15

weakness of IRI-2012 is not only limited to storm events. Kumar (2016) determined that performance of IRI-2012 in simu-

lating TEC over the global equatorial region is better during a deep solar minimum (2009) than a maximum year (2012) as

the IRI-2012 model overestimates the observed GPS-TEC at all equatorial stations with larger discrepancy from observations

during solar maximum (2012) than during solar minimum(2009). The author also noted difference between seasons with the

maximum discrepancy during the December solstice and minimum during the March equinox. The IRI model has gradually20

been revised methodically to address many of these limitations in subsequent versions that led to improvement in its forecasting

skill in the course of several upgrades to the latest version: International Reference Ionosphere-2016 (IRI-2016) (Bilitza et al.,

1990, 1993a, b, 2014, 2017).

Important advancement of IRI-2016 model version has been made based on ground and space-based observations (e.g.,25

ionosonde and radio occulation). The major changes include two new model options for the F2 peak height hmF2, revised

solar indices and an improved modeling of topside ion densities at wider range of solar activities. The major amendment in

the IRI-2016 is the inclusion of AMTB2013 (ionosonde-based) and SHU-2015 (GNSS radio occulation-based) F-peak height

hmF2 models. As further improvement requires identification of the weakness and strength of this latest version, the assessment

of the performance of IRI-2016 has been ongoing. Early results at selected locations have shown some improvements over its30

predecessors. For example, Mengistu et al. (2018) have shown that IRI-2016 performed better than NeQuick and IRI-2012

in estimating monthly mean TEC observed by three of the four ground-GPS receivers in Ethiopia. On the other hand, Rao et

al. (2018) have shown that existence of significant discrepancy between IRI-2016 and ionosonde observations of foF2 over

China Equatorial Ionization Anomaly (EIA) crest region during different seasons and local times for 2008–2013 period. Liu

et al. (2019) have also shown that the variability of the observed foF2 from ionosonde as a function of latitudes, seasons, local35
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time and levels of solar activity have been well captured by IRI-2016 albeit difference in the time of occurrence of the daily

lowest value of foF2. Recently, Acharya and Majumdar (2019) have assessed the performance of IRI-2016 model during quiet

and storm days in Indian regions and found that the model simulation has captured observed TEC on quiet days and failed to

simulate observed TEC with reasonable accuracy on storm days. These contrasting results necessitate comprehensive evalua-

tion of the model globally at different spatio-temporal scales. Common metrics for validation of model generated TEC involve5

evaluation of RMSE, bias, mean absolute error (MAE) and correlation. However, most of the contribution to bias, MAE and

RMSE usually comes from the extreme ends of the TEC distribution during a given month, season or solar year. It is customary

to investigate such contribution using scatter plot qualitatively. Recently, quantile based categorical metrics such as quantile

probability of detection, quantile critical success index etc have been proven to be important tools to assess these biases and

scatter at the extreme ends of data distribution quantitatively as demonstrated in other disciplines (e.g., AghaKouchak et al.,10

2009; Gilleland et al., 2009; Entekhabi et al., 2010; Dorigo et al., 2010; Gebremichael, 2010; AghaKouchak et al., 2011).

Moreover, RMSE, MAE and Bias which are absolute measures may not be suitable when comparing quantities with different

order of magnitude of background values. As a result, the comparison of model performance in simulating TEC during solar

maximum and minimum periods based on only these metrics is a serious concern since the background TEC during solar15

maximum is higher than that of solar minimum period by large margin. In this case, relative measures are usually preferred

in comparing the performance of models. Traditionally, most relative differences are normalized by the observed quantities.

Nevertheless, there are also concerns associated with this approach to normalization that can result in misleading conclusions.

These concerns are asymmetry and inflation of relative metrics. The values can be greatly inflated by a few instances in which

the observed quantity in the denominator of the expression is quite low relative to the bulk of the observations. Recently, these20

cases have prompted the definition of new, symmetric, unbiased metrics of model performance namely normalized mean bias

factor (NMBF) and normalized mean absolute error factor (NMAEF) that may be suitable for evaluations of the skill of mod-

els (Yu et al., 2006).

Therefore, this paper focus on the comprehensive global validation of IRI-2016 model on its skill to simulate seasonal and25

annual TEC variations observed by network of ground-GPS receivers run by International Global Navigation Satellite Sys-

tem(GNSS) Service (IGS) using the common statistical metrics, recently defined relative metrics (e.g., NMBF, NMAEF) and

the quantile-based categorical metrics. To our knowledge, there is no comprehensive and global evaluation of IRI-2016 that

includes detailed analysis at the tails of TEC distribution and addresses problems that arise in the evaluation of model perfor-

mance in predicting time series with different scale of background TEC. The paper is organized such that Section 2 highlights30

data and methodologies employed for validation of IRI-2016 TEC. Section 3 covers results and discussion while Section 4

provides conclusion.
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2 Data and methodology

2.1 Data

2.1.1 Gridded IGS GPS TEC and Individual GPS Station TEC

The TEC data extracted at a grid resolution of 50 latitude by 50 longitude from IGS, hereafter referred to as GPS-TEC for

the solar minimum 2008 and the solar maximum 2013, selected from extended solar maxima of the 2012-2014 periods, are5

used. TEC is measured by GPS signals through integration of the electron density profile. The differential phase, ∆Φ, of the

two waves on L1 and L2 bands of dual frequency GPS can be used to determine TEC according to procedure described by

several authors (Bossler et al., 1980; Melbourne et al., 1994; Morgan and Johnston, 1995; Axelrad et al., 1996; Komjathy,

1997; Schreiner et al., 1999; Woo, 2000; Hajj et al., 2002; Borghetti et al., 2006; Hoffmann and Jacobi, 2006; Hernandez et al.,

2011). The TEC obtained in this manner is gridded on a regular spatial grid of 5o by 5o. Therefore, the gridded IGS GPS-TEC10

has errors that may arise from spatial gridding in addition to measurement errors at individual GPS receiver sites. These have

to be taken into consideration in the comparison of IRI-2016 model and IGS-GPS TEC. TEC at individual GPS receiver site

(station) is also employed for the evaluation of the model. The TEC at individual GPS receiver station includes TEC from over

200 ground GPS receivers for the months of March, June, September and December of 2008 and 2013. The two evaluation of

the model based on gridded TEC and site specific TEC may provide insight into the contribution of gridding towards observed15

difference between the model and IGS GPS-TEC. GPS data is filtered using Disturbance storm time (Dst) data such that days

with geomagnetic storms are excluded from the comparison since it has been indicated in several other studies that IRI models

are insensitive to the storm option and fails to reproduce observed TEC on storm days (e.g., Yekoye et al., 2014; Tariku, 2015).

2.1.2 TEC from IRI-2016 model

TEC data is simulated using IRI-2016 as function of universal time and geographical grids that matches the spatio-temporal20

grids of observed IGS GPS-TEC for the two selected years. Moreover, the model is used to generate IRI-TEC at the sites of

the individual GPS receivers shown in Fig. 1 and at selected regular time intervals of 2 hours on a daily basis. The model

is configured such that the URSI and NeQuick2 options for F-peak model and for the top-side profile estimation have been

considered in this study. Furthermore, the newly added Shubin-Cosmic model for hmF2 and ABT-2009 option for the bottom

side thickness shape parameter are considered. Moreover, the storm related models were set to off. The Shubin-Cosmic model25

was developed with a large amount of radio occulation (RO) data from CHAMP, GRACE and COSMIC and with hmF2 data

from 62 digisondes for the years 1987-2012 from the Digital Ionogram Data Base [http://ulcar.uml.edu/DIDBase/] (Shubin et

al., 2013; Shubin, 2015; Bilitza et al., 2017, and references therein). Moreover, the historical development of IRI and details of

the recent changes incorporated in IRI-2016 model are given by Bilitza et al. (2017).

5
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Figure 1. Distribution of the GPS receiver stations used to derive ungridded TEC used in the model evaluation in addition to IGS GPS-TEC.

.

2.1.3 Disturbance storm time (Dst)

The Dst index represents the axially symmetric disturbance magnetic field at the dipole equator on the Earth’s surface. Major

disturbances in Dst are negative, namely decrease in the geomagnetic field. Therefore, days with Dst greater than -30 nT are

assumed to be quite days and therefore included in the comparison of IRI-2016 and GPS-TECs. The two-hourly Dst data is

obtained from http://www.wdc.kugi.kyoto-u.ac.jp/dstdir/ for the two years.5

2.2 Methodology

2.2.1 Numerical Statistics: RMSE, Bias, Absolute Mean Error, Normalized Mean Bias Factor, Normalized Mean

Absolute Error Factor and Correlation

Comparison of TEC from IRI-2016 Model and GPS measurements are evaluated based on RMSE, Bias, MAE and its skill

score (MAESS), NMBF, NMAEF and pattern correlation (R) between them for the selected years. RMSE, which is the square10

root of the mean of all errors, indicates the deviation between simulated and observed data. It is given as

RMSE =

√√√√ 1

n

n∑
i=1

(Si−Oi)2, (1)

or

RMSE =
√
σ2
S +σ2

O − 2σSσOR+ (Bias)2. (2)

6
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in terms of individual standard deviations (variances) of the simulations (σS), observations (σO) as well as bias and R

between the two data sets. The Bias discloses the mean difference between the simulated (IRI-TEC) and measured (GPS-TEC)

data:

Bias=
1

n

n∑
i=1

(Si−Oi) (3)

where Si and Oi are simulated and observed total electron content values respectively and n is the total number of data5

points for comparison. Although, the mean bias is a useful measure of the overall overestimation or underestimation by the

model and RMSE includes this departure of the model from observation and scatter of the data around the mean, RMSE is a

problematic measure when there is an outlier in the data. As a result, MAE is recommended as an alternative measure of model

performance:

MAE =
1

n

n∑
i=1

(|Si−Oi|) (4)10

Furthermore, it is suitable to define model skill with respect to reference model. To determine the model skill with respect

to the reference model, the MAE for the reference model with respect to observation is first calculated as follows:

MAEref =
1

n

n∑
i=1

(
∣∣∣Sref

i −Oi

∣∣∣) (5)

where Sref is the reference model simulations. The simplest consideration is to assume the reference model to be a model

that can simulate only the mean observations accurately or a model that assumes persistence of observations during the previous15

time into the following (future) time. Therefore, the skill score (MAESS) of IRI-2016 model can be assessed through

MAESS = 1− MAE

MAEref
(6)

If the skill of IRI-2016 is not different from that of the reference model, MAESS will be approximately equal to zero. The

more MAESS diverges from zero towards larger positive, the better is the IRI-2016 model. Negative MAESS values implies

the IRI-2016 model skill is worse than that of the reference model.20

The NMBF is computed from n pairs of modeled and observed TECs as

NMBF =
∑

[
Oi∑
Oi

(Si−Oi)

Oi
] =

S

O
− 1 if S ≥O (7)

and

NMBF =
∑

[
Si∑
Si

(Si−Oi)

Si
] = 1− O

S
if S < O (8)25
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Similarly, the NMAEF is evaluted as

NMAEF =

∑
|Si−Oi|∑

Oi
if S ≥O (9)

and

NMAEF =

∑
|Si−Oi|∑

Si
if S < O (10)

The NMBF and NMAEF are easier to interpret than the traditional comparison metrics. For example, a positive NMBF5

implies that the model overestimates the observations by a factor of NMBF + 1; e.g., for NMBF = 1.0, the model over-

estimates the observations by a factor of 2.0. On the other hand, a negative NMBF indicates that the model underestimates

the observations by a factor of 1−NMBF ; for example, NMBF =−1.0 implies that the model underestimates the obser-

vations by a factor of 2.0 or 200%. Thus, the metric NMBF reveals both the direction and magnitude of departure of the

model prediction from observations. Similarly, the NMAEF can be used to infer the absolute gross error. For instance if10

NMAEF = 1.0, the absolute gross error is 1.0 times the mean observation when the model overestimates (i.e., MNBF > 0,

or M >O) or the absolute gross error is 1.0 times the model prediction when the model underestimates observations (i.e.,

NMBF < 0, or M <O).

It is important to assess whether the model captures diurnal and seasonal cycles of observed TEC in addition to the agreement15

in TEC values between model and observations. Pearson correlation (R) is usually applied to data sets that exhibit linearity and

guassion distribution to assess how the model performs in capturing the observed phase variation. Several studies have shown

that TEC data for a limited number of days fulfills both of these conditions (Kumar et al. (2004); Zhang et al. (2005); Erdogan

et al. (2017) and references therein). As a result, R is calculated for a limited data that spans a month to a maximum of a season

in this study as follows:20

R=
cov(S,O)

σSσO
=

1
n

∑n
i=1(Si− S̄)(Oi− Ō)√

1
n

∑n
i=1(Si− S̄)2

√
1
n

∑n
i=1(Oi− Ō)2

(11)

R is also an indication of how much the spatial patterns in the IRI-2016 Model match the IGS-GPS observations (Murphy,

1998; Taylor, 2001; Daniel., 2006; Ochoa et al., 2014).

2.2.2 Categorical Statistics: Quantile Probability of Detection (QPOD), Quantile Categorical Miss (QCM) ,Quantile

Critical Success Index (QCSI)25

Categorical statistics employed in this study aim to evaluate the extent to which the simulation captures the distribution of the

observed GPS-TEC above certain selected thresholds. As IRI model is empirical model based mainly on past observations, it

is natural to expect that its performance at the extreme ends of the observed distribution may suffer from large inaccuracies.

However, the extent of this discrepancy at the extreme ends of the observed TEC distribution is not assessed fully. Therefore,
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categorical statistics such as QPOD, QCM, and QCSI are employed to evaluate the performance of IRI-2016 model in simu-

lating the whole range of observed distributions from low to high extreme TECs. The QPOD defines part of the observations

(O) above selected percentile threshold (t) identified accurately by the simulation (S). It is given by

QPOD =
H

(H +M)
(12)

where H and M stand for hit and miss rates respectively. H and M are given in terms of t, Oi and Si as follows: H =5 ∑n
i=1(Si|(Si > t & Oi > t)) and M =

∑n
i=1 (Oi|(Si ≤ t & Oi > t)). A perfect detection signifies that the miss rate is

zero implying that QPOD equals 1. In contrast a model with no skill has zero hit rate which suggests a QPOD value of zero.

Therefore, QPOD attains a value of 0 for no skill and 1 for perfect score (Behrangi et al., 2011; AghaKouchak and Mehran,

2013).

10

The QCM may be defined as 1 - QPOD and varies from 0 to 1, with 0 being the perfect score. QCM can be given specifically

in terms of hit and miss rate as:

QCM = 1−QPOD = 1− H

(H +M)
=

M

(H +M)
(13)

The QCSI combines various features of the QPOD and Quantile False Alarm Ratio (QFAR), to determine the total skill of the

simulation relative to observation as a function of H, M and false alarm rate (F):15

QCSI =
H

(H +M +F )
(14)

The QCSI ranges from 0 (no skill) to 1 (perfect skill) (Davis et al., 2009; AghaKouchak and Mehran, 2013). For example, a

QCSI of 0.7 at a selected percentile threshold indicates that the simulation detects 70% of observed TEC above the selected

percentile.

20

There are also other categorical metrics (e.g., QFAR) to assess model performance, however, only the above metrics are used

for brevity. Both of these numerical (continuous) and categorical statistics are used to assess the model skill in capturing the

individual observations within selected calendar months of March, June, September and December in the case of comparison

between IRI-2016 and GPS Receiver Station level TEC, and within seasons in the case of comparison between the gridded IGS

GPS TEC and IRI-2016 model during the solar minimum (2008) and maximum (2013), taken from window of solar maximum25

years (2012-2014).
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3 Results and Discussions

3.1 Numerical statistics: RMSE, Bias, MAE, MAESS , NMBF, NMAEF, R

3.1.1 Comparison of IRI-2016 simulation and Station level GPS-TEC observations

Fig. 2 shows R, RMSE, Bias, MAE and Skill score (MAESS) determined from the comparison of IRI-2016 TEC simulations

and station level GPS TEC observations for March, June, September and December months (see the legend) during solar min-5

imum 2008 (Fig. 2 a-e) and solar maximum 2013 (Fig. 2 f-j). The correlation between the model and individual measurements

at global GPS stations, averaged within geomagnetic latitude band, ranges from 0.1 to 0.9 in 2008 (Fig. 2 a) and 0.3 to 0.91 in

2013 (Fig. 2 f). The correlation between measurement and model is slightly better in 2013 than in 2008 along all geomagnetic

latitude bands during all the months. The RMSE in Fig. 2b is in the range of 3 to 15 TECU during 2008. The range of RMSE in

2013 (Fig. 2g) is much higher (i.e., 4 to 25 TECU) than that of 2008. The RMSE decreases from geomagnetic equator towards10

pole in general with a few exceptions during both 2008 and 2013 implying IRI-2016 model exhibited poor performance in

capturing observed GPS-TEC over tropics. This is also consistent with other metrics (see Fig. 2c-d for 2008 and Fig. 2h-i for

2013). Moreover, the difference between the model and GPS TEC over the EIA crest regions is much higher than the rest of

the globe as noted from high RMSE, Bias and MAE in 2013. This holds also true in 2008 for the southern EIA crest region.
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Figure 2. Correlation, RMSE, bias, MAE and MAESS determined from comparison of TECs from IRI-2016 and GPS reciever stations

shown in Fig. 1 for 2008 (left panels) and 2013 (right panels). The statistical metrics are evaluated for the calendar months indicated in the

graph by the legend.

15

The IRI-2016 TEC is high biased up to 10 TECU over tropics with respect to GPS-TEC during 2008 whereas it is almost

two-fold in 2013 over the same region. A small negative bias is notable poleward of approximately 25 degree throughout the

whole 2008 and 2013 (Fig. 2 c,h). However, maximum positive bias in IRI TEC with respect to GPS TEC is observed over EIA
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crest regions (Fig. 2). This does not agree with previous investigation by Kenpankho et al. (2011) who found that IRI-2007 un-

derestimates GPS-TEC with a maximum difference of 15 TECU during day times and a minimum variation of 5 TECU during

night times over an equatorial region in Thailand. However, the bias over mid and high latitudes is consistent with finding of

Grynyshyna-Poliuga et al. (2015) who have shown that the TEC derived from the IRI-2012 model over mid-latitude station,

Warsaw, was generally low biased with respect to the GPS-TEC. The maximum differences are about 10 TECU during the day-5

time and 2 TECU during the nighttime. As noted by other authors (e.g., Akala et al., 2015, and references therein) contribution

from the plasmasphere above 2000 km in GPS-TEC might have contributed to the discrepancy over mid- and high latitudes.

For example, Akala et al. (2015) have found that the contribution of Plasmasphere electron content to GPS-TEC is maximum

during the December solstice and minimum during the June solstice. This study also show difference in the bias between the

two seasons over the northern mid- and high latitudes. Moreover, the authors noted that plasmaspheric TEC contribution to10

GPS-TEC is varying with respect to solar activity. The discrepancy between the IRI-2016 TEC simulations and GPS-TEC can

not be fully attributed to the plasmasphere TEC since positive biases in IRI-2016 TEC are evidently dominant in tropics. This

positive bias with maximum (up to 16.5 TECU) during day and minimum during night time was also reported by Wan et al.

(2017) at four stations in China covering the EIA crest region.
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Figure 3. The same as Fig. 2 but for NMBF and NMAEF.

The skill score of the model with respect to the reference model that simulates mean TEC is assessed based on MAE. The

result shows that IRI-2016 model performes better than the reference model at a few latitudes in tropics (Fig. 2 e,j) during both

solar activity periods. It is also apparent that the model skill is worse than the reference climatological model during December

(June) in the southern (northern) hemisphere as compared to the rest of the months for both low (high) solar activity year 2008

(2013) with slightly the worst skill in 2013. The moderate skill in tropics in general and a slightly better model skill during20

low solar activity than high solar activity period are in agreement with previous study by Venkatesh et al. (2014) who have

conducted comparison of GPS-TEC with the IRI-2012 modeled TEC over Brazilian region during the periods from 2010 to

11



2013 and found weak performance of IRI model during solar maximum.
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(b) 2013

Figure 4. Latitudinally average measurement errors during the calendar months shown in the legend for the two solar activity periods.

Li et al. (2016) determined low bias in night-time model TEC during solar minimum (2009) and maximum (2013), and good

(poor) agreement between periodic components of TEC-IRI in low (high) solar activity year 2009 (2013). Moreover, the IRI-

2016 model was investigated for its performance over four stations in Ethiopia within the equatorial latitudes by Mengistu et al.5

(2018). The authors revealed better performance during solar minimum (2008) than solar medium (2011) activity years. Other

studies with focus on high latitudes have shown similar weakness in IRI model. For example, IRI is also shown to significantly

underestimate the magnitude of solar cycle variations in TEC and underestimate monthly median TEC at high solar activity

by as much as 15 TECU (Themens and Jayachandran, 2016) which are greatest during the equinoxes and significant during

summer periods but are lowest during winter. These asymmetries based on traditional metrics suggest that the IRI-2016 has10

weakness to capture enhanced TEC during summer of each hemisphere when the sun is overhead in each hemisphere at time

12



of maximum solar activity. However, it is also important to note the difference in background TEC during these seasons and

the two low and high solar activity periods when using traditional model evaluation metrics. As noted in Section 1, the use of

alternative metrics such as NMBF and NMAEF to evaluate model skill may limit the problem that arises due to difference in

background TEC values.

5

Fig. 3a,c shows that IRI-2016 model overestimates the observation by upto a maximum factor of 3 in the tropics during low

(high) solar activity year 2008 (2013). Unlike the traditional metrics, this metric does not show clearly that the model per-

formance is worse during solar maximum than solar minimum over tropics since the difference in NMBF between 2008 and

2013 is small. However, the model underestimates observation over the high geomagnetic latitude region by upto a maximum

factor of 4.5 in 2008 as compared to a factor of maximum 3 in 2013 (Fig. 3b,d). Likewise, the NMAEF reveals that the model10

performance is relatively better in 2008 than in 2013.

The significance of the departure of the modeled TECs from observations can also be appreciated in the context of GPS

observation errors. Fig. 4 shows the total measurement errors in TEC from GPS Receiver station which is averaged over

selected geomagnetic latitude bands for June, March, September and December months during the 2008 and 2013. Maximum15

error in observed TEC in 2008 (Fig. 4a) is about 2.5 TECU whereas it is about 5 TECU in 2013. These figures are far lower

than observed MAE or RMSE in Fig. 2b, d during 2008 and in Fig. 2f, h during 2013. Therefore, the over-/under-estimation

of observed TEC by the IRI-2016 can be partially attributed to the discrepancy associated with the GPS measurement errors

albeit by small fraction (upto an average of 2.5 and 4 TECU in 2008 and 2013 respectively).

3.1.2 Comparison of IRI-2016 simulation and gridded IGS GPS TEC observations at selected longitude sectors20

Figs. 5-6 depict comparison of IRI-2016 and GPS TECs at four selected longitude sectors within the ±20o geomagnetic lati-

tude band where the difference between the model and observation is high as noted from Figs. 2-4. Fig. 5 shows scatter plots

of TECs from IRI-2016 versus IGS GPS at 4 selected longitudes during morning hours of 0 to 10 hours local time. The TEC

is color coded to distinguish different seasons (i.e., March Equinox in green, June Solstice in red, September Equinox in blue

and December Solstice in black). The TEC from IRI-2016 within the range of 10-30 TECU is high biased with respect to25

GPS-TEC during September Equinox (blue) at all longitudes, December Solstice (black) at longitudes of −90,0,30 and June

Solstice (red) at almost all longitudes in 2008. This also applies to the 2013 September Equinox (blue) at all longitudes and

June Solstice at longitude of 30o for TEC values within 20 to 45 TECU (Fig. 5). In contrast, TEC from IRI-2016 is low biased

against GPS-TEC during March Equinox (green points in Fig. 5) in 2008 whereas the bias is small in 2013. At the low tails of

observed and simulated TEC distribution during morning hours, IRI-2016 model is low biased during all seasons in both 200830

and 2013 solar activity period.

Fig. 6 shows the scatter plot for observed and simulated TEC during afternoon hours beteen 12 to 22 hours. IRI-20116 model

is high biased against observation during September Equinox (blue dots in Fig. 6) at all longitudes, December Solstice (black)

13
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Figure 5. Scatter plots of TECs from IRI-2016 and GPS at selected longitudes for solar minimum 2008 (first two columns) and solar

maximum 2013 (last two columns) for morning hours measurements and simulations. The data is colored according to seasons: March

Equinox (green), June Solstice (red), September Equinox (blue), and December Solstice (black). RMSE, Bias, R and skill score (SS) indicated

at the top of each panel are calculated for the whole data (all seasons and all time of observation) with the ±20o geomagnetic latitude band.

at all longitudes and June Solstice at longitudes of −90,30,90 degrees for observed TEC values between 10 to 25 TECU in

2008. During March Equinox, the model is low biased against GPS-TEC at longitudes of −90,0,90 degrees. In contrast, the

IRI-2016 model is low biased during all seasons in 2013 for the whole range of observed TEC in the afteroon hours of the day.

Close inspection of Figs. 5-6 reveals that the IRI-2016 model performance in capturing afternoon observed TEC is weaker than

that of its skill to simulate beforenoon observed TEC during 2008. Moreover, this model weakness is amplified for observations5

during solar maximum 2013 for all seasons. These have been already noted in Section 3.1.1, based on RMSE, Bias, MAE and

skill score, that the performance of the IRI-2016 model degrades with high solar activity.

Overall, the IRI-2016 TEC at the four selected longitudes is low biased (0.9 to 1.4 TECU) against GPS-TEC during 2008 with

the exception at 30 degree longitude (see the titles of Figs. 5-6). In contrast, this bias has increased to values ranging from 5.6 to10

10.1 TECU during 2013. The skill score, based on MAE and the reference model that predicts only mean of the observations,

varies from 0.65 to 0.70 in 2008 and from 0.43 to 0.63 in 2013. The performance of the model in capturing daytime TEC is

better than nighttime TEC at least during solar minima 2008. Our findings on the longitudinal and seasonal differences in the

performance of IRI-2016 model during both solar minimum 2008 and maximum 2013 are consistent with longitudinal and

seasonal TEC variabilities (Scherliess et al., 2008; Fekadu et al., 2019). In particular, the model weakness during the afternoon15

hours might be linked to wave number four pattern which is created during the daytime hours at equinox and June solstice

but is absent during December solstice (Scherliess et al., 2008). Scherliess et al. (2008) have shown enhancements in TEC

over Asia (near 100oE), America (near −90oE), Atlantic Ocean (West Africa longitude Sector near 0oE) in the afternoon

14



hours during Equinox and June Solstice. The authors have attributed the enhancements to wave number four pattern. Since the

observed large RMSE, bias and MAE within the tropics during both solar activity years are also from these seasons, it is highly

probable that the weak model performance is due to these enhancements.
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Figure 6. The same as Fig. 5 but for afternoon observations and simulations.

Moreover, the comparison between the model and gridded GPS TECs is extended to include the whole global region as

given in Fig. 7 as functions of solar zenith angle (Fig. 7a-d) and magnetic local time (Fig. 7e-h). IRI-2016 is low biased at all5

solar zenith angle during the course of the day from sunrise to sunset in 2008 (Fig. 7a). However, the large biases in IRI TECs

are observed close to sunrise and sunset whereas the lowest bias is near noon solar zenith angle. In contrast, in 2013 the highest

negative bias in IRI TEC is noted at noon solar zenith angle. Moreover, the negative bias decreases as a function of increasing

solar zenith angle from noon zenith angle towards sunset and sunrise in general with the exception of a couple of anomalies

at 80 and 390 on the sunrise side (Fig. 7a, yellow bar). The RMSEs during both 2008 and 2013 peak shortly after noon solar10

zenith angle is reached (Fig. 7b). The second peak in both bias and RMSE is observed around solar zenith angle of 23 0 as the

sun rises (Fig. 7a-b) in 2013. This peak in 2008 is apparent only in RMSE (Fig. 7b). In addition to the dependence of bias and

RMSE on solar zenith angle, the low bias in IRI-2016 model ranges between values close to zero to 2 TECU in 2008 whereas

it varies from approximately 3 to 7 TECU in 2013. Similarily, the RMSE varies from approximately 0 to 5 TECU in 2008

and 6.5 to 11 TECU in 2013 consistent with the differences noted between the two solar minimum and maximum periods in15

the analysis of TEC from individual GPS stations (see Fig. 2). Both the skill score (Fig. 7c)) and the correlation (Fig. 7d) are

consistent with the bias and RMSE as indicated from better model skill and strong correlation at those solar zenith angle with

minimum bias and RMSE than those with maximum negative bias and RMSE. It is also evident from better skill score and

high correlation that IRI-2016 performs better during solar minimum than during solar maximum period. The difference in the

performance of the model during 2008 and 2013 is also apparently reflected in the bias, RMSE, skill score and correlation as a20
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Figure 7. The bias, RMSE, MAE-based skill score and correlations between IRI-2016 and gridded GPS TECs as a function of daytime solar

zenith angle (a-d) and magnetic local time (e-f) for 2008 (blue bar) and 2013 (yellow bar).

function of magnetic local time (MLT) (Fig. 7e-h).The negative bias in IRI-2016 decreases from midnight to noon and begins

to increase thenafter during both 2008 and 2013 (Fig. 7e). RMSE follows the same pattern until sunset (Fig. 7f). This pattern is

similar to the percentage bias in foE from IRI-2012 as compared to foE obtained from ionogram at equatorial latitude station,

Chumphon, Thailand (Wongcharoen et al., 2015). The skill score peaks from 12 to 14 MLT whereas the correlation maximum

is attained between 10 to 12 MLT (Fig. 7g-h). The poorest performances and lowest correlations are noted from approximately5

3 to 6 MLT i.e., post midnight (Fig. 7a-d). Therefore, the poor performance during this part of the diurnal cycle is indicative

of the limitation of the semiempirical IRI-2016 model in terms characterizing some of the ionospheric parameters specifically

those with similar diurnal pattern (e.g., foE, foF2, NmF2) used in the model. Isolating which specific parameter or group of

these parameters have leading roles in influencing the model performance requires controlled sensitivity simulations over a

range of values of the parameters. This is, however, is not within the scope of this study. The level of strength and weakness in10

IRI-2016 at the extreme parts of TEC distribution is further assessed in Sections 3.2.1-3.2.2 using quantile-based categorical

metrics.

3.1.3 Comparison of IRI-2016 simulation and IGS GPS-TEC observations on a seasonal basis

In previous sections, the comparisons were based either on individual data within a given calendar month (Section 3.1.1) or the

whole year (Section 3.1.2). However, as we have noted in these sections, there is indication that the model performance is a15

function of local time and seasons. Therefore, the calendar months are grouped into four seasons (namely March Equinox, June

Solstice, September Equinox and December Solstice). As noted in Section 3.1.1, traditional model evaluation metrics such as

RMSE, bias and MAE are sensitive to difference in the background TEC values during low (high) solar activity year 2008

(2013) as well as magnitude of background TECs within different latitudinal regions. Therefore the analysis in this section is

based on correlation, MAE skill score, NMBF and NMAEF.20
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(a) 2008: M-Eq. (b) J-Sol. (c) S-Eq. (d) D-Sol.

(e) 2013: M-Eq. (f) J-Sol. (g) S-Eq. (h) D-Sol.
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(a) 2008: M-Eq. (b) J-Sol. (c) S-Eq. (d) D-Sol.

(e) 2013: M-Eq. (f) J-Sol. (g) S-Eq. (h) D-Sol.
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Figure 8. Seasonal mean TEC obtained from gridded IGS GPS-TEC (eight left panels) and simulated by IRI-2016 (eight right panels) for

March-Equinox (M-Eq), June-Solstice (J-Sol), September-Equinox (S-Eq), December-Solstice (D-Sol) during solar minima year 2008 (top

rows) and solar maxima year 2013 (bottom rows).

In order to appreciate the NMBF and NMAEF values between the model and IGS GPS TECs, the observed seasonal mean

TECs and mean simulated TEC during 2008 and 2013 seasons are given in Fig. 8. The maximum observed (Fig. 8a-d, left)

and simulated (Fig. 8a-d, right) seasonal TEC during 2008 is confined to ±20o geomagnetic latitude as shown by the two solid

outer lines on the map. In contrast, in 2013 the maximum observed (Fig. 8e-h, left) and simulated (Fig. 8e-h, right) seasonal

mean TEC extend well into high latitude. In particular, the maximum seasonal mean covers nearly most of the southern hemi-5

sphere during December Solstice (Fig. 8h, left) whereas the extent of the peak seasonal mean TEC to high latitude during June

solstice is minor. Moreover, the depletion of ionospheric TEC at northern and southern polar latitudes during the December

and June solstices respectively is worth noting during both low and high solar activity years. However, the low TEC latitude

band covers wider areas during June solstice than during December solstice. The simulated seasonal mean TEC follows similar

pattern as the observed seasonal mean TEC (Fig. 8, right). In short, at equinox, the TEC pattern is nearly symmetric about the10

geomagnetic equator whereas large asymmetries are the major feature during solstice. This morphology can be explained by

considering the solar irradiance in the southern and northern hemisphere along with the direction of the neutral meridional

wind during the different seasons. During the solstices, the neutral wind blows from the summer to the winter hemisphere

thereby raising the F region ionization in the summer hemisphere and lowering it in the winter hemisphere. This wind effect

and the asymmetry in the solar ionization and neutral composition in the two hemispheres are the main drivers of the observed15

asymmetries during the solstices which are also captured by the IRI-2016 model (Scherliess et al., 2008; Mengistu Tsidu and

Abraha, 2014; Fekadu et al., 2019).

In 2008 (solar minimum period), the correlations are generally high in all seasons over most of the globe with the exception

in March and September Equinoctial months, and June Solstice over southern Atlantic, Pacific oceans and the polar regions20
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(a) 2008: M-Eq. (b) J-Sol. (c) S-Eq. (d) D-Sol.

(e) 2013: M-Eq. (f) J-Sol. (g) S-Eq. (h) D-Sol.
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Figure 9. Correlation between IRI-2016 and IGS GPS-TEC for the four seasons during 2008 (top rows) and 2013 (bottom rows).

which had low correlation between IRI-TEC and GPS-TEC (Fig. 9a-c). December Solstice in 2008 exhibits high correlations

in the range from 0.8 to 1.0 globally (Fig. 9d). The phase of TEC variation is well captured by the IRI-2016 model with some

differences between seasons as revealed from low correlation southward of 500S during December Solstice, southward of 300S

during September Equinox and northward of 300N during June Solstice and March Equinox in 2013. This confirms that relative

to correlation between IRI-TEC and GPS-TEC in 2008, there is a decrease in correlation over these regions.5

Generally, NMBF implies the IRI-2016 overestimates observed TEC by a maximum factor of 1.4 within the ±20o geomag-

netic latitude band in 2008 (Fig. 9). Moreover, the model overestimates observation by almost the same factor over southern

high latitudes during September Equinox and December Solstice. The model underestimates observed TEC over the rest of the

globe by upto a factor of two on average (Fig. 10a-d). However, there are isolated pockets of areas over northern polar region10

along African longitude and southern polar region along American longitude sectors where the model underestimates observed

TEC by a factor of three or 300% (Fig. 10a-d) during December and June Solstices respectively. In contrast, the model gen-

erally underestimates observed TEC during all seasons in 2013 with exceptions of overestimation at a few localized pocket

areas poleward of±20o. The TEC over the northern and southern polar regions during June and December Solstices have been
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(a) 2008: M-Eq. (b) J-Sol. (c) S-Eq. (d) D-Sol.

(e) 2013: M-Eq. (f) J-Sol. (g) S-Eq. (h) D-Sol.
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Figure 10. The same as Fig. 9 but for NMBF.

underestimated by approximately a factor of 1.7 and 2 respectively. Fig. 11 shows NMAEF which should be interpreted in con-

junction with NMBF. The overestimation within the ±20o geomagnetic latitude band during solar minimum (2008) period in

Fig. 10a-d has occurred in conjunction with NMAEF of approximately 0.2 or less which implies the model overestimates TEC

over these regions by maximum TEC values of 0.2 times the mean TEC in Fig. 8a-d (left panels). This means that the model

has high bias of roughly 2.6 to 4.2 TECU during March Equinox, 2 to 2.6 TECU during June Solstice, 2 to 2.8 TECU during5

September Equinox, and 2.8 to 3.4 TECU during December Solstice. Similarly, the NMAEF over the polar regions during all

seasons in 2008 ranges from 0.6 to 1, which in conjunction with NMBF, implies the model underestimates observation by a

factor of 0.6 to 1 times simulated TEC in Fig. 8a-d (right panels) during the seasons (Fig. 11). This corresponds to approx-

imately 1.8 to 3 TECU over the regions. The NMAEF within the ±20o geomagnetic latitude band in 2013 is also about 0.2

(Fig. 11e-h) implying insignificant difference in the model performance between low (2008) and high (2013) solar activity pe-10

riods. The notable differences in model performance between the two solar activity periods are over polar latitudes. The model

performance during solar minimum year (2008) with respect to the gridded IGS GPS-TEC is consistent with its performance

with respect to TEC observations at individual GPS receiver stations. However, there is a notable difference between the model
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(a) 2008: M-Eq. (b) J-Sol. (c) S-Eq. (d) D-Sol.

(e) 2013: M-Eq. (f) J-Sol. (g) S-Eq. (h) D-Sol.
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Figure 11. The same as Fig. 9 but for NMAEF.

skill relative to IGS GPS-TEC and station level TEC in 2013 over the ±20o geomagnetic latitude band as revealed from the

difference in the sign of the bias whereas there is consistence between the two relative model skills over mid- and high latitudes.

Fig. 12 shows the model skill score for March Equinox, June Solstice, September Equinox and December Solstice during 2008

(Fig. 12a-d) and 2013 (Fig. 12e-h). In 2008, solar minimum period, the skill score of IRI-2016 is as high as 0.39 over large areas5

of mid and tropical latitudes thereby suggesting that the IRI-2016 model is better than the climatological reference model and

can capture TEC variability beyond seasonal mean. Comparatively, the IRI-2016 model skill has slightly weakened in 2013.

As a result, the IRI-2016 is better than just providing seasonal mean TEC only over ±20o geomagnetic latitudes and southern

hemisphere mid-latitude during March Equinox and June Solstice. The model skill is also better than the reference model over

regions between geomagnetic equator and northern mid latitude during September Equinox and December Solstice. However,10

the model skill over the rest of the globe, in particular polar regions, is not different from the reference climatological model.

This is consistent with conclusions drawn when the model is evaluated against TEC from GPS receiver stations in Section 3.1.1.
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(a) 2008: M-Eq. (b) J-Sol. (c) S-Eq. (d) D-Sol.

(e) 2013: M-Eq. (f) J-Sol. (g) S-Eq. (h) D-Sol.

Skill Score
0 0.05 0.11 0.16 0.22 0.28 0.33 0.39

Figure 12. The same as Fig. 9 but for skill score.

3.2 Categorical Statistics: QPOD, QCM, QCSI

3.2.1 Categorical comparison of IRI-2016 simulation and GPS Station Level TEC observations

Fig. 13 shows QPOD, QCM, and QCSI for TEC values exceeding 90 percentiles for low (high) solar activity year 2008 (2013).

The notable feature in Fig. 13 is the increase in QPOD within the ±20o geomagnetic latitude band in 2013 (Fig. 13d) as

compared to 2008 (Fig. 13a). Consistent with this, the QCM shows as high values as 1 in mid and high geomagnetic latitudes5

and low values in the low latitude regions (Fig. 13b, e). In contrast, there is a slight decrease in QCSI in 2013 (Fig. 13f) as

compared to 2008 (Fig. 13c) during most of the seasons over northern geomagnetic latitudes. Near geomagnetic equator and

southern hemisphere, the model skill in 2013 is slightly better than that during 2008. The difference in pattern between QPOD

and QCSI is attributed to the increase in the false alarm rate at high percentile threshold. This false model skill has been re-

moved in QCSI as opposed to QPOD which shows high model skill. Therefore we noticed here generally the IRI-2016 model10

has better agreement with GPS during solar minima 2008 than solar maxima 2013 at the extreme margins of TEC distribution.
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Figure 13. Categorical metrics QPOD, QCM and QCSI at 90% for 2008 (left) and 2013 (right) for the months of March, June, September

and December based on observations from GPS receiver stations given in Fig. 1.

3.2.2 Categorical comparison of IRI-2016 simulation and GPS-TEC observations on a seasonal basis

As noted in Section 3.1.2 with the scatter plots at lower and upper ends of TEC distribution, most of the deviations from obser-

vations arise at these ends. Therefore, there has been efforts to understand these discrepancies. For instance, Venkata Ratnam

et al. (2017) have included relative TEC deviation index, monthly variations in the grand mean of ionospheric TEC, TEC in-

tensity, the upper and lower quartiles in their comparison of GPS-TEC with IRI-2007 and IRI-2012 predicted TECs. Although5

the inclusion of lower and upper quartiles is a step in the right direction to understand the discrepancy in these parts of the

distribution, much of the observed differences lie in the extreme ends within the quartiles. Therefore, application of quantile

categorical statistics is necessary for more insight into the problem. Therefore, QPOD, QCSI and QCM are employed in this

section to assess the performance of IRI-2016 against GPS-TEC observations. The categorical metrics for the four seasons

(March Equinox, June Solstice, September Equinox and December Solstice) are given in Figs. 14-16 for 2008 and 2013.10

Fig. 14 depicts QPOD for March Equinox (Fig. 14a-d), June-Solstice (Fig. 14e-h), September-Equinox (Fig. 14i-l) and December-

Solstice (Fig. 14m-p) during 2008 (first group of columns) and 2013 (last group of columns) at 10th, 25th, 75th and 90th per-

centiles. During 2008 (March Equinox season, left panels), IRI-2016 model has identified over 80% of GPS-TEC exceeding

10th percentile over broader areas along geomagnetic equator and at isolated places south of Australia (Fig. 14a) correctly.15

This figure remained the same at 25th percentile (Fig. 14b). However, QPOD increased to values exceeding 60% over the rest

of tropics and mid-latitudes. IRI-2016 captures more than 85% of observed TEC exceeding 75th and 90th percentiles over

the EIA crest region and exhibits a steady drop (to less than 20%) in skill over the rest of the globe. Specifically, the change

in QPOD along geomagnetic equator from values exceeding 80% at the 10th percentile to values less than 20% at the 75th
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Table 1. Statistical parameters of QPOD for all seasonal variations of solar minima 2008 maxima 2013.

Year 2008 2013

Parameter QPOD QPOD

Seasons March Equinox June Solstice September Equinox December Solstice March Equinox June Solstice September Equinox December Solstice

Percentile Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean

10% 0.3 0.93 0.64 0 1 0.58 0.44 0.99 0.71 0 1 0.64 0 1 0.79 0 1 0.72 0 1 0.87 0 1 0.72

25% 0 0.97 0.64 0 0.99 0.56 0.29 1 0.73 0 1 0.64 0 1 0.75 0 1 0.65 0 1 0.85 0 1 0.66

75% 0 1 0.32 0 1 0.42 0 1 0.55 0 1 0.52 0 1 0.32 0 1 0.44 0 1 0.53 0 1 0.32

90% 0 1 0.14 0 1 0.36 0 1 0.39 0 1 0.39 0 1 0.07 0 1 0.32 0 1 0.27 0 1 0.21

percentile is significant. The detection skill of IRI model continued to decrease as the threshold increased from 75th to 90th

percentile(Fig. 14c-d, left panels). Since much of the night time and day time TECs constitute low and high extremes in the

climatology of TEC, it is consistent with previous understanding to observe decline in model skill over magnetic equator as

percentile threshold increases during 2008. Conversely, the performance of the model during June solstice in identifying the

lower ends of TEC distribution (values higher than 10th percentile) has greatly declined with a score of 60-80% over geomag-5

netic equator (Fig. 14e, left). However, at 25th percentile (Fig. 14f, left), QPOD increased over magnetic equator and northern

Atlantic region to a value of 80-100%. The QPOD at 75th and 90th percentiles (Fig. 14g-h, left) decreased significantly over

magnetic equator, northern mid- and high latitudes. In contrast to March Equinox, there is improvement in model skill over

EIA crest region at these thresholds. The skill of the model remained poor at all thresholds over southern polar regions during

June solstice (Fig. 14e-h, left). The performance of the model during September Equinox is shown in Fig. 14i-l. At the 10th10

percentile (Fig. 14i, left), QPOD exceeds 80% over geomagnetic equator and high latitudes whereas much of northern mid

and high latitudes, as well as areas between tip of South Africa and Australia exhibit poor model skill having QPOD of less

than 20%. At 25th percentile (Fig. 14j, left), there is a significant increase in QPOD over much of the globe. However, at 75th

and 90th percentiles (Fig. 14k-l), a decrease in QPOD over northern mid latitude, polar regions and geomagnetic equator was

observed. In contrast there is an increase in the model skill over EIA regions. During the December solstice of 2008 at the 10th15

and 25th percentiles (Fig. 14m-n, left), the QPOD is within the range of 60-100% over geomagnetic equator, southern mid and

high latitudes whereas the QPOD is within 20-40% over most of northern mid and high latitudes. On the other hand, at 75th and

90th percentiles (Fig. 14o-p, left), QPOD improves to a value exceeding 80% over EIA crest regions while it decreases over

both northern and southern mid-and high latitudes. The changes over the southern mid and high latitudes during this season

at the 75th and 90th percentiles appear to be a mirror reflection of June solstice in the northern hemisphere. This similarity in20

model detection skill during the two solstices is also apparent at the lower ends of TEC distribution. Unlike June solstice, the

high skill score covered most of the southern hemisphere (see Fig. 14m, left).

In 2013 during solar maximum year, the QPOD characteristics are similar to that of 2008 for all the seasons but with notable

improvement at the lower ends for the two equinoctial seasons (see Fig. 14a-b and Fig. 14i-j, right). In contrast to 2008, the25

model detection skill at the 75th and 90th percentiles has weakened over the EIA crest regions. Instead, improved perfor-

mance of IRI-2016 model can be seen over most of southern and northern hemispheres during December and June solstices

respectively (Fig. 14g-h and Fig. 14o-p, right). Unlike the solstices, during March and September equinoctial months, the per-
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Figure 14. QPOD of IRI-2016 model for the four seasons evaluated at the percentile of 10%, 25%, 75% and 90% TEC distribution against

GPS-TEC during solar minima 2008 (left panels) and solar maxima 2013 (right panels).

formance at the 75th percentile is good over broader areas along EIA crest regions and it is hemispherically symmetric (Fig.

14g, h, right). At the 90th percentile, the model performance is very bad over most parts of the globe during March Equinox

and reasonably good over northern mid-latitude during September Equinox (Fig. 14d, l, right). This suggests that the observed

TEC distribution has slightly shifted towards higher values relative to 2008 as a whole which is consistent with the high so-

lar activity. This conclusion follows from the fact that any improvement in model performance arises from the nature of the5

observed TEC distribution rather than the model itself since the model configuration remained the same. This changes in skill

is also apparent within the same year from one season to the other as noted in previous paragraph. Table 1 summarizes the

changes in QPOD with season and solar activity. The spatial minimum, maximum and mean of QPOD at all percentile levels

are indicated for the two solar activity periods. The minimum and maximum of spatial mean QPOD at 10th percentile have

occurred during June solstice and September equinox of 2008 respectively. However, the minimum and maximum of spatial10

mean QPOD have been observed during December solstice and September equinox of 2013 respectively. The lowest spatial

mean QPOD at the 90th percentile is observed during March Equinox of 2008 and 2013 whereas the highest QPOD is during

September equinox and September solstices in 2008 and during June solstice in 2013.

Fig. 15 shows QCM at 10th, 25th, 75th and 90th percentiles for 2008 (left panels) and 2013 (right panels) for the four seasons15

as in Fig. 14. As QCM quantifies TEC observed by GPS but missed by IRI-2016 model, a perfect score is given by QCM value

of zero whereas zero skill in model is expressed with QCM of one. Therefore, the spatial patterns observed for QPOD are

expected to match that of categorical miss as shown in Fig. 15. QCM is maximum over high and polar latitudes during June

solstice, March and September equinoctial seasons whereas tropics is characterized by low values of QCM in general which
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Table 2. Statistical parameters of QCSI for all seasonal variations of solar minima 2008 and maxima 2013.

Year 2008 2013

Parameter QCSI QCSI

Seasons March Equinox June Solstice September Equinox December Solstice March Equinox June Solstice September Equinox December Solstice

Percentile Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean

10% 0.3 0.93 0.63 0 0.95 0.58 0.44 0.96 0.71 0 0.97 0.63 0 0.98 0.77 0 0.97 0.7 0 0.98 0.84 0 0.97 0.7

25% 0 0.95 0.63 0 0.93 0.55 0.29 0.97 0.72 0 0.97 0.62 0 0.99 0.73 0 0.97 0.63 0 0.99 0.8 0 0.97 0.62

75% 0 0.89 0.28 0 0.87 0.36 0 0.83 0.44 0 0.91 0.42 0 0.77 0.26 0 0.86 0.35 0 0.86 0.4 0 0.89 0.25

90% 0 0.66 0.08 0 0.68 0.23 0 0.81 0.22 0 0.67 0.22 0 0.5 0.04 0 0.74 0.21 0 0.81 0.17 0 0.7 0.13

are consistent with QPOD features.
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Figure 15. The same as Fig. 14 but for QCM.

Fig. 16 shows QCSI at the four percentile levels during 2008 (left panels) and 2013 (right panels). The model performance

as assessed by QCSI remains the same as QPOD at 10th and 25th percentiles (compare Figs. 14-15 with Fig. 16). However,

IRI-2016 performance, as revealed from QCSI values, differ from that suggested by QPOD at 75th percentile during December5

solstice and at 90th percentiles during all seasons (Fig. 16o, d, h, l, p, left). This is due to the fact that QCSI combines QPOD

and QFAR features to describe the skill of the model in more robust manner. However, QCSI shows slightly higher model

skill during 2013 at the lower ends as confirmed by high value of QCSI ranging from 80% to 100% over most of the globe.

Moreover, the skill of IRI-2016 model at the high extreme tail of the TEC distribution during 2013 is relatively weaker than

its performance in 2008 (Fig. 16 d, h, l, p, right). Table 2 summarizes the globally averaged mean of QCSI and its extremes10

during 2008 and 2013 for the four seasons. Clearly, the performance of IRI-2016 at the low extreme tail is better in 2013 than

in 2008. This has been reversed at the high extreme portion ( 90th percentile) of the TEC distribution with lower QCSI in 2013

than in 2008.
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Figure 16. The same as Fig. 14 but for QCSI.

4 Conclusions

In this paper, the performance of IRI-2016 model in simulating GPS-TEC is assessed employing RMSE, bias, MAE, NMBF,

NMAEF, Skill Score, correlation and categorical metrics such as QPOD, QCM, and QCSI during two distinct solar activity

periods. The IRI-2016 model simulations are based on configuration that uses latest developments.

5

The correlation between the model and individual measurements at global GPS stations, averaged within geomagnetic latitude

band, ranges from 0.1 to 0.9 in 2008 and 0.3 to 0.91 in 2013. The RMSE decreases from geomagnetic equator towards pole in

general with a few exceptions during both 2008 and 2013 implying IRI-2016 model exhibited poor performance in capturing

observed TEC over tropics. The IRI-2016 TEC is high biased up to 10 TECU over tropics with respect to TEC at the individual

GPS receiver station and averaged within latitude bands during 2008. This figure has increased to almost two-fold in 2013.10

However, the IRI-2016 bias over mid and high latitudes is negative with respect to the observed TECs at GPS receivers sites in

agreement with some of the previous studies.

The skill score of the model with respect to the reference model that simulates mean TEC is assessed based on MAE. IRI-2016

model is found to perform worse than the reference model over high latitudes during both low (high) solar activity year 200815

(2013). Moreover, the model skill is worse than the reference climatological model during December (June) in the southern

(northern) hemisphere. The observed relatively good skill of the IRI-2016 model in tropics and during low solar activity are in

agreement with previous studies. Nevertheless, the traditional performance measures exaggerate the difference in the skill of

the model during different solar activity periods as noted from minor differences in NMBF and NMAEF during the two perods.

20
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Investigation of selected longitude sectors indicate that IRI-2016 model is low biased at both low and high tails of the TEC

distribution suggesting that IRI-2016 is capable of satisfactorily simulating the mean TEC globally. The longitundinal and

seasonal variations in the performance of the IRI-2016 model can be explained in terms of wave number four patterns, and

the difference in solar insolation, neutral composition and the direction of neutral meridional winds during these seasons. The

dependence of IRI-2016 performance on the solar zenith angle and magnetic local time reveals that the model needs further5

tuning of some of the ionospheric paramters used in the formulation of bottom and top side ionosphere. The extent of the IRI

model weakness and strength at the extreme portions of observed TEC are assessed using categorical statistical metrics such

as QPOD, QCSI, and QCM using 10th and 25th percentiles as lower margin and 75th and 90th percentiles as upper margins of

the TEC distribution for the two distinct solar activity periods. The performance of IRI-2016 model based on individual GPS

receiver measurements for the months of March, June, September and December and gridded IGS GPS-TEC for the seasonal10

time series were evaluated using these thresholds. The model has generally reasonable skill at the low ends of TEC distribu-

tion over most of the globe. This skill weakens at high ends of the TEC distribution over much of the globe except EIA crest

regions during both solar activity years. There is also hemispheric symmetry during June and December solstices with poorer

performance over the summer hemisphere at the high extremes of observed TEC. This feature is consistent with high RMSE

and low bias in model during summer as compared to winter time. Similarly, the robust skill at low ends of observed TEC15

distribution can be attributed to the fact that low TECs that constitute the low portion of TEC distribution are mainly observed

during night time while those at the high ends of the distribution occur during daytime.

In summary, the IRI-2016 model, which itself is a climatological empirical model, have simulated significant portion of ob-

served TEC over tropics with better accuracy during both solar activity periods and the different seasons than a hypothetical20

model that captures only seasonal mean TEC. The model performance at the extreme ends of the distribution is also remarkably

good. In particular, the IRI-model skill in detecting observed TEC over EIA crest regions at the extreme ends is robust despite

high RMSE. Therefore, this encouraging IRI-2016 model performance at the extreme parts of observed TEC distribution

suggests the importance of further work to improve the model so that it can be used for real time operational forecasting.
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