

1 Notes on the correlation between SSWs and solar activity
2
3 Ekaterina Vorobeva (st062133@student.spbu.ru)
4
5 Department of Atmospheric Physics, Saint-Petersburg State University, Universitetskaya
6 Emb. 7/9, 199034, Saint-Petersburg, Russia
7

8 **Abstract**
9 A correlation between solar activity and normalized occurrence rate of sudden stratospheric
10 warmings (SSWs) has been found. As a proxy for solar activity, F10.7 cm radio flux has been
11 used. In order to find the correlation, we derived a normalized occurrence rate of MSSWs
12 based on both ERA40/ERA-Interim dataset and NCEP data. Based on this distribution, we
13 calculated the correlation coefficient, which amounts to 0.6314, with a significance of 90.68%
14 for ERA40/ERA-Interim, and 0.5455 for NCEP-NCAR-I, with a significance of 83.80%.
15 Additionally, we calculate correlation coefficients for Lyman-alpha flux and sunspot numbers
16 with the analogous method for the same period.

17
18 Keywords: Middle atmosphere – composition and chemistry; Waves and tides; Middle
19 atmosphere dynamics
20

21 **1. Introduction**
22

23 In the middle of the last century, Scherhag (1952) and Scrase (1953) independently found an
24 incident of sudden stratospheric warming (SSW). A corresponding mesospheric cooling has
25 been found shortly after (Quiroz, 1969). The SSW effect is manifested in sudden and short
26 (several days) increase in temperature (up to 60 K) in stratosphere and joint cooling in the

27 mesosphere at high and middle latitudes during winter. More strict definition of SSW one can
28 find in any review on this subject (e.g. Butler et al., 2015). According with current knowledge
29 (see e.g. Shepherd et al., 2014; Zölicke et al., 2018; and references therein) the genesis of the
30 effect goes from mesopause at high latitudes toward stratosphere at middle latitudes with peak
31 of intensity around 65° N. There are two types of sudden stratospheric warmings: minor
32 warmings and major warmings. Minor warmings also consist of the temperature increase, but
33 at 10 hPa it is about 30 K smaller than for major warmings. The main difference is that unlike
34 to the major warming, during the minor one, the zonal wind weakens but does not reverse the
35 direction (e.g. Labitzke, 1981). In this study, we consider just major sudden stratospheric
36 warming effect.

37 SSW events play a rather important role in atmospheric investigations not only because these
38 pronounced events have impacts on all processes in the middle atmosphere but also because
39 they provide a natural examination of our understanding of atmospheric interactions. The first
40 step to understanding the nature of SSWs was the theory of planetary waves (PWs)
41 propagation by Charney and Drazin (1961), who derived the dispersion relationship for
42 vertically propagating Rossby waves. The theoretical explanation was proposed by Dickinson
43 (1968a,b; 1969a,b) and consists of an interaction of PWs which penetrate into the winter
44 middle atmosphere and affect general mean circulation when they dissipate. Steady
45 dissipating waves can weaken the zonal mean flow and maintain the winter stratosphere
46 above radiative equilibrium temperatures (Dickinson, 1969b). This theory was confirmed by
47 model simulations (Matsuno, 1970, 1971). Currently, this explanation is generally accepted;
48 nevertheless, we should note that there are alternatives. For example, based on model
49 simulations, Peters (1985 a,b) found that SSW-like effects may occur due to nonlinear wave–
50 wave interactions. However, the role of wave–wave interaction during SSWs is not clear until
51 the present time. Recently, Gavrilov et al. (2017) have touched upon this problem.

52 Since SSWs have been observed and modeled in numerous works (e.g. Holton, 1976;
53 Schoeberl, 1978; Tao, 1994; Siskind et al., 2005; Smith et al., 2011, and references therein),
54 the topic has attracted genuine interest in all fields of atmospheric science. Using a 3D model,
55 Sonnemann et al. (2006) studied the distributions of minor chemical species in the mesopause
56 region in time of SSWs. The most-detailed investigation of the variability of the hydroxyl
57 airglow layer during SSWs has been represented in the work of Shepherd et al. (2010). The
58 response of OH* and the infrared atmospheric band has been found by satellite observations
59 (Gao et al., 2011), and Shepherd et al. (2014) investigated the impact of this phenomenon on
60 distributions of CO and NO_x based on a joint analysis of model simulation and satellite
61 observations. The impact of SSWs on the secondary ozone layer has been highlighted in the
62 work of Tweedy et al. (2013) based on model simulations and in Smith et al. (2009) based on
63 the SABER instrument onboard the TIMED satellite. The temperature and dynamic structure
64 of the mesopause region during sudden stratospheric warmings were investigated by
65 reanalysis data (Siskind et al., 2010) and based on a global circulation model by Zülicke and
66 Becker (2013). A large number of works are devoted to the role and propagations of gravity
67 waves in times of SSWs (Limpasuvan et al., 2011, 2012; McLandress et al., 2012; de Wit et
68 al., 2014; Ern et al., 2016). Recently, an effect on the troposphere (Hinssen et al., 2011) and
69 equatorial latitudes has been found (Bal et al., 2017). More about SSWs and related fields can
70 be found in reviews of this subject (e.g. Holton, 1980; McIntyre, 1982; Plumb, 2010; Butler et
71 al., 2015).
72 One of the strongest effects on the nature of Earth comes from the sun (Seppälä et al., 2014);
73 hence, naturally, the question of what the effect of solar variations on the SSW occurrence
74 rate arises. The strongest solar variation is the 11-year solar cycle. Labitzke and van Loon
75 (1990) did not find any significant correlation between the 11-year solar cycle and MSSWs
76 based on their analysis of F10.7 flux. Nevertheless, Labitzke (2004, and references therein)
77 showed that such a correlation exists for MSSW events distributed by phases of QBO (quasi

78 biennial oscillation). This is partially in contradiction with work of Sonnemann and
79 Grygalashvly (2007), who found such a correlation without a relationship to QBO phases
80 based on an analysis of Lyman-alpha flux and sunspot numbers. The reason for the
81 discrepancy is either the difference in fluxes or methods.

82 We decided to narrow this gap in the knowledge and conduct an analysis of the solar radio
83 flux at 10.7 cm (F10.7 flux). However, based on SSW statistics and F10.7 radio flux, we
84 derived a normalized occurrence rate for MSSW events. The data, method, and results are
85 described in Sect. 2, followed by concluding remarks in the last section.

86

87 **2. Data, Method, and Result**

88

89 We investigate the statistical connection between MSSWs and solar activity. As a proxy for
90 solar activity, we use F10.7 radio flux (http://lasp.colorado.edu/lisird/data/noaa_radio_flux/).
91 Because MSSWs are phenomena that commonly occur from December until March (Charlton
92 and Polvani, 2007), we calculated monthly mean values of F10.7 radio flux for December,
93 January, February, and March through the entire period from 1958 to 2013. The lowest mean
94 F10.7 radio flux value did not fall below 67 solar flux units (sfu). The uppermost value did
95 not exceed 267 sfu. We chose a difference of 25 sfu for the flux subdivision (8 subintervals)
96 and calculated a number of monthly mean F10.7 radio flux values which fell into each
97 subinterval (Fig. 1a).

98 Next, we calculated the mean F10.7 flux values for the month prior to the MSSWs' central
99 day (the day when zonal mean zonal wind at 10 hPa becomes negative). In this study, we used
100 two databases of central day. The first database combines the central day of MSSW events
101 from ERA-40 reanalysis for the period 1958 to 1979 and ERA-interim reanalysis for the
102 period 1979 to 2013 (Butler et al., 2017). The central days by NCEP-NCAR-I reanalysis
103 (Butler et al., 2017) were used as the second database. Then, we calculated the number of

104 MSSWs that occurred in each F10.7 radio flux subinterval (Fig. 1b) based on two databases of
105 central day. The dependence of MSSWs on F10.7 flux is rather negative (Fig. 1b), but we
106 should take into account that the distribution of wintertime monthly averaged values of F10.7
107 flux is non-uniform. The values corresponding to low solar activity occur most often, and
108 values corresponding to high solar activity are rare. Hence, for calculations of correlation
109 between MSSW and F10.7, MSSW occurrence rate should be normalized. We calculated the
110 MSSWs' occurrence rate normalized to the occurrence rate of F10.7 flux values as shown in
111 Sonnemann and Grygalashvily (2007):

$$112 R^i = \frac{\left(\frac{N_{\text{MSSW}}^i}{N_{\text{F10.7}}^i} \right) \sum N_{\text{MSSW}}^i}{\sum \left(\frac{N_{\text{MSSW}}^i}{N_{\text{F10.7}}^i} \right)}, \quad i = 1, \dots, 8, \quad (1)$$

113 where $N_{\text{F10.7}}^i$ and N_{MSSW}^i are the number of F10.7 flux values and number of MSSWs in
114 subinterval i , respectively.

115 Fig. 1c illustrates dependence between the normalized occurrence rate of MSSWs and the
116 values of F10.7 flux according to Eq. (1) for ERA and NCEP-NCAR-I databases. We
117 conducted the correlation analysis for the normalized occurrence rate of MSSWs and the
118 F10.7 flux values with 8 subdivisions (Fig. 1d). The correlation coefficient equals 0.6314 for
119 the ERA case and 0.5455 for the NCEP-NCAR-I case. The significance amounts to 90.68%
120 and 83.80% for ERA and NCEP-NCAR-I, respectively. The results demonstrate a distinct
121 statistical connection between the normalized MSSW events and the F10.7 flux values. Our
122 correlation coefficients are smaller than those of Sonnemann and Grygalashvily (2007),
123 probably, because we use different periods.

124 It is not the aim of this contribution to discuss consequences and reasons, but a possible
125 explanation for the correlation is the impact of solar activity either on PWs strength and
126 activity or on propagation conditions (e.g. Arnold and Robinson, 1998; Fröhlich and Jacobi,
127 2004). Recently, Koval et al. (2018) found that solar activity might affect meridional

128 temperature gradients and consequently change the vertical structure of the zonal wind and
129 PWs' propagation conditions. This may point to a potential explanation. Another one
130 possibility to explain obtained correlation is the interaction of cosmic rays (which anti-
131 correlate with solar activity) with atmosphere, and, particularly, with stratosphere, and have
132 an impact on climate (see Fig. 7 in Usoskin (2017) and corresponding discussion).

133 The F10.7 radio flux differs by the nature from the Lyman-alpha flux and sunspot numbers
134 (Bruevich et al., 2014; Mei et al., 2018). Thus, the information about correlation coefficients
135 for the same database and method potentially can be useful to identify possible reasons of
136 correlation. Hence, such correlation coefficients with corresponding significance are
137 calculated and stored in the Table 1.

138

139 **3. Summary**

140

141 We investigated the statistical relationship between solar activity and occurrence rate of major
142 sudden stratospheric warmings (MSSWs). For this purpose, F10.7 radio flux has been used as
143 a proxy for solar activity. The calculations have been performed based on two datasets of
144 central day (NCEP-NCAR-I and combined ERA) for the period from 1958 to 2013. The
145 analysis of calculations was based on the normalized MSSW occurrence rate. The analysis
146 revealed a positive correlation between MSSW events and solar activity with a correlation
147 coefficient equals 0.6314 for the ERA case and 0.5455 for the NCEP-NCAR-I case. Note that
148 the correlation is necessary but not a sufficient condition for a relationship between the two
149 phenomena. The nature of the correlation is still not clear, and further investigations in this
150 direction are necessary.

151

152

153

154 **Data availability.**

155 The F10.7 and Lyman- α solar flux data are available at <http://lasp.colorado.edu/lisird/>. The
156 sunspot numbers data are accessible at <https://www.ngdc.noaa.gov/stp/solar/ssndata.html>.

157

158 **Acknowledgements.**

159

160 The author is grateful to her teachers Prof. Dr. V. A. Yankovsky, Prof. Dr. G. Sved, and Prof.
161 Dr. E. L. Genikhovich.

162

163

164

165 **References**

166

167 Arnold, N. F., Robinson, T. R.: Solar cycle changes to planetary wave propagation and their
168 influence on the middle atmosphere circulation, Ann. Geophys., 16, 69-76,
169 <https://doi.org/10.1007/s00585-997-0069-3>, 1998.

170

171 Bal, S., Schimanke, S., Spangehl, T., and Cubasch, U.: Variable influence on the equatorial
172 troposphere associated with SSW using ERA-Interim, J. Earth Syst. Sci., 126, 1-13, DOI
173 10.1007/s12040-017-0802-6, 2017.

174

175 Bruevich, E. A., Bruevich, V. V., and Yakunina. G. V.: Changed Relation between Solar
176 10.7-cm Radio Flux and some Activity Indices which describe the Radiation at Different
177 Altitudes of Atmosphere during Cycles 21–23, J. Astrophys. Astr., 35, 1–15, DOI:
178 10.1007/s12036-014-9258-0, 2014.

179

180 Butler A. H., Seidel, D., Hardiman, S., Butchart, N., Birner, T., and Match, A.: Defining
181 sudden stratospheric warmings, Bull. Amer. Meteor. Soc., 96, 1913–1928,
182 <https://doi.org/10.1175/BAMS-D-13-00173.1>, 2015.

183

184 Butler A. H., Sjoberg J. P., Seidel D. J., Rosenlof K. H.: A sudden stratospheric warming
185 compendium, J. Earth Syst. Sci. Data, 9, 63–76, doi 10.5194/essd-9-63-2017, 2017.

186

187 Charlton, A. J., and Polvani, L. M.: A new look at stratospheric sudden warmings. Part I.
188 Climatology and modeling benchmarks, J. Clim., 20, 449–469,
189 <https://doi.org/10.1175/JCLI3996.1>, 2007.

190

191 Charlton, A. J., Polvani, L. M., Perlitz, J., et al.: A new look at stratospheric sudden
192 warmings. Part II. Evaluation of model simulations, J. Clim., 20, 470–488,
193 <https://doi.org/10.1175/JCLI3994.1>, 2007.

194

195 Charney, J. G., and Drazin, P. G.: Propagation of planetary-scale disturbances from the lower
196 into the upper atmosphere, J. Geophys. Res., 66, 83–109,
197 <https://doi.org/10.1029/JZ066i001p00083>, 1961.

198

199 de Wit, R. J., Hibbins, R. E., Espy, P. J., Orsolini, Y. J., Limpasuvan, V., and Kinnison, D. E.:
200 Observations of gravity wave forcing of the mesopause region during the January 2013 major
201 Sudden Stratospheric Warming, Geophys. Res. Lett., 41, 4745–4752,
202 doi:10.1002/2014GL060501, 2014.

203

204 Dickinson, R. E.: On the exact and approximate linear theory of vertically propagating
205 planetary Rossby waves forced at a spherical lower boundary, *Mon. Weather Rev.*, 96, 405–
206 415, 1968a.

207

208 Dickinson, R. E.: Planetary Rossby waves propagating vertically through weak westerly wind
209 wave guides, *J. Atmos. Sci.*, 25, 984–1002, 1968b.

210

211 Dickinson, R. E.: Vertical propagation of planetary Rossby waves through an atmosphere
212 with Newtonian cooling, *J. Geophys. Res.*, 74, 929–938, 1969a.

213

214 Dickinson, R. E.: Theory of planetary wave-zonal flow interaction, *J. Atmos. Sci.*, 26, 73–81,
215 1969b.

216

217 Ern, M., Trinh, Q. T., Kaufmann, M., Krisch, I., Preusse, P., UngermaNN, J., Zhu, Y., Gille, J.
218 C., Mlynczak, M. G., Russell III, J. M., Schwartz, M. J., and Riese, M.: Satellite observations
219 of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient
220 during recent stratospheric warmings, *Atmos. Chem. Phys.*, 16, 9983–10019,
221 <https://doi.org/10.5194/acp-16-9983-2016>, 2016.

222

223 Fröhlich, K., and Jacobi, Ch.: The solar cycle in the middle atmosphere: changes of the mean
224 circulation and of propagation conditions for planetary waves, *Rep. Inst. Meteorol. Univ.*
225 Leipzig 34, 106–117, 2004.

226

227 Gao, H., Xu, J., Ward, W., and Smith, A. K.: Temporal evolution of nightglow emission
228 responses to SSW events observed by TIMED/SABER, *J. Geophys. Res.*, 116, D19110,
229 doi:10.1029/2011JD015936, 2011.

230

231 Gavrilov, N. M., Koval, A. V., Pogoreltsev, A. I., and Savenkova, E. N.: Numerical
232 Simulation of Wave Interactions during Sudden Stratospheric Warming, *Izvestiya Atmos.*
233 *Ocean. Phys.*, 53(6), 674–685, DOI: 10.1134/S0001433817060044, 2017.

234

235 Hinssen, Y., van Delden, A., and Opsteegh, T.: Influence of sudden stratospheric warmings
236 on tropospheric winds, *Meteorol. Zeitschr.*, 20(3), 259-266, DOI: [10.1127/0941-
237 2948/2011/0503](https://doi.org/10.1127/0941-2948/2011/0503), 2011.

238

239 Holton, J. R.: A semi-spectral numerical model for wave-mean flow interactions in the
240 stratosphere: Application to sudden stratospheric warmings, *J. Atmos. Sci.*, 33, 1639–1649,
241 [https://doi.org/10.1175/1520-0469\(1976\)033<1639:ASSNMF>2.0.CO;2](https://doi.org/10.1175/1520-0469(1976)033<1639:ASSNMF>2.0.CO;2), 1976.

242

243 Holton, J. R.: The dynamics of sudden stratospheric warmings, *Ann. Rev. Earth Planet. Sci.*,
244 8, 169-190, 1980.

245

246 Kouker, W., and Brasseur, G.: Transport of atmospheric tracers by planetary waves during a
247 winter stratospheric warming event: A three-dimensional model simulation, *J. Geophys. Res.*,
248 91, 13,167– 13,185, <https://doi.org/10.1029/JD091iD12p13167>, 1986.

249

250 Koval, A.V., Gavrilov, N. M., Pogoreltsev, A. I., Shevchuk, N. O.: Propagation of stationary
251 planetary waves to the thermosphere at different levels of solar activity, *J. Atmos. Sol. Terr.
252 Phys.*, 173, 140-149, <https://doi.org/10.1016/j.jastp.2018.03.012>, 2018.

253

254 Labitzke, K.: Stratospheric-mesospheric midwinter disturbance: A summary of
255 characteristics, *J. Geophys. Res.*, 86, 9665– 9678, <https://doi.org/10.1029/JC086iC10p09665>,
256 1981.

257

258 Labitzke, K.: Sunspots, the QBO, and stratospheric temperatures in the north polar region,
259 *Geophys. Res. Lett.*, 14, 535–537, <https://doi.org/10.1029/GL014i005p00535>, 1987.

260

261 Labitzke, K.: The global signal of the 11-year sunspot cycle in the stratosphere: Differences
262 between solar maxima and minima, *Meteorol. Zeitschr.*, 10, 83– 90, DOI: 10.1127/0941-
263 2948/2001/0010-0083, 2001.

264

265 Labitzke, K.: On the signal of the 11-year sunspot cycle in the stratosphere over the Antarctic
266 and its modulation by the Quasi-Biennial Oscillation, *J. Atmos. Sol. Terr. Phys.*, 66, 1151-
267 1157, <https://doi.org/10.1016/j.jastp.2004.05.011>, 2004.

268

269 Labitzke, K., and van Loon, H.: The state of the atmosphere on the Northern Hemisphere at
270 solar maximum, July 1989 - February 1990, *Beilage zur Berliner Wetterkarte*, SO 6/90. In:
271 *Meteorolog. Abh.*, FU-Berlin, Band 64, No.4, 1990.

272

273 Labitzke, K., Kunze, M., and Brönnimann, S.: Sunspots, the QBO, and the stratosphere in the
274 North Polar region - 20 years later, *Meteorol. Zeitschr.*, 15(3), 355– 363,
275 <https://doi.org/10.1127/0941-2948/2006/0136>, 2006.

276

277 Limpasuvan, V., Alexander, M. J., Orsolini, Y. J., Wu, D. L., Xue, M., Richter, J. H., and
278 Yamashita, C.: Mesoscale simulations of gravity waves during the 2008–2009 major

279 stratospheric sudden warming, *J. Geophys. Res.*, 116, D17104, doi:10.1029/2010JD015190,
280 2011.

281

282 Limpasuvan, V., Richter, J. H., Orsolini, Y. J., Stordal, F., and Kvissel, O.-K.: The roles of
283 planetary and gravity waves during a major stratospheric sudden warming as characterized in
284 WACCM, *J. Atmos. Sol.-Terr. Phys.*, 78–79, 84–98, doi:10.1016/j.jastp.2011.03.004, 2012.

285

286 Liu, H. L., and Roble, R. G.: A study of a self-generated stratospheric sudden warming and its
287 mesospheric–lower thermospheric impacts using the coupled TIME-GCM/CCM3, *J.*
288 *Geophys. Res.*, 107 (D23), 4695, <https://doi.org/10.1029/2001JD001533>, 2002.

289

290 Matsuno, T.: Vertical propagation of stationary planetary waves in the winter northern
291 hemisphere, *J. Atmos. Sci.*, 27, 871–883, DOI: 10.1175/1520-
292 0469(1970)027<0871:VPOSPW>2.0.CO;2, 1970.

293

294 Matsuno, T.: A dynamical model of the stratospheric sudden warming. *J. Atmos. Sci.*, 28,
295 1479–1494, [https://doi.org/10.1175/1520-0469\(1971\)028%3C1479:ADMOTS%3E2.0.CO;2](https://doi.org/10.1175/1520-0469(1971)028%3C1479:ADMOTS%3E2.0.CO;2),
296 1971.

297

298 McIntyre, M. E.: How well do we understand the dynamics of stratospheric warmings?, *J.*
299 *Meteorol. Soc. Jpn.*, 60, 37–65, https://doi.org/10.2151/jmsj1965.60.1_37, 1982.

300

301 McLandress, C., Scinocca, J. F., Shepherd, T. G., Reader, M. C. and Manney, G. L.:
302 Dynamical control of the mesosphere by orographic and nonorographic gravity wave drag
303 during the extended northern winters of 2006 and 2009, *J. Atmos. Sci.*, 70, 2152–2169, doi:
304 <https://doi.org/10.1175/JASD120297.1>, 2013.

305

306 Mei, Y., Deng, H., and Wang, F.: On midrange periodicities in solar radio flux and sunspot
307 areas, *Astrophys. Space Sci.*, 363, 84, <https://doi.org/10.1007/s10509-018-3306-1>, 2018.

308

309 Peters, D.: Zur resonanten Wechselwirkung von planetaren Wellen in einem
310 Zweischichtenmodell unter Berücksichtigung der externen Anregung einer Welle. Teil1: Der
311 Amplitudenverlauf, *Z. Meteorol.*, 35(5), 239-251, 1985a.

312

313 Peters, D.: Zur resonanten Wechselwirkung von planetaren Wellen in einem
314 Zweischichtenmodell unter Berücksichtigung der externen Anregung einer Welle. Teil2: Die
315 zonal gemittelte Bewegung, *Z. Meteorol.*, 35(5), 252-256, 1985b.

316

317 Plumb, R. A.: Planetary waves and the extratropical winter stratosphere, *Stratos. Dyn. Transp.*
318 *Chem., Geophys. Monogr. Ser.*, 190, 23–41, <https://doi.org/10.1002/9781118666630.ch2>,
319 2010.

320

321 Quiroz, R. S.: The warming of the upper stratosphere in February 1966 and the associated
322 structure of the mesosphere, *Mon. Weather Rev.*, 97, 541, [https://doi.org/10.1175/1520-0493\(1969\)097<0541:TWOTUS>2.3.CO;2](https://doi.org/10.1175/1520-0493(1969)097<0541:TWOTUS>2.3.CO;2), 1969.

324

325 Shepherd, M. G., Cho, Y.-M., Shepherd, G. G., Ward, W., and Drummond, J. R.:
326 Mesospheric temperature and atomic oxygen response during the January 2009 major
327 stratospheric warming, *J. Geophys. Res.*, 115, A07318, doi:10.1029/2009JA015172, 2010.

328

329 Shepherd, M. G., Beagley, S. R., and Fomichev, V. I.: Stratospheric warming influence on the
330 mesosphere/lower thermosphere as seen by the extended CMAM, *Ann. Geophys.*, 32, 589–
331 608, doi:10.5194/angeo-32-589-2014, 2014.

332

333 Scherhag, R.: Die explosionsartige Stratosphärenerwärmung des Spätwinters 1951/1952, *Ber.*
334 *Deut. Wetterdienst*, 6, 51–63, 1952.

335

336 Schoeberl, M. R.: Stratospheric warmings: Observations and theory, *Rev. Geophys.*, 16, 521–
337 538, <https://doi.org/10.1029/RG016i004p00521>, 1978.

338

339 Scrase, F. J.: Relatively high stratospheric temperatures of February 1951, *Meteorol. Mag.*,
340 82, 19– 27, 1953.

341

342 Seppälä, A., Matthes, K., Randall, C. E., and Mironova, I. A.: What is the solar influence on
343 climate? Overview of activities during CAWSES-II, *Progress in Earth and Planetary Sci.*,
344 1:24, doi:10.1186/s40645-014-0024-3, 2014.

345

346 Siskind, D. E., Coy, L., and Espy, P.: Observations of stratospheric warmings and
347 mesospheric cooling by the TIMED SABER instrument, *Geophys. Res. Lett.*, 32, L09804,
348 <https://doi.org/10.1029/2005GL022399>, 2005.

349

350 Siskind, D. E., Eckermann, S. D., McCormack, J. P., Coy, L., Hoppel, K. W., and Baker, N.
351 L.: Case studies of the mesospheric response to recent minor, major, and extended
352 stratospheric warmings, *J. Geophys. Res.*, 115, D00N03, doi:10.1029/2010JD014114, 2010.

353

354 Smith, A. K., López-Puertas, M., García-Comas, M., and Tukiainen, S.: SABER observations
355 of mesospheric ozone during NH late winter 2002–2009, *Geophys. Res. Lett.*, 36, L23804,
356 doi:10.1029/2009GL040942, 2009, 2009.

357

358 Smith, A. K., Garcia, R. R., Marsh, D. R., and Richter, J. H.: WACCM simulations of the
359 mean circulation and trace species transport in the winter mesosphere, *J. Geophys. Res.*, 116,
360 D20115, doi:10.1029/2011JD016083, 2011.

361

362 Sonnemann, G. R., and Grygalashvily, M.: The relationship between the occurrence rate of
363 major stratospheric warmings and solar Lyman-alpha flux, *J. Geophys. Res.*, 112, D20101,
364 doi:10.1029/2007JD008718, 2007.

365

366 Sonnemann, G. R., Grygalashvily, M., and Berger, U.: Impact of a stratospheric warming
367 event in January 2001 on the minor constituents in the MLT region calculated on the basis of
368 a new 3D-model LIMA of the dynamics and chemistry of the middle atmosphere, *J. Atmos.*
369 *Sol. Terr. Phys.*, 68, 2012–2025, DOI: 10.1016/j.jastp.2006.04.005, 2006.

370

371 Tao, X.: Wave-mean flow interaction and stratospheric warming in an isentropic model, *J.*
372 *Atmos. Sci.*, 51, 134–153, 1994.

373

374 Tapping, K. F.: The 10.7 cm solar radio flux ($F_{10.7}$), *Space Weather*, 11, 394–406,
375 doi:10.1002/swe.20064, 2013.

376

377 Tweedy, O. V., Limpasuvan, V., Orsolini, Y. J., Smith, A. K., Garcia, R. R., Kinnison, D.,
378 Randall, C. E., Kvissel, O.-K., Stordal, F., Harvey, V. L., and Chandran, A.: Nighttime

379 secondary ozone layer during major stratospheric sudden warmings in specified-dynamics
380 WACCM, J. Geophys. Res. Atmos., 118, 8346–8358, doi:10.1002/jgrd.50651, 2013.

381

382 Usoskin, I. G.: A history of solar activity over millennia, Living Rev. Sol. Phys., 14, 1-97,
383 <https://doi.org/10.1007/s41116-017-0006-9>, 2017.

384

385 van Loon, H., and Labitzke, K: The influence of the 11-year solar cycle on the stratosphere
386 below 30 km: A review, Space Sci. Rev., 94, 259– 278, 2000.

387

388 Vitinsky, Yu., Kopezky, M., Kuklin G.: Statistics of Sunspot Formation Activity, Moscow,
389 Nauka Press., 1986.

390

391 Zülicke, C., and Becker, E.: The structure of the mesosphere during sudden stratospheric
392 warmings in a global circulation model, J. Geophys. Res., 118, 2255-2271,
393 doi:10.1002/jgrd.50219, 2013.

394

395 Zülicke, C., Becker, E., Matthias, V., Peters, D. H. W., Schmidt, H., Liu, H.-Li, de la Torre-
396 Ramos, H., and Mitchell, D. M.: Coupling of stratospheric warmings with mesospheric
397 coolings in observations and simulations, J. Climate, 31, 1107-1133, doi:10.1175/JCLI-D-17-
398 0047.1, 2018.

399

400

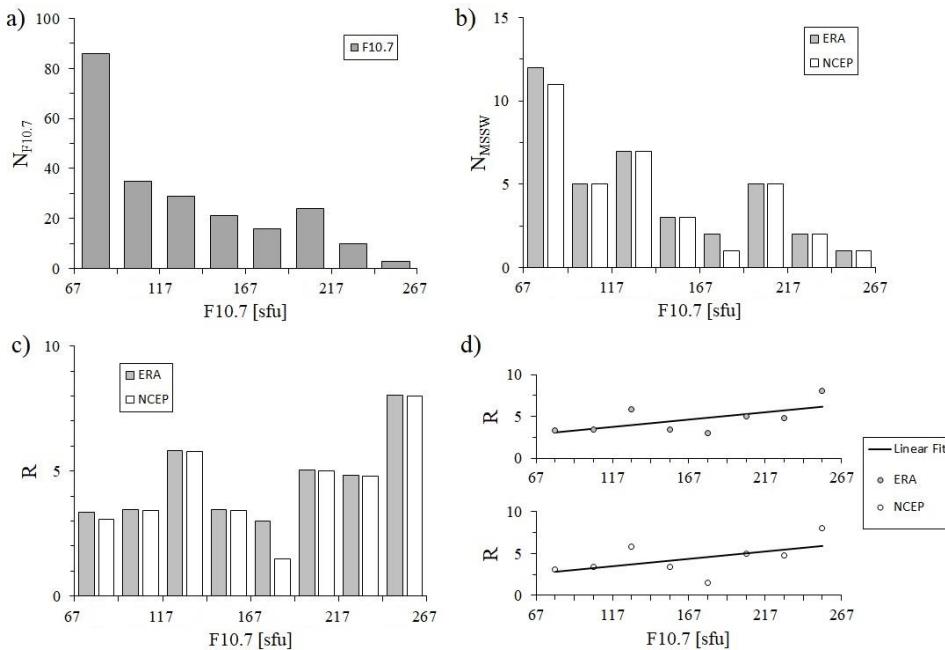
401

402

403

404

405 **Tables.**


406 Table 1. Values of the correlation coefficient between solar activity and MSSWs for different
407 proxies. The number of subintervals is the same for all calculations.

	F10.7 radio flux	American Sunspot numbers	Lyman-alpha flux
ERA40/ERA-Interim	0.6314 90.68%	0.5780 86.66%	0.5408 83.36%
NCEP-NCAR-I	0.5455 83.80%	0.4879 78.00%	0.5770 86.57%

408

409 **Figures.**

410

411

412 **Figure 1.** a) Monthly mean F10.7 flux values between 1958 and 2013 of 4 months between
413 December and March; b) the number of MSSWs depending on F10.7 flux values; c)
414 normalized occurrence rate of MSSWs depending on F10.7 flux values; d) correlation
415 analysis for normalized occurrence rate of MSSWs and F10.7 flux values.

416