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Abstract 8 

A correlation between solar activity and normalized occurrence rate of sudden stratospheric 9 

warmings (SSWs) has been found. As a proxy for solar activity, the 10.7 cm solar radio flux 10 

has been used. In order to find the correlation, we derived a normalized occurrence rate of 11 

MSSWs based on both ERA40/ERA-Interim dataset and NCEP data. Based on this 12 

distribution, we calculated the correlation coefficient, which amounts to 0.63, with a 13 

significance of 90.68% for ERA40/ERA-Interim, and 0.55 for NCEP-NCAR-I, with a 14 

significance of 83.80%. Additionally, we calculate correlation coefficients for Lyman-alpha 15 

flux and sunspot numbers with the analogous method for the same period. 16 
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1. Introduction 21 

 22 

In the middle of the last century, Scherhag (1952) and Scrase (1953) independently found an 23 

incident of sudden stratospheric warming (SSW). A corresponding mesospheric cooling has 24 

been found shortly after (Quiroz, 1969). The SSW effect is manifested in sudden and short 25 

(several days) increase in temperature (up to 60 K) in the stratosphere and joint cooling in the 26 



2 

 

mesosphere at high and middle latitudes during winter. More strict definition of SSW one can 27 

find in reviews on this subject (e.g. Butler et al., 2015). According to current knowledge (see 28 

e.g. Shepherd et al., 2014; Zülicke et al., 2018; and references therein) the genesis of the 29 

effect goes from mesopause at high latitudes toward stratosphere at middle latitudes with peak 30 

of intensity around 65° N. There are two types of sudden stratospheric warmings: minor 31 

warmings and major warmings. Minor warmings also consist of the temperature increase, but 32 

at 10 hPa it is about 30 K smaller than for major warmings. The main difference is that unlike 33 

to the major warming, during the minor one, the zonal wind weakens but does not reverse the 34 

direction (e.g.  Labitzke, 1981). In this study, we consider just major sudden stratospheric 35 

warming effect. 36 

SSW events play a rather important role in atmospheric investigations not only because these 37 

pronounced events have impacts on all processes in the middle atmosphere but also because 38 

they provide a natural examination of our understanding of atmospheric interactions. The first 39 

step to understanding the nature of SSWs was the theory of planetary waves (PWs) 40 

propagation by Charney and Drazin (1961), who derived the dispersion relationship for 41 

vertically propagating Rossby waves. The theoretical explanation was proposed by Dickinson 42 

(1968a,b; 1969a,b) and consists of an interaction of PWs which penetrate into the winter 43 

middle atmosphere and affect general mean circulation when they dissipate. Steady 44 

dissipating waves can weaken the zonal mean flow and maintain the winter stratosphere 45 

above radiative equilibrium temperatures (Dickinson, 1969b). This theory was confirmed by 46 

model simulations (Matsuno, 1970, 1971). Currently, this explanation is generally accepted; 47 

nevertheless, we should note that there are alternatives. For example, based on model 48 

simulations, Peters (1985 a,b) found that SSW-like effects may occur due to nonlinear wave–49 

wave interactions. However, the role of wave–wave interaction during SSWs is not clear until 50 

the present time. Recently, Gavrilov et al. (2017) have touched upon this problem. 51 
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Since SSWs have been observed and modeled in numerous works (e.g. Holton, 1976; 52 

Schoeberl, 1978; Tao, 1994; Siskind et al., 2005; Smith et al., 2011, and references therein), 53 

the topic has attracted genuine interest in all fields of atmospheric science. Using a 3D model, 54 

Sonnemann et al. (2006) studied the distributions of minor chemical species in the mesopause 55 

region in time of SSWs. The most-detailed investigation of the variability of the hydroxyl 56 

airglow layer during SSWs has been represented in the work of Shepherd et al. (2010). The 57 

response of OH* and the infrared atmospheric band has been found by satellite observations 58 

(Gao et al., 2011), and Shepherd et al. (2014) investigated the impact of this phenomenon on 59 

distributions of CO and NOx based on a joint analysis of model simulation and satellite 60 

observations. The impact of SSWs on the secondary ozone layer has been highlighted in the 61 

work of Tweedy et al. (2013) based on model simulations and in the work Smith et al. (2009) 62 

based on the SABER instrument onboard the TIMED satellite. The temperature and dynamic 63 

structure of the mesopause region during sudden stratospheric warmings were investigated by 64 

reanalysis data (Siskind et al., 2010) and based on a global circulation model (Zülicke and 65 

Becker, 2013). A large number of works are devoted to the role and propagations of gravity 66 

waves in times of SSWs (Limpasuvan et al., 2011, 2012; McLandress et al., 2013; de Wit et 67 

al., 2014; Ern et al., 2016). Recently, an effect on the troposphere (Hinssen et al., 2011) and 68 

equatorial latitudes has been found (Bal et al., 2017). More about SSWs and related fields can 69 

be found in reviews of this subject (e.g. Holton, 1980; McIntyre, 1982; Plumb, 2010; Butler et 70 

al., 2015). 71 

Solar irradiance strongly affects the Earth’s atmosphere and climate (Seppälä et al., 2014); 72 

hence, naturally, the question of what the effect of solar variations on the SSW occurrence 73 

rate arises. The strongest solar variation is the 11-year solar cycle. Labitzke and van Loon 74 

(1990) did not find any significant correlation between the 11-year solar cycle and MSSWs 75 

based on their analysis of the 10.7 cm solar radio flux. Nevertheless, Labitzke (2004, and 76 

references therein) showed that such a correlation exists for MSSW events distributed by 77 
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phases of QBO (quasi biennial oscillation). This is partially in contradiction with work of 78 

Sonnemann and Grygalashvyly (2007), who found such a correlation without considering a 79 

relation to QBO phases based on an analysis of Lyman-alpha flux and sunspot numbers. The 80 

reason for the discrepancy is either the difference in fluxes or methods.  81 

We decided to narrow this gap in the knowledge and conduct an analysis of the solar radio 82 

flux at 10.7 cm (F10.7). However, based on SSW statistics and F10.7 data, we derived a 83 

normalized occurrence rate for MSSW events. The data, method, and results are described in 84 

Sect. 2, the discussion is presented in Sect. 3 followed by concluding remarks in the last 85 

section. 86 

 87 

2. Data, Method, and Result 88 

 89 

We investigate the statistical connection between MSSWs and solar activity. As a proxy for 90 

solar activity, we use the 10.7 cm solar radio flux 91 

(http://lasp.colorado.edu/lisird/data/noaa_radio_flux/). Because MSSWs are phenomena that 92 

commonly occur from December until March (Charlton et al., 2007), we calculated monthly 93 

mean values of F10.7 for December, January, February, and March through the entire period 94 

from 1958 to 2013. The lowest mean F10.7 value did not fall below 67 solar flux units (sfu). 95 

The uppermost value did not exceed 267 sfu. We chose a difference of 25 sfu for the flux 96 

subdivision (8 subintervals) and calculated a number of monthly mean F10.7 values which 97 

fell into each subinterval (Fig. 1a).  98 

Next, we calculated the mean F10.7 values for the month prior to the MSSWs’ central day 99 

(the day when zonal mean zonal wind at 10 hPa becomes negative). In this study, we used two 100 

databases of central day. The first database combines the central day of MSSW events from 101 

ERA-40 reanalysis for the period 1958 to 1979 (14 events) and ERA-interim reanalysis for 102 

the period 1979 to 2013 (23 events) (Butler et al., 2017). The central days by NCEP-NCAR-I 103 

http://lasp.colorado.edu/lisird/data/noaa_radio_flux/
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reanalysis (35 events) (Butler et al., 2017) were used as the second database. Then, we 104 

calculated the number of MSSWs that occurred in each F10.7 subinterval (Fig. 1b) based on 105 

two databases of central day. The dependence of MSSWs on F10.7 is rather negative (Fig. 106 

1b), but we should take into account that the distribution of wintertime monthly averaged 107 

values of F10.7 is non-uniform. The values corresponding to low solar activity occur most 108 

often, and values corresponding to high solar activity are rare. Hence, for calculations of 109 

correlation between MSSW and F10.7, number of MSSWs at given solar activity should be 110 

normalized by the duration of the solar activity in the respective phase. A detailed description 111 

of this procedure is presented in (Sonnemann and Grygalashvyly, 2007). We calculated the 112 

MSSWs’ occurrence rate normalized by the occurrence rate of F10.7 values as shown in 113 

(Sonnemann and Grygalashvyly, 2007): 114 
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where 
F10.7Ni  and 

MSSWNi  are the number of F10.7 values and number of MSSWs in 116 

subinterval i, respectively. Note that calculation by Eq. (1) entails a statistical uncertainty 117 

which decreases with the number of solar cycles. 118 

Fig. 1c illustrates dependence between the normalized occurrence rate of MSSWs and the 119 

values of F10.7 according to Eq. (1) for ERA and NCEP-NCAR-I databases. We conducted 120 

the correlation analysis for the normalized occurrence rate of MSSWs and the F10.7 values 121 

with 8 subdivisions (Fig. 1d). The correlation coefficient equals 0.63 for the ERA case and 122 

0.55 for the NCEP-NCAR-I case. The significance amounts to 90.68% and 83.80% for ERA 123 

and NCEP-NCAR-I, respectively. The results demonstrate a distinct statistical connection 124 

between the normalized MSSW events and the F10.7 values. Our correlation coefficients are 125 

smaller than those of Sonnemann and Grygalashvyly (2007), probably, because we use 126 

different solar proxies, subdivisions and periods. 127 
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3. Discussion 128 

A possible explanation for the correlation is the impact of solar activity either on PWs 129 

strength and activity or on propagation conditions (e.g. Arnold and Robinson, 1998; Fröhlich 130 

and Jacobi, 2004). Recently, Koval et al. (2018) found that solar activity might affect 131 

meridional temperature gradients and consequently change the vertical structure of the zonal 132 

wind and PWs’ propagation conditions. This may point to a potential explanation. Another 133 

one possibility to explain obtained correlation is the interaction of cosmic rays (which anti-134 

correlate with solar activity) with atmosphere, and, particularly, with stratosphere, and have 135 

an impact on climate (see Fig. 7 in (Usoskin, 2017), Fig. 3 in (Seppälä et al., 2014) and 136 

corresponding discussions). In addition, a variation in the ozone concentration over a solar 137 

cycle (Keating et al., 1987; Hartogh et al., 2011) could influence the occurrence rate of 138 

MSSWs by changing of the thermal structure of the middle atmosphere. 139 

The separation of the effects of long-term changes in a solar cycle and long-term changes of 140 

anthropogenic greenhouse gases (GHGs) and ozone-depleting substances (ODSs) on the 141 

middle atmosphere remains an unsolved problem. In general, joint declining of solar cycle 142 

and growth of GHGs and ODSs may produce bias in correlation. However, according to 143 

current knowledge, there is no statistically significant impact of anthropogenic changes on the 144 

frequency of SSWs (e. g. Butchart et al., 2000; SPARC CCMVal, 2010; Mitchell et al., 2012; 145 

Hansen et al., 2014, Ayarzagüena et al., 2018). Moreover, some of the recent works show 146 

enhancement of the SSWs frequency under GHGs and ODSs forcing (e.g., Huebener et al., 147 

2007; Charlton-Perez et al., 2008; Bell et al., 2009; Schimanke et al., 2013; Ayarzagüena et 148 

al., 2013). Thus, the joint effect of negative trend in solar cycle strength and positive trend of 149 

GHGs may just reduce positive correlation, but cannot be its cause. 150 

The 10.7 cm solar radio flux is not the only proxy for solar activity. Most used proxies, which 151 

differs by nature from the F10.7, are Lyman-alpha flux and sunspot numbers (Bruevich et al., 152 

2014; Mei et al., 2018), and also 3.2 cm, 8 cm, 15 cm, 30 cm solar fluxes (Dudok de Wit et 153 
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al., 2014; Vaishnav et al., 2019). Thus, the information about correlation coefficients for the 154 

same database and method potentially can be useful to identify possible reasons of 155 

correlation. Hence, such correlation coefficients with corresponding significance are 156 

calculated and stored in the Table 1. We have not found any clear dependence neither 157 

correlation coefficients nor significance on solar radio flux wavelength. 158 

 159 

4. Summary 160 

 161 

We investigated the statistical relationship between solar activity and occurrence rate of major 162 

sudden stratospheric warmings (MSSWs). For this purpose, the 10.7 cm solar radio flux has 163 

been used as a proxy for solar activity. The calculations have been performed based on two 164 

datasets of central day (NCEP-NCAR-I and combined ERA) for the period from 1958 to 165 

2013. The analysis of calculations was based on the normalized MSSW occurrence rate. The 166 

analysis revealed a positive correlation between MSSW events and solar activity with a 167 

correlation coefficient equals 0.63 for the ERA dataset and 0.55 for the NCEP-NCAR-I 168 

dataset. Note that the correlation is necessary but not a sufficient condition for a relationship 169 

between the two phenomena. The nature of the correlation is still not clear, and further 170 

investigations in this direction are necessary. 171 

 172 

Data availability. 173 

The F10.7 and Lyman-α solar flux data are available at http://lasp.colorado.edu/lisird/. The 174 

sunspot numbers data are accessible at https://www.ngdc.noaa.gov/stp/solar/ssndata.html. The 175 

3.2 cm, 8 cm, 15 cm, and 30 cm solar fluxes data are available at 176 

https://spaceweather.cls.fr/services/radioflux/. 177 
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Figures. 457 

 458 

 459 

Figure 1. a) Monthly mean F10.7 values between 1958 and 2013 of 4 months between 460 

December and March; b) the number of MSWWs depending on F10.7 values; c) normalized 461 

occurrence rate of MSSWs depending on F10.7 values; d) correlation analysis for normalized 462 

occurrence rate of MSSWs and F10.7 values. 463 
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