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Abstract. For more than two decades the IGS (International GNSS Service) Ionosphere Associated Analysis Centers (IAAC)

provide global maps of the vertical total electron content (VTEC). In general, the representation of a two- or three-dimensional

function can be performed by means of a series expansion or by using a discretization technique. Whereas in the latter case for

a spherical function such as VTEC usually pixels or voxels are chosen, in case of a series expansion mostly spherical harmonics

(SH) are used as basis functions. The selection of the best suited approach for ionosphere modelling means a trade-off between5

the distribution of available data and their possibility to represent ionospheric variations with high resolution and high accuracy.

Most of the IAACs generate Global Ionosphere Maps (GIMs) based on SH expansions up to the spectral degree n= 15 and

provide them with a spatial resolution of 2.5◦× 5◦ with respect to latitude and longitude direction, and a temporal sampling

of two hours. In the recent years it was frequently claimed to improve the spatial sampling of the VTEC GIMs to a spatial

resolution of 1◦×1◦ and to a temporal sampling of about 15 minutes. Enhancing the grid resolution means an interpolation of10

VTEC values for intermediate points but with no further information about variations in the signal. A degree 15 in the SH case

for instance corresponds to a spatial sampling of 12◦× 12◦. Consequently, increasing the grid resolution requires at the same

time an extension of the spectral content, i.e. to choose a higher SH degree value than 15.

Unlike most of the IAACs, the VTEC modelling approach at Deutsches Geodätisches Forschungsinstitut der Technischen

Universität München (DGFI-TUM) is based on localizing basis functions, namely tensor products of polynomial and trigono-15

metric B-splines. In this way, not only data gaps can be handled appropriately and sparse normal equation systems are estab-

lished for the parameter estimation procedure, also a multi-scale-representation (MSR) can be set up, to determine GIMs of

different spectral content directly by applying the so-called pyramid algorithm and to perform highly effective data compres-

sion techniques. The estimation of the MSR model parameters is finally performed by a Kalman-Filter driven by near real-time

(NRT) GNSS data.20

Within this paper we realize the MSR and create multi-scale products based on B-spline scaling and wavelet coefficients

and VTEC grid values. We compare these products with different final and rapid products of the IAACs, e.g., the SH model

from CODE (Berne) and the voxel solution from UPC (Barcelona). In opposite to that, DGFI-TUM’s products are solely based

on NRT GNSS observations and ultra-rapid orbits. Nevertheless, we can conclude that DGFI-TUMs high-resolution product

(’othg’) outperforms all products used within the selected time span of investigation, namely September 2017.25
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1 Introduction

The properties of the atmosphere can be described by means of different variables, e.g. the temperature or the charge state.

In case of the temperature we distinguish with increasing height above the Earth’s surface between troposphere (up to about

15 km height), stratosphere (about 15 to 50 km), mesosphere (about 50 to 90 km), thermosphere (about 90 to 800 km) and

exosphere (above 800 km). In case of the charge state the atmosphere is split into the neutral atmosphere (up to 80 km height),5

the ionosphere (about 80 to 1000 km) and the plasmasphere (above 1000 km); see e.g. Limberger (2015).

The ionosphere is mostly driven by the Sun; extreme UV- (EUV-), X-ray and solar particle radiation cause ionization pro-

cesses. In geodesy, the main ionospheric impact is the influence of free electrons on radio wave propagation. This effect mainly

depends on the signal frequency, i.e., the ionosphere is a dispersive medium (Schaer, 1999). Signals with frequencies lower

than 30 MHz will be blocked and reflected by the ionosphere, whereas signals with shorter wavelengths penetrate the iono-10

sphere but are affected in speed and direction. The ionospheric influence on radio waves is twofold: the signal travel times are

changed (delay) and the signal paths are modified (bending). Whereas the latter effect can be neglected for most applications,

the ionospheric delay

dion =±40.3

f2

R∫
S

Ne ds (1)

depends directly on the electron density Ne along the signal path s between satellite S and receiver R and inversely on15

the carrier frequency f . Equation (1), which can be derived from dual-frequency measurements, is only an approximation

since effects of higher order are neglected. These terms depend on the magnetic field, signal frequency, signal elevation, and

ionospheric conditions and reach about 0.2 cm in zenith for GPS signals (Bassiri and Hajj, 1993). The sign on the right-hand

side changes whether it is applied for a carrier phase observation (’−’) or for a pseudorange measurement (’+’); see e.g.

Langley (1998).20

Observations of space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS) and the Doppler Or-

bitography and Radiopositioning Integrated by Satellite (DORIS) tracking system as well as satellite altimetry and Ionospheric

Radio Occultation (IRO) are based on electromagnetic signal propagation and thus, disturbed by the ionosphere. Most of the

techniques are not directly sensitive for the electron density, but on the integrated effect along the ray path. In Eq. (1) the

integral25

STEC(xS ,xR, t) =

R∫
S

Ne(x, t)ds (2)

is called slant total electron content (STEC). In Eq. (2) we introduce besides the time t the position vectors xS , xR and

x= r [cosϕ cosλ, cosϕ sinλ, sinϕ]T (3)

of the satellite S, the receiver R and an arbitrary point P moving along the signal path s; the coordinate triple (ϕ,λ,r)

comprises latitude ϕ, longitude λ and radial distance r within a geocentric coordinate system ΣE .30
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The vertical total electron content (VTEC)

V TEC(ϕ,λ,t) =

hu∫
hl

Ne(ϕ,λ,h,t) dh (4)

is defined as the integration of the electron density in vertical direction, i.e. along the height h above the Earth’s surface, defined

as h= r−RE ; RE means the radius of a spherical Earth. Furthermore in Eq. (4) hl and hu are the heights of the lower and

the upper boundary of the ionosphere; see e.g. Dettmering et al. (2011, 2014) and Limberger (2015).5

Eqs. (2) and (4) require a 3-D integration of the electron density. Often a simplification is preferred which is based on the

so-called Single-Layer-Model (SLM). It assumes that all free electrons are concentrated in an infinitesimal thin shell, i.e. the

sphere ΩH with radiusRH =RE+H (Schaer, 1999) andH being the single layer height. As a consequence of this assumption

and according to

STEC(xS ,xR, t) =M(z) ·V TEC(xIPP , t) (5)10

VTEC can be transformed into STEC by introducing a mapping function M(z) depending on the zenith angle z of the ray

path between satellite S and receiver R. In Eq. (5) the position vector xIPP , i.e. the spherical coordinates (ϕIPP ,λIPP ,RH)

define the Ionospheric Pierce Point (IPP), which means geometrically the piercing point of the straight line between S and R

with the sphere ΩH of the SLM. This point means the reference point of an observation including the STEC, such as a GNSS

measurement; see e.g. Erdogan et al. (2017). Figure 1 shows, for instance, the global distribution of the IPPs from GNSS15

observations at September 6, 2017 between 12:55 and 13:05 UT. However, it must be pointed out that the introduction of a

simple isotropic mapping function M(z), just depending on the zenith angle z, can only generate an approximation of STEC.

Recently, more sophisticated approaches, e.g. the Barcelona Ionospheric Mapping Function (BIMF), have been developed to

improve the projection of VTEC on STEC; see Lyu et al. (2018).

Combining the Eqs. (1), (2) and (5) yields the relation20

dion(xS ,xR, t) =−40.3

f2
·M(z) ·V TEC(xIPP , t) (6)

between VTEC and the ionospheric delay dion in case of a phase observation. Equation (6) can be interpreted and applied in

two ways: if . . .

. . . VTEC is given from an ionospheric model, the delay dion can be computed and used as a correction to GNSS observa-

tions,25

. . . the delay dion can be derived from double-frequency GNSS measurements, it can be used as an observation to develop

or improve VTEC models.

Applications, such as satellite navigation and positioning require high precision and high resolution VTEC models. For that

purpose the correction dion could be according to Eq. (6) derived from VTEC maps, usually the so-called Global Ionosphere

Maps (GIM). The most prominent GIM is provided by the International GNSS Service (IGS) (Feltens and Schaer, 1998;30

3



Hernández-Pajares et al., 2011) as a weighted combination product of VTEC maps from various IGS Ionosphere Associated

Analysis Centers (IAAC), namely (1) the Jet Propulsion Laboratory (JPL), (2) the Center for Orbit Determination in Europe

(CODE), (3) the European Space Operations Center of the European Space Agency (ESOC), (4) the Universitat Politècnica de

Catalunya (UPC), (5) the Canadian Geodetic Survey of Natural Resources Canada (NRCan), (6) the Wuhan University (WHU)

and (7) the Chinese Academy of Sciences (CAS). Recently, Roma-Dollase et al. (2017) published a review paper on these5

seven GIMs concerning their mapping techniques and their consistency during one solar cycle.

There are several modeling strategies for generating GIMs; the most prominent approach is based on spherical harmonics

(SH) and was introduced by Schaer (1999). Besides, the tomographic approach based on voxels (Hernández-Pajares et al.,

1999) and other approaches based on B-spline scaling functions and wavelets (Schmidt, 2007; Schmidt et al., 2011; Schmidt M.,

2015), multivariate adaptive regression splines (MARS) and adaptive regression B-splines (BMARS) (Durmaz et al., 2010;10

Durmaz and Karslioglu, 2015) as well as polynomials (Komjathy and Langley, 1996) shall be mentioned here.

Generally, we distinguish between GIMs provided as final, rapid, near real-time (NRT) or real-time (RT) products. This

classification is based on the latency of the underlying input data. In case of final products, for instance, only post-processed

observations and orbits are used, NRT products are based on rapid orbits and observations with a latency of some minutes up

to a few hours. GIMs are typically provided with a temporal resolution of 2 hours or 1 hour and with a spatial resolution of15

2.5◦× 5◦ with respect to geographical latitude and longitude (Hernández-Pajares et al., 2017).

VTEC variations are basically following annual, seasonal, diurnal and semi-diurnal periods. Earthquakes or incidental natu-

ral hazards can also cause small but visible signatures (Liu et al., 2004; Zhu et al., 2013). During space weather events however,

such as solar flares or coronal mass ejections (CME), the number of free electrons may drastically increase. In the latter case

solar plasma consisting of electrons, ions and photons may enter the Earth’s atmosphere and cause short period variations20

within the electron density distribution; see Monte-Moreno and Hernández-Pajares (2014); Wang et al. (2016); Tsurutani et al.

(2006, 2009). As a consequence, the modeling of the disturbed ionosphere requires both a high temporal and a high spatial

resolution. In 2012 during the IGS 2012 workshop in Olsztyn, Poland, it was recommended to provide high resolution IGS

combined GIMs. The IAACs UPC and JPL agreed on disseminating GIMs with a temporal resolution of 15 minutes and a

spatial resolution of 1◦× 1◦ in latitude and longitude, respectively (Dach and Jean, 2013).25

As already confirmed by Roma-Dollase et al. (2017), an increase in temporal resolution allows for an improvement in the

overall accuracy of the GIMs. The authors compared the final products with a temporal resolution of 2 hours with rapid products

with a temporal resolution of 15 minutes using the dSTEC analysis as the most reliable method to assess the accuracy of VTEC

products (Hernández-Pajares et al., 2017). Following the results of their investigations, it can be stated that the increase of the

temporal resolution yields better results in the dSTEC analysis.30

To the knowledge of the authors the spatial resolution of GIMs has not been investigated in detail, yet. Most of the GIMs

are based on series expansions in terms of SHs with a maximum degree of nmax = 15. This value fits to a block size of about

12◦×12◦ on the sphere ΩH . In opposite, a grid spacing of 2.5◦×5◦ corresponds to a maximum SH degree of around n= 36;

a 1◦×1◦ grid spacing, i.e. a spatial resolution of around 110 km along the equator fits to a SH expansion up to degree n= 180.

As a matter of fact a reliable computation of the corresponding SH series coefficients requires a global input data coverage of35
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the same spatial sampling. Since the IAAC VTEC maps are solely based on GNSS observations with a rather inhomogeneous

distribution (cf. Fig. 1 showing the IPPs of NRT observations with dense clusters over continents and large data gaps over

oceans), finer ionospheric structures can only be monitored and modeled where high resolution input data are available. By

Figure 1. Global distribution of the IPPs from GPS (red dots) and GLONASS (blue stars) measurements for September 6, 2017 collected

within a 10 minutes interval between 12:55 and 13:05 UT. The regional maps at the top are two ’zoom-ins’ of Europe and Indonesia.

increasing the temporal resolution of the GIMs, the number of observations supporting the individual maps decreases. The

two zoom-in maps at the top of Fig. 1 show the strong incongruity between data distribution and signal structure (cf. the left5

panels in Fig. 9). In areas with high resolution data, such as Europe, the U.S. or Australia, the VTEC signal is usually rather

smooth. In areas with high variable spatial and temporal signal structures such as in the equatorial belt, a much smaller number

of observations is generally given. As a consequence, for global modeling we have to deal with a trade-off between signal

structure and data resolution.

It is a well-known fact that SHs as global basis functions are not suitable for representing unevenly globally distributed10

data. Consequently, in such a case, a series expansion in terms of localizing basis functions is more appropriate. In the sequel,

we apply tensor products of polynomial and trigonometric B-splines as localizing 2-D basis functions. Besides the localizing

features, B-splines additionally generate a multi-scale representation (MSR), also known as multi-resolution representation

(MRR). The basic feature of a MSR is to split a target function into a smoothed, i.e., low-pass filtered version, and a number of

detail signals, i.e., band-pass filtered versions by successive low-pass filtering (Mertins, 1999). Hence, a spatial MSR of VTEC15

adapts the model resolution to the data distribution and thus, fulfills IGS’ requirement of high resolution VTEC modeling.

In this study, we compare global VTEC maps based on series expansions in terms of both globally defined SHs and localizing

B-spline functions including the MSR with respect to the spectral content. For that purpose, we use the SH degree as the
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common measure for the spectral content of a spherical signal. In detail we study the interrelations between the SH degree,

the spatial sampling intervals of the input data and the resolution levels of B-spline expansions. In addition, we discuss the

influence of different temporal resolutions of the GIMs. For the estimation of the unknown series coefficients of the B-spline

expansion we use a Kalman Filter (KF) procedure as explained by Erdogan et al. (2017). In order to assess the quality of the

approach, we perform the dSTEC analysis (Hernández-Pajares et al., 2017).5

The paper is outlined as follows: in Section 2 a description of VTEC modeling procedures based on both, SH and B-spline

expansions are presented. In Subsection 2.3 we study the spectral resolution of global VTEC maps. Section 3 comprises a

detailed description of the MSR and the estimation procedure. In Section 4 case studies are set up to verify the results of the

previous sections numerically. Furthermore, this section provides a final assessment by means of the dSTEC validation. The

final section provides conclusions and an outlook for future work.10

2 VTEC Modeling Approaches

The 3-D signal V TEC(ϕ,λ,t) = f(x, t), introduced in the Eqs. (4) and (5), can be modeled as series expansion

f(x, t) =

∞∑
k=0

ck(t) φk(x) (7)

in terms of given space-dependent basis functions φk(x) and unknown time-dependent series coefficients ck(t). 1 Assuming

that at discrete times ts = t0 +s ·∆t with s ∈ N0 and sampling interval ∆t the altogether Is observations y(xis , ts) of VTEC at15

IPP position Pis ∈ ΩH with is = 1,2, . . . , Is are given. Considering the measurement errors e(xis , ts) the observation equation

follows from Eq. (7) and reads

y(xis , ts) + e(xis , ts) = fN (xis , ts) =

=

N∑
k=0

ck(ts) φk(xis) . (8)

Note, that in the sequel of this paper we neglect the truncation error20

rN (xis , ts) =

∞∑
k=N+1

ck(ts) φk(xis) (9)

and omit other unknown parameters such as the satellite and receiver differential code biases (DCB) in case of GNSS geometry-

free observations on the right-hand side of Eq. (8); see e.g. Erdogan et al. (2017).

In the following two Subsections 2.1 and 2.2 the SH expansion – as the probably most frequently used approach in ionosphere

modeling – and the 2-D B-spline tensor product approach are described.25

1Note, for latitude ϕ and longitude λ we do not distinguish between geographical and geomagnetic spherical coordinates.
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2.1 Spherical Harmonic Expansion

In the SH approach the observation equation (8) can be rewritten as

y(xis , ts) + e(xis , ts) = fnmax(xis , ts) =

=

nmax∑
n=0

n∑
m=−n

cn,m(ts)Yn,m(xis) (10)

where the functions Yn,m(x), i.e. the SHs of degree n= 0, . . . ,nmax and order m=−n, . . . ,n, are defined as5

Yn,m(x) = Pn,|m|(sinϕ) ·

cosmλ if m≥ 0

sin |m|λ if m< 0
(11)

with Pn,|m| being the normalized associated Legendre functions of degree n and orderm. The altogether (nmax+1)2 quantities

cn,m(t) in Eq. (10) are the time-dependent SH coefficients. According to the sampling theorem on the sphere the maximum

degree nmax is related to the sampling intervals ∆ϕ and ∆λ of the input data with respect to latitude ϕ and longitude λ, namely

10

∆ϕ <
180◦

nmax
and ∆λ <

180◦

nmax
. (12)

As can be seen from Eq. (11) SHs are basis functions of global support. This implies that each single SH function is differ-

ent from zero almost everywhere on the sphere ΩH . Consequently, each coefficient cn,m has to be recomputed, if only one

additional observation is considered in the set of observation equations (10).

Since the VTEC observations y(xis , ts) at IPP positions will usually not be given on a spatial grid with constant mesh size,15

the sampling intervals ∆ϕ and ∆λ in the formulae (12) have to be interpreted as global average values.

2.2 B-Spline Expansion

At DGFI-TUM we rely on B-splines as basis functions for ionosphere modeling, since they are (1) characterized by their

localizing feature and (2) they can be used to generate a MSR. For VTEC modeling we rewrite Eq. (8) as

y(xis , ts) + e(xis , ts) = fJ1,J2(xis , ts) =20

=

KJ1
−1∑

k1=0

KJ2
−1∑

k2=0

dJ1,J2k1,k2
(ts) φ

J1,J2
k1,k2

(ϕis ,λis) (13)

with initially unknown time-dependent scaling coefficients dJ1,J2k1,k2
(ts) and the 2-D scaling functions φJ1,J2k1,k2

(ϕis ,λis) of levels

J1 and J2 with respect to ϕ and λ. The latter are defined as tensor products

φJ1,J2k1,k2
(ϕ,λ) = φJ1k1 (ϕ) φ̃J2k2 (λ) (14)
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of 1-D scaling functions φJ1k1 (ϕ) and φ̃J2k2 (λ) depending on latitude ϕ and longitude λ, respectively. Since the B-spline approach

is not as well known as the SH approach, it will be described in more detail in the following; we further refer to Dierckx (1984);

Stollnitz et al. (1995a, b); Lyche and Schumaker (2001); Jekeli (2005); Schmidt M. (2015) and citations therein.

To decompose VTEC into its spectral components via the MSR in Section 3 the Eqs. (13) and (14) need to be rewritten in

vector and matrix notation. For that purpose we introduce the KJ1 × 1 vector5

φφφJ1(ϕ) =
[
φJ10 (ϕ), φJ11 (ϕ), . . . , φJ1KJ1

−1(ϕ)
]T

, (15)

the KJ2 × 1 vector

φ̃φφJ2(λ) =
[
φ̃J20 (λ), φ̃J21 (λ), . . . , φ̃J2KJ2

−1(λ)
]T

(16)

as well as the KJ1 ×KJ2 coefficient matrix

DJ1,J2 =


dJ1,J20,0 dJ1,J20,1 . . . dJ1,J20,KJ2

−1

dJ1,J21,0 dJ1,J21,1 . . . dJ1,J21,KJ2
−1

...
. . . . . .

...

dJ1,J2KJ1
−1,0 dJ1,J2KJ1

−1,1 . . . dJ1,J2KJ1
−1,KJ2

−1

 . (17)10

Considering the computation rules for the Kronecker product ’⊗’ (cf. Koch (1999)) Eq. (13) can be written as

f(ϕ,λ,t) = (φ̃φφJ2(λ) ⊗ φφφJ1(ϕ))T vecDJ1,J2(t)

=φφφTJ1(ϕ)DJ1,J2(t) φ̃φφJ2(λ) (18)

wherein ’vec’ means the vec-operator.

2.2.1 Polynomial B-splines15

In the sequel we apply polynomial quadratic B-splines

φJ1k1 (ϕ) :=N2
J1,k1(ϕ) (19)

of resolution level J1 ∈ N0 and shift k1 = 0,1, ...,KJ1 − 1 to represent the latitude dependent variations of VTEC. To be

more specific, altogether KJ1 = 2J1 + 2 B-splines are located along a meridian depending on the latitude ϕ ∈ [−90◦,90◦]. To

construct the KJ1 B-spline functions the sequence20

−90◦ = ϕJ10 = ϕJ11 = ϕJ12 < ϕJ13 < ... < ϕJ1KJ1
=

= ϕJ1KJ1
+1 = ϕJ1KJ1

+2 = 90◦ (20)

of knot points ϕJ1k1 is established; the consideration of multiple knot points at the poles is called ’endpoint-interpolating’

and ensures the closing of the modeling interval. The constant distance between two consecutive knots ϕJ1k1 and ϕJ1k1+1 for
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k1 = 2, ...,KJ1 − 1 amounts 180◦/2J1 . Following Schumaker and Traas (1991) and Stollnitz et al. (1995b) the normalized

quadratic polynomial B-splines are calculable via the recursive relation

Nn
J1,k1(ϕ) =

ϕ−ϕJ1k1
ϕJ1k1+n−ϕ

J1
k1

Nn−1
J1,k1

(ϕ)

+
ϕJ1k1+n+1−ϕ

ϕJ1k1+n+1−ϕ
J1
k1+1

Nn−1
J1,k1+1(ϕ). (21)

with n= 1,2 from the initial values5

N0
J1,k1(ϕ) =

1 if ϕJ1k1 ≤ ϕ < ϕJ1k1+1 and ϕJ1k1 < ϕJ1k1+1

0 otherwise .

Note, in Eq. (21) a factor is set to zero if the denominator is equal to zero.

As can be seen from Fig. 2, B-splines are characterized by their compact support or – in other words – they are different

from zero only within a small subinterval of length ∆J1 ≈ 3 ·hJ1 where

hJ1 =
180◦

2J1 + 1
(22)10

means approximately the distance between two consecutive B-splines along the meridian. Since the total number KJ1 of B-

splines depends on the level J1, finer structures can be modeled by increasing J1. The numerical value for the level J1 depends

on the global average value ∆ϕ for the input data sampling interval in latitude direction according to

∆ϕ < hJ1 (23)

(Schmidt et al., 2011). Solving Eq. (23) under the consideration of Eq. (22) for the level value J1 the inequality15

J1 ≤ log2

(180◦

∆ϕ
− 1
)

(24)

results.

2.2.2 Trigonometric B-splines

For modeling the longitudinal variations of VTEC trigonometric B-splines T 3
J2,k2

(λ) of order 3 and depending on the resolution

level J2 ∈ N0 and shift k2 = 0,1, ...,KJ2−1 are applied. As can be seen from Fig. 3 the altogether KJ2 = 3 ·2J2 trigonometric20

B-splines are located along the parallels of the chosen spherical coordinate system within the interval λ ∈ [0◦,360◦). Con-

sequently, the first and the last two B-spline functions within the interval [0◦,360◦) have to be completed by the so-called

wrapping around effect. This constraint allows to define trigonometric B-splines in two different ways:

1. Following Schumaker and Traas (1991), Jekeli (2005) and Limberger (2015) periodic trigonometric B-splines can be

calculated by means of a recurrence relation similar to Eq. (21). Thereby, additional constraints have to be introduced to25

force the periodicity of the series coefficients.
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Figure 2. Polynomial B-splines of level J1 = 3 with total number KJ1 = 23 + 2 = 10 of B-splines along the meridian. The blue-colored

spline function N2
3,4(ϕ) corresponds to the shift value k1 = 4 and covers a subinterval of length ∆3 ≈ 3 · 180◦/9 = 60◦.The red-colored

spline functions N2
3,0(ϕ) with shift value k1 = 0 and N2

3,9(ϕ) with shift value k1 = 9 close the modeling interval at the poles.

2. The second option was introduced by Lyche and Schumaker (2001) and used by Schmidt et al. (2011); Schmidt M.

(2015). It will be described in the following in more detail.

To be more specific, the sequence of non-decreasing knot points

0◦ = λJ20 < λJ21 < ... < λJ2k2 < ... < λJ2KJ2
−1 < 360◦, (25)

with additional knots5

λJ2KJ2
+i = λJ2i + 360◦ for i= 0,1,2 (26)

for considering the periodicity is introduced. Similar as for the polynomial B-splines the distance between consecutive knots

λJ2k2 and λJ2k2+1 for k2 = 0,1, . . . ,KJ2 + 1 is given as

hJ2 =
360◦

KJ2

=
120◦

2J2
(27)

and thus, the length of the non-zero subinterval of a trigonometric B-spline function T 3
J2,k2

(λ) reads ∆J2 = 3·hJ2 = 360◦/2J2 .10

Following Lyche and Schumaker (2001) we define the functions

MJ2,k2(λ) = T 3
J2,k2(λ) = T 3

hJ2
(λ−λJ2k2 ) . (28)

Setting for simplification hJ2 =: h and λ−λJ2k2 =: Θ, the functions T 3
hJ2

(λ−λJ2k2 ) = T 3
h (Θ) can be calculated via

T 3
h (Θ) =



sin2(Θ/2)
sin(h/2)sin(h) for 0≤Θ< h

1
cos(h/2) −

sin2((Θ−h)/2)+sin2((2h−Θ)/2)
sin(h/2)sin(h)

for h≤Θ< 2h

sin2((3h−Θ)/2)
sin(h/2)sin(h) for 2h≤Θ< 3h

0 otherwise .

(29)
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Finally, we define the basis functions

φ̃J2k2 (λ) =


MJ2,k2(λ) for k2 = 0, . . . ,KJ2 − 3

MJ2,k2(λ) +MJ2,k2(λ− 360◦)

for k2 =KJ2 − 2,KJ2 − 1

(30)

introduced in Eq. (14). Figure 3 shows trigonometric B-splines of level J2 = 2. With larger values for level J2 the splines

become more narrow and finer structures can be modeled. The choice of the level value J2 again depends on the input data

sampling interval. Analog to Eq. (23) the inequality5

∆λ < hJ2 (31)

has to be fulfilled where ∆λ denotes the global average value of the data sampling interval in longitude direction. Finally,

under consideration of Eq. (27) the inequality

J2 ≤ log2

(120◦

∆λ

)
(32)

for the level value J2 is obtained.

Figure 3.KJ2 = 3 ·22 = 12 trigonometric B-splines φ̃J2
k2

(λ), according to Eq. (30) for level J2 = 2. The blue-colored spline function φ̃2
5(λ)

with shift value k2 = 5 is different from zero only in the subinterval of length ∆J2 = 360◦/4 ≈ 90◦. The red-colored basis function φ̃2
11(λ)

shows the wrapping-around effect.

10

2.3 Spectral Resolution of Global VTEC Models

In the Subsection 2.1 we derived the relations between the maximum degree nmax of a SH expansion and the sampling intervals

∆ϕ and ∆λ of the input data. In the previous Subsection 2.2 the corresponding relations between the level values J1 and J2 of

a B-spline expansion and the data sampling intervals have been deduced. The substitution of the expression 180◦/nmax from

11



the inequalities (12) into the Eqs. (24) and (32) yields the altogether six inequalities

J1 ≤ log2

(180◦

∆ϕ
− 1
)
≤ log2

(
nmax− 1

)
,

(33)
J2 ≤ log2

(120◦

∆λ

)
≤ log2

(2 ·nmax
3

)
.

Given the numerical values 1 to 6 for the B-spline levels J1 and J2 Table 1 presents the corresponding largest numerical values5

for each, the SH degree nmax as well as the sampling intervals ∆ϕ and ∆λ by evaluating the inequalities (33). From the

Table 1. Numerical values for the B-spline levels J1 and J2, the maximum SH degree nmax and the input data sampling intervals ∆ϕ and

∆λ by evaluating the inequalities (33); the left part of the table presents the numbers along a meridian (upper inequalities in Eq. (33)), the

right part the corresponding numbers along the equator and its parallels according to the lower inequalities in Eq. (33).

Latitude Longitude

J1 1 2 3 4 5 6 J2 1 2 3 4 5 6

nmax 3 5 9 17 33 63 nmax 3 6 12 24 48 96

∆ϕ 60 36 20 10.5 5.45 2.85 ∆λ 60 30 15 7.5 3.75 1.875

spectral point of view the six inequalities (33) comprise the following three scenarios:

1. If the global sampling intervals ∆ϕ and ∆λ are known, the mid parts of the inequalities (33) are given. The maximum

degree nmax is calculable from the right-hand side inequalities and may be inserted into the SH expansion (10). The

left-hand side inequalities yield the two level values J1 and J2 which can be inserted into the B-spline expansion (13).10

2. With a specified numerical value for nmax the right-hand parts of the inequalities (33) are given. The data input sampling

intervals ∆ϕ and ∆λ can be determined from the mid parts of the inequalities. Next the two numerical values for the

level values J1 and J2 are calculable from the left-hand side inequalities and can be inserted into the B-spline expansion

(13).

3. If the processing time of VTEC maps has to be considered, the level values J1 and J2 are subject to certain restrictions,15

since as a matter of fact the number of numerical operations increases exponentially with the chosen numerical values

for the levels. In this case, from the given left-hand side inequalities the data sampling intervals ∆ϕ and ∆λ can be

determined from the mid parts. Finally, the right-hand side inequalities yield numerical values for the maximum SH

degree nmax.

As already mentioned in the introduction most of the GIMs produced by the IAACs are based on series expansions in SHs20

up to a maximum degree of nmax = 15. Following the above listed second strategy and Table 1 we obtain for this example

the approximations J1 = 4 (for nmax = 17) and J2 = 3 (for nmax = 12) for the two B-spline levels J1 and J2. Inserting these

12



q

p

1

1

V TEC(ϕi + ∆Φ,λk, t)

V TEC(ϕi,λk, t)

V TEC(ϕi + ∆Φ,λk + ∆Λ, t)

V TEC(ϕi,λk + ∆Λ, t)

V TEC(ϕi + q ·∆Φ,λk + p ·∆Λ, t)

∆Λ

∆Φ

Figure 4. Schematic representation of the 4-point spatial interpolation to calculate the VTEC value at P (ϕi + q ·∆Φ,λk +p ·∆Λ) from the

four corner points of the grid cell of interest.

numbers into the B-spline expansion (13) yields the spectarlly closest representation to the current IGS solutions. A numerical

verification of this choice will be presented in Subsection 4.3.

2.4 VTEC Output Grids

The VTEC GIMs of the IAACs are usually provided with a spatial resolution of ∆Φ = 2.5◦ in latitude direction and ∆Λ = 5◦

in longitude direction and a temporal sampling of ∆T = 2 hours. Note, the resolution intervals ∆Φ, ∆Λ and ∆T are usually5

distinct from the sampling intervals ∆ϕ, ∆λ and ∆t of the observations introduced in Subsection 2.1.

In order to calculate a VTEC value V TEC(ϕ,λ,t) at an arbitrary locationP (ϕ= ϕi+q·∆Φ,λ= λk+p·∆Λ) with 0≤ q ≤ 1

and 0≤ p≤ 1 at an arbitrary time moment t a simple bi-linear spatial interpolation from the VTEC values of the four given

corner points P (ϕi,λk), P (ϕi,λk + ∆Λ), P (ϕi + ∆Φ,λk) and P (ϕi + ∆Φ,λk + ∆Λ) is performed according to

V TEC(ϕi + q ·∆Φ,λk + p ·∆Λ, t) =10

= (1− q) · (1− p) ·V TEC(ϕi,λk, t)

+ q · (1− p) ·V TEC(ϕi + ∆Φ,λk, t)

+ p · (1− q) ·V TEC(ϕi,λk + ∆Λ, t)

+ q · p ·V TEC(ϕi + ∆Φ,λk + ∆Λ, t) ; (34)

see Schaer et al. (1998) and Fig. 4. Note, by applying the interpolation formula (34), the quality of the calculated VTEC value15

decreases with increasing spatial resolution intervals ∆Φ and ∆Λ and depends on the position within the grid cell. In order to

improve the quality of the VTEC computation two ways can be performed, namely

1. the chosen model approach, e.g. the SH or the B-spline expansion can be used directly to calculate VTEC values at any

arbitrary point P (ϕ,λ),

13



2. the resolution intervals ∆Φ and ∆Λ of the output grid can be set to smaller values, e.g., to 1◦ as it was proposed at the

IGS workshop 2012.

For the calculation of a VTEC value V TEC(ϕ,λ,t) at an arbitrary time moment t= ts + r ·∆T with 0≤ r ≤ 1 at a given

spatial location P (ϕ,λ), an interpolation with respect to time can be applied. Commonly, the linear interpolation

V TEC(ϕ,λ,t) = (1− r) ·V TEC(ϕ,λ,ts)5

+ r ·V TEC(ϕ,λ,ts + ∆T ) (35)

between the two consecutive maps at epochs ts and ts + ∆T is performed; see Schaer et al. (1998).

The previously described interpolation methods allow for the calculation of VTEC values V TEC(ϕ,λ,t) at any spatial

location P (ϕ,λ) and at any time t. However, for a more accurate calculation of VTEC an increase of the resolution for both

domains is necessary. Within the following Section, it is shown that the usage of a MSR based on the B-spline approach in10

combination with a KF estimation procedure provides the possibility to create VTEC maps of higher spatial and temporal

resolution. Consequently, according to Table 1 the calculated VTEC maps cover a wider spectral band, i.e. the numerical value

of nmax becomes larger.

3 Multi-Scale Representation

The B-spline functions as introduced in the Subsections 2.2.1 and 2.2.2 allow for the generation of a MSR. To be more specific,15

B-spline tensor product wavelet functions will be constructed which are intrinsically connected to the resolution levels of the

MSR. Usually the MSR is interpreted as viewing on a signal under different resolutions such as a microscope does; see e.g.

Schmidt (2012), Schmidt M. (2015); Schmidt et al. (2015) and Liang (2017). In all the aforementioned studies, the MSR is

based on a regional 2-D representation of VTEC in terms of tensor products of polynomial B-spline functions only. Within this

study, however, we apply the MSR for a global 2-D representation of VTEC in terms of tensor products of polynomial and20

trigonometric B-spline functions, as described by Lyche and Schumaker (2001) as well as Schumaker and Traas (1991).

3.1 Pyramid Algorithm

Neglecting the time dependency the B-spline approach (18) reads

fJ1,J2(ϕ,λ) =φφφTJ1(ϕ)DJ1,J2 φ̃φφJ2(λ) . (36)

In the context of the MSR the vectors φφφJ1(ϕ) and φ̃φφJ2(λ) are called scaling vectors, the elements dJ1,J2k1,k2
of the matrix DJ1,J225

are denoted as scaling coefficients.

With J ′1 = J1− J,J ′2 = J2− J and 0< J ≤min(J1,J2) we obtain the 2-D MSR of the target function f(x) introduced in

Eq. (7) as

fJ1,J2(ϕ,λ) = fJ′
1,J

′
2
(ϕ,λ) +

J∑
j=1

3∑
ϑ=1

gϑJ1−j,J2−j(ϕ,λ) . (37)
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Following the argumentation of Schmidt et al. (2015) but considering the polynomial and the trigonometric B-spline func-

tions the low-passed filtered level-(J ′1,J
′
2) signal fJ′

1,J
′
2
(ϕ,λ) and the band-pass filtered level-(J1− j,J2− j) detail signals

gϑJ1−j,J2−j(ϕ,λ) are computable via the relations

fJ′
1,J

′
2
(ϕ,λ) =φφφTJ′

1
(ϕ)DJ′

1,J
′
2
φ̃φφJ′

2
(λ) ,

g1
j1−1,j2−1(ϕ,λ) =φφφTj1−1(ϕ)C1

j1−1,j2−1 ψ̃ψψj2−1(λ) ,5

g2
j1−1,j2−1(ϕ,λ) =ψψψTj1−1(ϕ)C2

j1−1,j2−1 φ̃φφj2−1(λ) ,

g3
j1−1,j2−1(ϕ,λ) =ψψψTj1−1(ϕ)C3

j1−1,j2−1 ψ̃ψψj2−1(λ) (38)

where we introduced the definitions j1 = J1−j+1 and j2 = J2−j+1 for j = 1, . . . ,J . Herein, the Kj1−1×1 and Kj2−1×1

scaling vectors φφφj1−1(ϕ) and φ̃φφj2−1(ϕ) as well as the Lj1−1× 1 and Lj2−1× 1 wavelet vectors ψψψj1−1(ϕ) and ψ̃ψψj2−1(λ) can

be calculated by means of the two-scale relations10

φφφTj1−1(ϕ) =φφφTj1(ϕ) P j1 ,

φ̃φφ
T

j2−1(λ) = φ̃φφ
T

j2(λ) P̃ j2 ,

ψψψTj1−1(ϕ) =φφφTj1(ϕ)Qj1 ,

ψ̃ψψ
T

j2−1(λ) = φ̃φφ
T

j2(λ) Q̃j2 (39)

with Lj1−1 =Kj1 −Kj1−1 and Lj2 =Kj2 −Kj2−1.15

The numerical entries of the Kj1 ×Kj1−1 matrix P j1 and the Kj1 ×Lj1−1 matrix Qj1 can be taken from Stollnitz et al.

(1995b) or Zeilhofer (2008); the corresponding entries of the Kj2 ×Kj2−1 matrix P̃ j2 and the Kj2 ×Lj2−1 matrix Q̃j2 are

provided by Lyche and Schumaker (2001).

In the Eqs. (38) we introduced the Kj1−1×Kj2−1 matrix Dj1−1,j2−1 of scaling coefficients dj1−1,j2−1
k1,k2

as well as the

Kj1−1×Lj2−1 matrixC1
j1−1,j2−1, the Lj1−1×Kj2−1 matrixC2

j1−1,j2−1 and the Lj1−1×Lj2−1 matrixC3
j1−1,j2−1 of wavelet20

coefficients. These four matrices are calculable via the 2-D downsampling equationDj1−1,j2−1 C1
j1−1,j2−1

C2
j1−1,j2−1 C3

j1−1,j2−1

=

P̄ j1

Q̄j1

Dj1,j2

[
¯̃
P
T

j2

¯̃
Q
T

j2

]
(40)

also known as the 2-D pyramid algorithm. TheKj1−1×Kj1 matrix P̄ j1 , theKj2−1×Kj2 matrix ¯̃
P j2 , the Lj1−1×Kj1 matrix

Q̄j1 and the Lj2−1×Kj2 matrix ¯̃
Qj2 are computable via the identitiesP̄ j1

Q̄j1

=
[
P j1 Qj1

]−1

, (41)25

 ¯̃
P j2

¯̃
Qj2

=
[
P̃ j2 Q̃j2

]−1

; (42)
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see e.g. Schmidt (2007). The 2-D pyramid algorithm based on the decomposition (37) is visualized in Fig. 5. The ’0th’ step

transforms according to the Eqs. (13) and (18) the observations y(xij , tj) into the elements of the scaling matrix DJ1,J2(tj)

as introduced in Eq. (17). The applied procedure will be explained in Subsection 3.2.

Figure 5. 2-D MSR of the signal fJ1,J2(ϕ,λ).

The MSR as described before means a successive low-pass filtering of the target function f(ϕ,λ,t) into two directions,

namely latitude ϕ and longitude λ, in the same manner. If a signal f(ϕ,λ,t) is represented according to Eq. (18) up to the5

level values J1 with respect to latitude and J2 with respect to longitude, i.e. f(ϕ,λ,t)≈ fJ1,J2(ϕ,λ,t) the application of the

MSR (37) allows for the computation of low-pass filtered signal approximations up to the level pairs (J1− 1,J2− 1),(J1−
2,J2− 2), . . .. The principal structures of the ionospheric key parameters such as VTEC, however, are usually parallel to the

geomagnetic equator. Consequently, we will additionally deal with a 1-D MSR of the signal f(ϕ,λ,t) with respect to the

latitude. In this case Eq. (37) reduces to10

fJ1,J2(ϕ,λ) = fJ′
1,J2

(ϕ,λ) +

J∑
j=1

gJ1−j,J2(ϕ,λ) . (43)

Thus, signal approximations up to the level pairs (J1−1,J2),(J1−2,J2), . . . are obtained. From the four relations in Eqs. (38)

only the first and the third one have to be considered within the 1-D MSR (43), namely

fJ′
1,J2

(ϕ,λ) =φφφTJ′
1
(ϕ)DJ′

1,J2
φ̃φφJ2(λ) ,

gj1−1,J2(ϕ,λ) =ψψψTj1−1(ϕ)C2
j1−1,J2 φ̃φφJ2(λ) (44)15

with j1 = J1− j+ 1 for j = 1, . . . ,J , 0< J ≤ J1 and J ′1 = J1−J . The Kj1−1×KJ2 matrixDj1−1,J2 of scaling coefficients

and the Lj1−1×KJ2 matrix C2
j1−1,J2 of wavelet coefficients are calculable from the 1-D downsampling equationDj1−1,J2

C2
j1−1,J2

=

P̄ j1

Q̄j1

 Dj1,J2 (45)
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where the matrices P̄ j1 and Q̄j1 are computable via Eq. (41). The 1-D pyramid algorithm based on the decomposition (43) is

visualized in Fig. 6.

Figure 6. 1-D MSR of the signal fJ1,J2(ϕ,λ) with respect to the latitude ϕ. The ’0th’ step on the left-hand side conforms with the one of

Fig. 5.

Besides the representation of a signal, e.g. VTEC, by means of approximations on different resolution levels with respect to

latitude and longitude, the MSR also allows for the utilization of a powerful data compression procedure, since in general the

numerical value of a large number of wavelet coefficients is close to zero depending on the signal structure; see e.g. Zeilhofer5

(2008).

3.2 Estimation of Unknown Model Parameters

To estimate the elements of the unknownKJ1×KJ2 matrixDJ1,J2(ts) from VTEC observations y(xis , ts) (cf. Eq. (8)) within

the ’0th’ step of the MSR we apply Kalman filtering according to Erdogan et al. (2017).

In the linear formulation the Kalman Filter consists (1) of the state equation10

βs = F s βs−1 +ws−1 (46)

and (2) of the system

ys + es =As βs (47)

of observation equations. In Eq. (46 ) the u×1 vector βs = vecDJ1,J2(ts) – known as the state vector – of the u = KJ1 ·KJ2

unknown scaling coefficients at time moment ts is predicted from the state vector βs−1 of the previous time moment ts−115

by means of the u×u transition matrix F s and the u× 1 vector ws−1 of the process noise. In Eq. (47) ys = (y(xis , ts)) and

es = (e(xis , ts)) are the Is×1 vectors of the observations and the measurement errors, respectively; the (is)
th row vector aTisof

the Is×u coefficient matrixAs is given by the expression

ais = φ̃φφJ2(λis) ⊗ φφφJ1(ϕis) (48)

17



as introduced in Eq. (18). The measurement error vector es and the vector ws of the process noise are assumed to be white

noise vectors with expectation values E(es) = 0 and E(ws) = 0, and fulfill the requirements

E(wsw
T
l ) = Σw δs,l , E(ese

T
l ) = Σy δs,l , E(wse

T
l ) = 0 (49)

where δs,l is the delta symbol which equals 1 for s= l and 0 for s 6= l. In the Eqs. (49) Σy and Σw are given covariance

matrices of the observations and the process noise, respectively.5

The solution of the estimation problem as defined in Eqs. (46) and (47) consists generally of the sequential application of

a prediction step (time update) and a correction step (measurement update). In the prediction step, the estimated state vector

β̂s−1 and its covariance matrix D̂(β̂s−1) = Σ̂β,s−1 are propagated from the time moment ts−1 to the next time moment ts by

means of

β−s = F s β̂s−1 , (50)10

Σ−β,s = F s Σ̂β,s−1F
T
s + Σw (51)

where the symbol ’-’ indicates the predicted quantities. The prediction step is followed by the measurement update

β̂s = β−s +Ks (ys−As β
−
s ) , (52)

Σ̂β,s = (I −Ks As) Σ−β,s (53)

where β̂s and Σ̂β,s are the updated state vector and its covariance matrix. In the Eqs. (52 ) and (53) the u× Is Kalman gain15

matrix

Ks = Σ−β,sA
T
s (As Σ−β,s A

T
s + Σy)−1 (54)

behaves as a weighting factor between the new measurements and the predicted state vector. The chosen step size ts − ts−1

within the KF determines the maximum temporal resolution of the output.

Using the estimations β̂s and Σ̂β,s from the Eqs. (52) and (53), a V ×1 vector fs of function values f(ϕi,λk, ts) at arbitrary20

locations P (ϕi,λk) with i= 1, . . . , I , k = 1, . . . ,K and V = I ·K can be estimated by

f̂s = Ās β̂s , (55)

Σ̂f,s = ĀT
s Σ̂β,s Ās (56)

where Σ̂f,s is the estimated V ×V covariance matrix of the estimation f̂s. The V ×u matrix Ās is set up in a similar way as

the matrix As in Eq. (47) with (48). In the following we will interpret the function values f(ϕi,λk, ts) = V TEC(ϕi,λk, ts)25

as VTEC values.

3.3 B-Spline Model Output

The procedure explained before allows for the dissemination of two products to the users.
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– Product 1:

A set of estimated scaling coefficients

d̂J1,J2k1,k2
(ts)
∣∣
k1=0,...,KJ1

−1,k2=0,...,KJ2
−1

(57)

from Eq. (52) at time moments ts for level values J1 and J2 at the spatial positions k1 in latitude direction and k2 in

longitude direction, respectively, as well as their estimated standard deviations5

σ̂J1,J2d;k1,k2
(ts)
∣∣
k1=0,...,KJ1

−1,k2=0,...,KJ2
−1

(58)

extracted from the covariance matrix (53).

– Product 2:

Estimated VTEC values given as

V̂ TECJ1,J2(ϕi,λk, ts)
∣∣
i=1,...,I,k=1,...,K

(59)10

according to Eq. (55) at time moments ts for level values J1 and J2 in latitude and longitude direction, respectively,

calculated at grid points P (ϕi,λk) as well as their estimated standard deviations

σ̂J1,J2V TEC(ϕi,λk, ts)
∣∣
i=1,...,I,k=1,...,K

, (60)

extracted from the covariance matrix (56).

According to Eq. (35) the time interval ∆T between two consecutive maps of the coefficients (57) and their standard15

deviations (58) or the VTEC grid values (59) and their standard deviations (60) at times ts and ts+∆T can be chosen arbitrarily,

e.g. as 10 or 15 minutes, 1 hour or 2 hours. Following Eq. (34) the coordinates ϕi and λk of the altogether V grid points

P (ϕi,λk) are defined as ϕi =−90◦+(i−1) ·∆Φ with ∆Φ = 180◦/(I−1) and λk = 0◦+(k−1) ·∆Λ with ∆Λ = 360◦/K.

As mentioned before the spatial resolution intervals ∆Φ and ∆Λ are usually chosen as 1◦,2.5◦ or 5◦, i.e. I = 181,73,37 and

K = 360,144,72.20

The two products, i.e. the set of coefficients or the VTEC grid values reflect the two strategies of dissemination. In case

of a SH expansion for RT applications as introduced in Subsection 2.1 the corresponding SH coefficients cn,m from Eq. (10)

can be transferred to the user by means of a RTCM (Radio Technical Commission for Maritime services) standard 1264

message. This message allows the consideration of SH coefficients, but only up to degree n= 16. In case of the B-spline

expansion (13), however, an encoder procedure for the B-spline coefficients (57) is necessary, because the user has to evaluate25

the B-spline model just as in the SH case by substituting the B-spline tensor product (14) for the SHs (11). Due to the two

restrictions, namely to use SH expansions only and just up to a maximum degree nmax = 16, the RTCM message format for

data dissemination has to be discussed urgently and must be set up in a more flexible way, cf. the comments in Section 5. To

apply the RTCM format in its current form, the VTEC grid values (59) can alternatively be used as observations y(xis , ts) in

Eq. (10) to calculate SH coefficients cn,m(ts) by means of a least-squares estimation. This way each GIM can be sent at a high30

update rate to the user for RT applications.
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In case of Product 2 the VTEC grid values (59) as well as there standard deviations (60) are disseminated as VTEC and

standard deviation maps, i.e. GIMs, with given spatial resolutions ∆Φ and ∆Λ in latitude and longitude direction, respectively,

in IONEX format to the user.

4 Numerical Investigations

In the sequel the described modeling approach developed at DGFI-TUM is applied to real data. To be more specific, we use5

GPS and GLONASS NRT data in hourly blocks and apply ultra-rapid orbits. A detailed explanation of the data pre-processing

and the set up of the full observation equations is presented by Erdogan et al. (2017). The IGS IAACs provide final products

based on post-processed GNSS observations and orbits with a latency of more than one week. Several IAACs provide in

addition rapid products with a latency of one day by using rapid orbits. An overview on the products used in the sequel of this

paper is given in Table 2.

Table 2. List of GIM products used in this paper. Information on names, types and latencies are taken from the references [1]: Roma-Dollase

et al. (2017), [2]: Orus et al. (2005) and [3]: this paper.

Institution Product Type Latency Reference

CODE codg final > 1 week [1]

UPC uqrg rapid > 1 day [2]

DGFI- oplg, NRT < 3 hours [3]

TUM ophg

10

For the evaluation of the data we have to define an appropriate coordinate system. Here we follow the standard procedure

and use a Sun-fixed geomagnetic coordinate system. To be more specific, we identify the coordinate system ΣE introduced

in the context of Eq. (3) with the Geocentric Solar Magnetic (GSM) coordinate system; see Laundal and Richmond (2017).

Consequently, the SH and B-spline theory as presented in the previous Sections is applied in the orthogonal GSM system.

Since in this coordinate system diurnal variations of the ionosphere are mitigated, the transition matrix F 2 introduced in the15

state equation (46) of the KF can be set to the identity matrix I , i.e. F s = I. In other words, the dynamic system of the KF is

set to a random walk process. Furthermore, for the time update in Eq. (46) we fix the step size ts− ts−1 to 5 minutes.

Whereas the scaling coefficients (57) and their standard deviations (58) of Product 1 are located within the GSM system,

the VTEC values (59) and their standard deviations (60) of Product 2 are provided in the aforementioned IONEX format on a

regular grid defined in a geographical geocentric Earth-fixed coordinate system. Thus, a coordinate system transformation has20

to be interposed.
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4.1 Validation procedure

For validation purposes we rely on the dSTEC analysis which is currently regarded as the standard method for the quality

assessment of VTEC models; see e.g. Orus et al. (2007) and Rovira-Garcia et al. (2015).

This analysis method is based on the calculation of the difference between STEC observations STEC(xS ,xR, ts) at discrete

time moments ts according to Eq. (2) and a reference observation STEC(xS ,xR, tref ) along a specified satellite arc as5

dSTECobs(ts) = STEC(xS ,xR, ts)

−STEC(xS ,xR, tref ) . (61)

The reference time moment t= tref is usually referred to the observation with the smallest zenith angle z = zref . In the same

manner, the differences

dSTECmap(ts) =M(zs) ·V TEC(xIPP , ts)10

−M(zref ) ·V TEC(xIPP,tref ) (62)

are calculated by means of Eq. (5) from the VTEC map to be validated. The quality assessment is performed by studying the

differences

dSTEC(ts) = dSTECobs(ts)− dSTECmap(ts) (63)

with expectation value E(dSTEC(ts)) = 0.15

4.2 Estimation of B-spline Multi-Scale Products

Figure 7 shows the global distribution of the IPPs related to GNSS VTEC observations y(xIPP , ts) = V TEC(xIPP , ts) as

introduced in Eq. (13) for September 6, 2017 at 13:00 UT. Since the B-spline model is set up in the GSM coordinate system

and the scaling coefficients are restricted to the state equation

dJ1,J2k1,k2
(ts) = dJ1,J2k1,k2

(ts−1) +w(ts−1) (64)20

according to Eq. (46), we select ∆ϕ= 5◦ and ∆λ= 10◦ as appropriate values for the global average sampling interval of the

input data as introduced at the end of Subsection 2.1. Consequently, the B-spline levels to J1 = 5 and J2 = 3 are taken from

Table 1.

The covariance matrices Σy and Σw of the observations and the process noise, respectively, as defined in the formulae (49),

are set up according to Erdogan et al. (2017). In more detail, Σy consists of two diagonal block matrices related to GPS and25

GLONASS VTEC observations. The relative weighting between the blocks, i.e. between GPS and GLONASS, is performed

by manually defined variance factors.

The top left panel of Fig. 8 shows with J1 = 5,J2 = 3, KJ1 = 2J1 + 2 = 34 and KJ2 = 3 · 2J2 = 24 the numerical values of

the total 816 = 34 · 24 scaling coefficients

d̂ 5,3
k1,k2

(ts)
∣∣
k1=0,...,33,k2=0,...,23

(65)30
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Figure 7. Global distribution of the IPPs from GPS (red dots) and GLONASS (blue stars) measurements for September 6, 2017, at 13:00

UT.

according to Eq. (57), estimated by means of Eq. (52). Since the shift values k1 and k2 determine the location of the scaling

coefficients they can be plotted. The top right panel shows the corresponding standard deviations as defined in Eq. (58). A test

of significance is performed to each of the scaling coefficients according to Koch (1999).

Whereas the two upper panels show the results of Product 1 in the GSM system, the two lower panels of Fig. 8 depict the

corresponding results of Product 2 in a geographical geocentric coordinate system. With the choices ∆Φ = 2.5◦ and ∆Λ = 5.0◦5

for the grid spacing in latitude and longitude direction, respectively, Product 2 provides the VTEC grid values

V̂ TEC5,3(ϕi,λk, ts)
∣∣
i=1,...,73,k=1,...,72

(66)

and the corresponding standard deviations σ̂ 5,3
V TEC from the Eqs. (59) and (60). Note, for the visualization of VTEC and

their standard deviations in the two lower panels of Fig. 8 we computed function values on a much denser grid by using the

interpolation formula (34).10

From the comparison of the two left-hand side panels in Fig. 8 it can be stated that the numerical values of the scaling

coefficients directly reflect the signal structure, i.e. the signal energy. This fact is the consequence of the localizing character

of the B-spline functions. The two right-hand side panels reveal that in general the standard deviations are larger where no or

only a few GNSS observations to IGS stations are available, namely over the oceans, e.g. the Southern Atlantic, but also over

specific continental regions such as the Sahara and the Amazon region.15

The top left panel, i.e. the plot of the set (65) of the scaling coefficients d̂ 5,3
k1,k2

can be interpreted as a visualization of the

34× 24 matrix D5,3 defined in Eq. (17) and typed in the top left box of the Figs. 5 and 6 for the 2-D and the 1-D MSR.

Consequently, the two upper panels of Fig. 8 are the results of the 0th step within the pyramid algorithm as explained in

Subsection 3. Applying the 1st step of the 1-D pyramid algorithm the downsampling equation (44) provides both the 18× 24

matrix D4,3 of estimated scaling coefficients d̂ 4,3
k1,k2

for the level values J1 = 4 and J2 = 3 as well as the 16× 24 matrix C2
4,320

of estimated wavelet coefficients. Consequently, the definition of the Product 2 in Subsection 3.3 can be extended to

22



Figure 8. Estimated scaling coefficients (top left) and their standard deviations (top right) for level values J1 = 5 and J2 = 3 within the

GSM coordinate system. Estimated VTEC values (bottom left) and their standard deviations (bottom right) as GIMs within a geographical

coordinate system; all sets calculated for September 6, 2017 at 13:00 UT.

– Multi-Scale Products 2

ophg: estimations with levels J1 = 5, J2 = 3

V̂ TEC5,3(ϕi,λk, ts) , σ̂ 5,3
V TEC(ϕi,λk, ts) (67)

∆Φ = 2.5◦ , ∆Λ = 5.0◦

oplg: estimations with levels J1 = 4, J2 = 35

V̂ TEC4,3(ϕi,λk, ts) , σ̂ 4,3
V TEC(ϕi,λk, ts) (68)

ĝ4,3(ϕi,λk, ts) , σ̂ 4,3
g (ϕi,λk, ts)

∆Φ = 2.5◦ , ∆Λ = 5.0◦ .

We denote the two Multi-Scale Products 2 as ’ophg’ and ’oplg’, where the first symbols refer to the processing software

OPTIMAP which was developed within a third-party funded project (see Acknowledgements). The ’p’ is chosen according10

to the temporal output sampling ∆T of maps, with ’t’ for ∆T = 10 minutes, ’1’ for ∆T = 1 hour and ’2’ for ∆T = 2 hours.

The third symbols describes the spectral resolution and is selected as ’l’ for ’low’ and ’h’ for ’high’, finally, the last symbols

indicates the model domain and is set to ’g’ for ’global’. Furthermore, we want to mention again, that the products ’ophg’ and

’oplg’ are all presented in geographical coordinates.
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4.3 Comparison of VTEC maps from B-spline and spherical harmonic expansions

As mentioned in the context of Table 1 the B-spline levels J1 = 4 for latitude and J2 = 3 for longitude fit the best to the highest

degree nmax = 15 of a SH expansion (10). To be more specific, we compare the Multi-Scale Product ’o1lg’ with the product

’codg’ provided by CODE. ’codg’ is characterized by a SH expansion up to degree nmax = 15 and a time interval ∆T = 1

hour of two consecutive maps (Schaer, 1999).5

Figure 9 shows the VTEC and standard deviation maps for September 6, 2017 at 13:00 UT as well as the difference map

between ’o1lg’ and ’codg’. Although the structures of the two VTEC maps are rather similar, the difference map shows

deviations of up to ±6 TECU. To judge this amount a comparison of VTEC GIMs from different IAACs was performed (not

shown here). This investigation stated that deviations between individual IAAC products are also in the range of up to ±10 %

or even more. Studying the structures within the difference map no larger systematic patterns are visible and, thus, justify our10

assumption that the quality of ’o1lg’ is comparable with the quality of the IAAC products. The standard deviation maps on

the right-hand side of Fig. 9 show different structures which are mainly caused by the application of the different estimation

strategies, namely KF (’o1lg’) and least-squares estimation (’codg’). To assess the comparability numerically we apply the

dSTEC analysis described in Subsection 4.1. First we define a network of receiver stations which are used in Eq. (61). The

chosen set should not be used within the computation of the VTEC maps. Fulfilling both requirements at the same time is15

difficult and, thus, the set of stations shown in Fig. 10 contains both independent stations and stations used simultaneously in

all VTEC models. Since GNSS measurements are taken along the satellite arcs, the corresponding IPPs are located spatially

within a grid cell and temporally between the discrete time moments of the products ’o1lg’ and ’codg’. In order to calculate the

VTEC values in Eq. (62), the spatial and temporal interpolation formulae (34) and (35) have to be applied. Figure 11 shows the

RMS values of the differences (63) during the time span between September 1 and September 30, 2017, at the chosen receiver20

stations. As it can be seen, the RMS values vary between 0.3 and 1.6 TECU. By comparing the RMS values of ’o1lg’ with a

mean RMS value of 0.80 TECU and ’codg’ with a mean RMS of 0.77 TECU we can state that the quality of these two products

is very close to each other.

The results indicate that the overall quality of the NRT product ’o1lg’ is comparable with that of the final product ’codg’

including the developed and implemented pre-processing strategies and steps of the GNSS data; cf. Table 2.25

4.4 Assessment of the Multi-Scale VTEC Products

The two Multi-Scale VTEC Products ’ophg’ and ’oplg’ have been introduced in the two equation blocks (67) and (68). In what

follows, we study them during a solar storm of medium intensity at September 8, 2017 and during the strongest storm of the

last 10 years, the prominent St. Patrick storm, happening at March 17, 2015. Figure 12 shows on the left-hand side the results

of the September 8, 2017 event at 19:00 UT and at the right-hand side the corresponding maps for the St. Patrick storm event30

at March 17, 2015 at 19:00 UT.

As already mentioned in the context of Eq. (43) it is expected that the detail signal (44) is dominated by structures parallel to

the geomagnetic equator. The detail signal g4,3(ϕi,λk, ts) shown in the two bottom panels meets these expectations. Especially
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Figure 9. VTEC maps ’codg’ (top left panel) and ’o1lg’ (mid left panel) as well as their standard deviation maps (right-hand side panels);

difference map of the two VTEC maps (bottom panel); all data for September 6, 2017 at 13:00 UT.

Figure 10. Distribution of the 10 IGS receiver stations used for the dSTEC analysis.
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Figure 11. RMS values for the products ’codg’ (green) and ’o1lg’ (blue) computed at the 9 receiver stations shown in Fig. 10. The values

in the parentheses in the legend are the average RMS values over all 10 receiver stations for the entire test period between September 1 and

September 30, 2017.

during the St. Patrick storm event the detail signal shows strong signatures. It should be mentioned that a large number of

estimated wavelet coefficients collected in the matrix C2
4,3 are characterized by absolute values smaller than a given threshold.

The neglect of these coefficients allows for a high data compression rate. Consequently, the number of significant coefficients

as the outcome of a MSR would go drastically below the number of scaling coefficients within the set (57) of Product 1; the

reader can get an impression on the number of neglected coefficients by paying attention to the light green and light blue colors5

in the panels of the two detail signals in Fig. 12. This advantageous feature of the MSR was not studied within this work but

will be applied and published in the future.

Next we focus on the solar storm during September 2017 and study the temporal sampling intervals of different GIMs. In

summary, we distinguish between six products of different spectral content and different sampling intervals. Figure 13 depicts

the RMS values computed by the dSTEC analysis at the stations shown in Fig. 10. It is assumed that a product with a larger10

sampling interval ∆T is less accurate than a product with a smaller sampling interval. Consequently, the average RMS values

of ’o2hg’ and ’o2lg’ are larger compared to the corresponding values for a shorter sampling interval. Furthermore, it is assumed

that RMS values for a product of higher B-spline levels, e.g. ’othg’, are smaller than for the corresponding product of lower

B-spline level values such as ’otlg’. By comparing the corresponding color bars in Fig. 13, i.e. orange (’o2lg’) vs. red (’o2hg’),

light blue (’o1lg’) vs. blue (’o1hg’) and green (’otlg’) vs. yellow (’othg’), the aforementioned assumptions are confirmed.15

The differences of the RMS values of the first three products, ’o2lg’, ’o1lg’ and ’otlg’, are caused by their different sampling

intervals. Comparing the mean RMS values of 0.92 TECU and 0.80 TECU for ’o2lg’ and ’o1lg’, respectively, we find a

relative improvement of approximately 13.0%. Decreasing the sampling from ∆T = 2 hours to ∆T = 10 minutes a further

improvement of 16.3% can be achieved. Comparing the RMS values 0.90 TECU, 0.72 TECU and 0.68 TECU of the products

’o2hg’, ’o1hg’ and ’othg’, respectively, we find relative improvements of 20% and 24.4% by downsizing the sampling interval20

from 2 hours to 1 hour and finally to 10 minutes. A summary of the relative improvements is given in Table 3.

In the next step we compare the quality of the Multi-Scale Products ’ophg’ and ’oplg’ directly. First, we compare ’o2lg’

with ’o2hg’ and obtain an improvement of approximately 2.2% . In the same manner for comparisons of ’o1lg’ with ’o1hg’

and ’otlg’ with ’othg’ improvements of 10.0% and 11.7% can be achieved. Table 4 shows the results for the comparison of

each pair of products; an improvement is in indicated by green colored numbers, a worsening by blue colored numbers. As a25

26



Figure 12. Multi-Scale VTEC Products for solar storm events: high resolution VTEC map ’ophg’ for September 8, 2017 (top left panel) and

for March 17, 2015 (top right panel); low resolution VTEC map ’oplg’ for September 8, 2017 (mid left panel) and for March 17, 2015 (mid

right panel); the bottom panels show the detail signals introduced in the equation block (68) and computed by means of Eq. (44) for the two

solar events.

consequence, an increase of the numerical value for level J1, i.e. the enhancement of the spectral resolution with respect to the

latitude yields a significant improvement in the RMS values as long as the temporal sampling ∆T is less than 2 hours. From the

investigations in Subsection 4.3 it could be concluded that the quality of product ’o2lg’ is comparable with the quality of the

IAAC products. It can be seen from Table 4 that there is a strong improvement of more than 26% by using the product ’othg’

instead of ’o2lg’. It is worth to be mentioned that both products are based on the same input data and are spatially related to5

each other by means of the MSR.
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Figure 13. RMS values for the products ’o2hg’, ’o1hg", ’othg’, ’o2lg’, ’o1lg’ and ’otlg’ computed at the 10 receiver stations shown in Fig.

10 during September 2017. The values in the parentheses in the legend are the average RMS values over all 10 receiver stations for the entire

test period between September 1 and September 30, 2017.

Table 3. Relative improvements in percentage for a downsizing of the sampling interval of the products ’o2lg’, ’o1lg’, ’otlg’, ’o2hg’, ’o1hg’

and ’otlg’.

Product RMS [TECU] Percentage Improvement

o2lg 0.92 100%

o1lg 0.80 87.0% 13.0%

otlg 0.77 83.7% 16.3%

o2hg 0.90 100%

o1hg 0.72 80.0% 20.0%

othg 0.68 75.6% 24.4%

4.5 Assessment of High Resolution VTEC Models

Since the product ’othg’ outperforms all other products used in the previous sections we now compare it with UPC’s product

’uqrg’ (Roma-Dollase et al., 2017) which provides smaller values in the relative standard deviation of their performed dSTEC

analysis in comparison to the products of other IAACs. ’uqrg’ is a rapid product and provided with a sampling interval ∆T = 15

minutes. Since the station ’NKLG’ is not used in the calculation of ’uqrg’ it is excluded from the calculation of the overall5

RMS value shown in the legend. As can be seen, the RMS values vary between 0.5 and 1.8 TECU but are mostly below 1.0

TECU. The dominant RMS value of ’uqrg’ at the station ’CHPI’ reduces its quality significantly. In the case of neglecting

’CHPI’, the mean RMS value of ’uqrg’ decrease to 0.59 TECU. Summarizing these investigations, we can state that the overall

quality of the two products is very similar. Considering the fact that ’othg’ is a NRT product with a latency of less than 3 hours,

it also outperforms ’uqrg’ which is a rapid product with a latency of around 1 day; cf. Table 2. However, for a final assessment10

further validation studies have to be performed between the different products.
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Table 4. Results in percentage of the comparisons of the high resolution products ’ophg’ with with the low resolution products ’oplg’.

Positive (green and red colored) numbers mean an improvement, negative (blue colored) values a reduction of the quality.

o2lg o1lg otlg

o2hg 2.2% -12.5% -16.9%

o1hg 21.7% 10.0% 6.5%

othg 26.1% 15.0% 11.7%

Figure 14. RMS values for the products ’uqrg’ and ’othg’ computed at 9 IGS receiver stations during September 2017. The values in the

parentheses in the legend are the average RMS values over all 9 receiver stations for the entire test period between September 1 and September

30, 2017.

5 Conclusions and Outlook

This paper presents an approach to model VTEC from NRT GNSS observations only by generating a MSR based on B-splines;

the unknown model parameters are estimated by means of an KF. Based on this approach, a number of products have been

created which differ both in their spectral content and in their temporal resolution. From our investigations we state that the

MSR provides B-spline models comparable to the standard GIMs of the IAACs, mostly based on SH expansions up to degree5

nmax = 15. As the core of the numerical study we compare our results with the most prominent VTEC maps of the IAACs to

rate the quality. Since the dSTEC analysis is the most frequently used validation method, we abandon here a comparison with

satellite altimetry products. As the outcome of the validation studies, it can be stated that the high resolution product ’othg’

outperforms all products used within the selected time span of investigation.

Besides the facts, that our models can handle data gaps because of the utilization of localizing basis functions, the application10

of a KF to include a dynamic prediction procedure and the use of the MSR to create products of different spectral content at

the same time, it shall be mentioned that DGFI-TUM’s products . . .

. . . are based on NRT GNSS observations only, i.e. are using input data with a latency of less then 3 hours (in opposite

’codg’ relies on post-processed data with a latency of larger than 3 weeks and ’uqrg’ on rapid data with a latency of at

least 1 day); cf. Table 215

. . . rely on specially developed software modules, cf. Fig. 15, e.g. the pre-processing module using ultra-rapid orbits

29



. . . can be disseminated to users with a delay of two to three hours.

Figure 15. DGFI-TUM’s processing modules, including (blue colored boxes) the download and pre-processing module for GNSS observa-

tions, the modeling module by means of B-splines, MSR and Kalman filtering (orange colored boxes) with possible output as Product 1 and

Product 2 (yellow colored boxes) and the validation module.

In general, the dissemination of these products to users can be done in two different ways, namely based on estimated scaling

coefficients (Product 1) or by calculated VTEC grid values (Product 2). For RT applications, however, the dissemination in

terms of Product 1 is preferred, in particular the usage of the RTCM format. In the scope of the developments in the recent

years, RT applications become more important, e.g. in unmanned or autonomous vehicle development, and thus, the restriction5

of the RTCM message to allow only for SH coefficients needs urgently to be discussed. Especially from the point of view

that there are also other modelling methods, a modification of the RTCM format would be appropriate. The MSR allows for

a significant data compression obtained due the step-wise downsampling of the scaling coefficients according to the pyramid

algorithm. Details represented in the signal fJ1,J2 of the 0th step are stored in wavelet coefficients for the following steps, cf.

Fig. 5. A large number of estimated wavelet coefficients are characterized by absolute values smaller than a given threshold10

and thus, most of them can be neglected for the reconstruction of the original signal. Hence, the overall number of scaling and

wavelet coefficients can be reduced drastically. Considering this powerful feature of data compression we propose to replace

the scaling coefficients of the highest levels by the significant wavelet coefficients of the lower levels for a definition of an

alternative and more appropriate format for data dissemination in terms of Product 1.

The presented results encourage the further development of high accuracy VTEC maps. By extending the models by a15

fourth dimension, i.e. modelling of the electron density directly, inaccuracies due to the mapping function can be avoided. To

model the vertical structure of the electron density, additional observations have to be incorporated, e.g. from DORIS, satellite

altimetry and ionospheric radio occultations. This would mitigate the inhomogeneity of the data distribution and thus even

higher levels of the B-spline expansion can be chosen.
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