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Abstract

A correlation between solar activity and normalized occurrence rate of sudden stratospheric
warmings (SSWs) has been found. As a proxy for solar activity, the 10.7 cm solar radio flux
has been used. In order to find the correlation, we derived a normalized occurrence rate of
MSSWs based on both ERA40/ERA-Interim dataset and NCEP data. Based on this
distribution, we calculated the correlation coefficient, which amounts to 0.63, with a
significance of 90.68% for ERA40/ERA-Interim, and 0.55 for NCEP-NCAR-I, with a
significance of 83.80%. Additionally, we calculate correlation coefficients for Lyman-alpha

flux and sunspot numbers with the analogous method for the same period.

Keywords: Middle atmosphere — composition and chemistry; Waves and tides; Middle

atmosphere dynamics

1. Introduction

In the middle of the last century, Scherhag (1952) and Scrase (1953) independently found an
incident of sudden stratospheric warming (SSW). A corresponding mesospheric cooling has
been found shortly after (Quiroz, 1969). The SSW effect is manifested in sudden and short

(several days) increase in temperature (up to 60 K) in the stratosphere and joint cooling in the
1
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mesosphere at high and middle latitudes during winter. More strict definition of SSW one can
find in reviews on this subject (e.g. Butler et al., 2015). According to current knowledge (see
e.g. Shepherd et al., 2014; Ziilicke et al., 2018; and references therein) the genesis of the
effect goes from mesopause at high latitudes toward stratosphere at middle latitudes with peak
of intensity around 65° N. There are two types of sudden stratospheric warmings: minor
warmings and major warmings. Minor warmings also consist of the temperature increase, but
at 10 hPa it is about 30 K smaller than for major warmings. The main difference is that unlike
to the major warming, during the minor one, the zonal wind weakens but does not reverse the
direction (e.g. Labitzke, 1981). In this study, we consider just major sudden stratospheric
warming effect.

SSW events play a rather important role in atmospheric investigations not only because these
pronounced events have impacts on all processes in the middle atmosphere but also because
they provide a natural examination of our understanding of atmospheric interactions. The first
step to understanding the nature of SSWs was the theory of planetary waves (PWSs)
propagation by Charney and Drazin (1961), who derived the dispersion relationship for
vertically propagating Rossby waves. The theoretical explanation was proposed by Dickinson
(1968a,b; 1969a,b) and consists of an interaction of PWs which penetrate into the winter
middle atmosphere and affect general mean circulation when they dissipate. Steady
dissipating waves can weaken the zonal mean flow and maintain the winter stratosphere
above radiative equilibrium temperatures (Dickinson, 1969b). This theory was confirmed by
model simulations (Matsuno, 1970, 1971). Currently, this explanation is generally accepted;
nevertheless, we should note that there are alternatives. For example, based on model
simulations, Peters (1985 a,b) found that SSW-like effects may occur due to nonlinear wave—
wave interactions. However, the role of wave—wave interaction during SSWs is not clear until

the present time. Recently, Gavrilov et al. (2017) have touched upon this problem.
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Since SSWs have been observed and modeled in numerous works (e.g. Holton, 1976;
Schoeberl, 1978; Tao, 1994; Siskind et al., 2005; Smith et al., 2011, and references therein),
the topic has attracted genuine interest in all fields of atmospheric science. Using a 3D model,
Sonnemann et al. (2006) studied the distributions of minor chemical species in the mesopause
region in time of SSWs. The most-detailed investigation of the variability of the hydroxyl
airglow layer during SSWs has been represented in the work of Shepherd et al. (2010). The
response of OH* and the infrared atmospheric band has been found by satellite observations
(Gao et al., 2011), and Shepherd et al. (2014) investigated the impact of this phenomenon on
distributions of CO and NOx based on a joint analysis of model simulation and satellite
observations. The impact of SSWs on the secondary ozone layer has been highlighted in the
work of Tweedy et al. (2013) based on model simulations and in the work Smith et al. (2009)
based on the SABER instrument onboard the TIMED satellite. The temperature and dynamic
structure of the mesopause region during sudden stratospheric warmings were investigated by
reanalysis data (Siskind et al., 2010) and based on a global circulation model (Ziilicke and
Becker, 2013). A large number of works are devoted to the role and propagations of gravity
waves in times of SSWs (Limpasuvan et al., 2011, 2012; McLandress et al., 2013; de Wit et
al., 2014; Ern et al., 2016). Recently, an effect on the troposphere (Hinssen et al., 2011) and
equatorial latitudes has been found (Bal et al., 2017). More about SSWs and related fields can
be found in reviews of this subject (e.g. Holton, 1980; Mcintyre, 1982; Plumb, 2010; Butler et
al., 2015).

Solar irradiance strongly affects the Earth’s atmosphere and climate (Seppélé et al., 2014);
hence, naturally, the question of what the effect of solar variations on the SSW occurrence
rate arises. The strongest solar variation is the 11-year solar cycle. Labitzke and van Loon
(1990) did not find any significant correlation between the 11-year solar cycle and MSSWs
based on their analysis of the 10.7 cm solar radio flux. Nevertheless, Labitzke (2004, and

references therein) showed that such a correlation exists for MSSW events distributed by
3
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phases of QBO (quasi biennial oscillation). This is partially in contradiction with work of
Sonnemann and Grygalashvyly (2007), who found such a correlation without considering a
relation to QBO phases based on an analysis of Lyman-alpha flux and sunspot numbers. The
reason for the discrepancy is either the difference in fluxes or methods.

We decided to narrow this gap in the knowledge and conduct an analysis of the solar radio
flux at 10.7 cm (F10.7). However, based on SSW statistics and F10.7 data, we derived a
normalized occurrence rate for MSSW events. The data, method, and results are described in
Sect. 2, the discussion is presented in Sect. 3 followed by concluding remarks in the last

section.

2. Data, Method, and Result

We investigate the statistical connection between MSSWs and solar activity. As a proxy for

solar activity, we use the 10.7 cm solar radio flux

(http://1asp.colorado.edu/lisird/data/noaa_radio_flux/). Because MSSWs are phenomena that

commonly occur from December until March (Charlton et al., 2007), we calculated monthly
mean values of F10.7 for December, January, February, and March through the entire period
from 1958 to 2013. The lowest mean F10.7 value did not fall below 67 solar flux units (sfu).
The uppermost value did not exceed 267 sfu. We chose a difference of 25 sfu for the flux
subdivision (8 subintervals) and calculated a number of monthly mean F10.7 values which
fell into each subinterval (Fig. 1a).

Next, we calculated the mean F10.7 values for the month prior to the MSSWs’ central day
(the day when zonal mean zonal wind at 10 hPa becomes negative). In this study, we used two
databases of central day. The first database combines the central day of MSSW events from
ERA-40 reanalysis for the period 1958 to 1979 (14 events) and ERA-interim reanalysis for

the period 1979 to 2013 (23 events) (Butler et al., 2017). The central days by NCEP-NCAR-I
4
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reanalysis (35 events) (Butler et al.,, 2017) were used as the second database. Then, we
calculated the number of MSSWs that occurred in each F10.7 subinterval (Fig. 1b) based on
two databases of central day. The dependence of MSSWs on F10.7 is rather negative (Fig.
1b), but we should take into account that the distribution of wintertime monthly averaged
values of F10.7 is non-uniform. The values corresponding to low solar activity occur most
often, and values corresponding to high solar activity are rare. Hence, for calculations of
correlation between MSSW and F10.7, number of MSSWs at given solar activity should be
normalized by the duration of the solar activity in the respective phase. A detailed description
of this procedure is presented in (Sonnemann and Grygalashvyly, 2007). We calculated the
MSSWs’ occurrence rate normalized by the occurrence rate of F10.7 values as shown in

(Sonnemann and Grygalashvyly, 2007):

(NMSSVi jZNimssw
R' = NiFm , 1=1..,8,
Z(NMSSVi j
NF10.7

where Ni,, and N, are the number of F10.7 values and number of MSSWs in

(1)

subinterval i, respectively. Note that calculation by Eq. (1) entails a statistical uncertainty
which decreases with the number of solar cycles.

Fig. 1c illustrates dependence between the normalized occurrence rate of MSSWs and the
values of F10.7 according to Eq. (1) for ERA and NCEP-NCAR-I databases. We conducted
the correlation analysis for the normalized occurrence rate of MSSWs and the F10.7 values
with 8 subdivisions (Fig. 1d). The correlation coefficient equals 0.63 for the ERA case and
0.55 for the NCEP-NCAR-I case. The significance amounts to 90.68% and 83.80% for ERA
and NCEP-NCAR-I, respectively. The results demonstrate a distinct statistical connection
between the normalized MSSW events and the F10.7 values. Our correlation coefficients are
smaller than those of Sonnemann and Grygalashvyly (2007), probably, because we use

different solar proxies, subdivisions and periods.
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3. Discussion

A possible explanation for the correlation is the impact of solar activity either on PWs
strength and activity or on propagation conditions (e.g. Arnold and Robinson, 1998; Frohlich
and Jacobi, 2004). Recently, Koval et al. (2018) found that solar activity might affect
meridional temperature gradients and consequently change the vertical structure of the zonal
wind and PWs’ propagation conditions. This may point to a potential explanation. Another
one possibility to explain obtained correlation is the interaction of cosmic rays (which anti-
correlate with solar activity) with atmosphere, and, particularly, with stratosphere, and have
an impact on climate (see Fig. 7 in (Usoskin, 2017), Fig. 3 in (Seppélé et al., 2014) and
corresponding discussions). In addition, a variation in the ozone concentration over a solar
cycle (Keating et al., 1987; Hartogh et al., 2011) could influence the occurrence rate of
MSSWs by changing of the thermal structure of the middle atmosphere.

The separation of the effects of long-term changes in a solar cycle and long-term changes of
anthropogenic greenhouse gases (GHGs) and ozone-depleting substances (ODSs) on the
middle atmosphere remains an unsolved problem. In general, joint declining of solar cycle
and growth of GHGs and ODSs may produce bias in correlation. However, according to
current knowledge, there is no statistically significant impact of anthropogenic changes on the
frequency of SSWs (e. g. Butchart et al., 2000; SPARC CCMVal, 2010; Mitchell et al., 2012;
Hansen et al., 2014, Ayarzagiiena et al., 2018). Moreover, some of the recent works show
enhancement of the SSWs frequency under GHGs and ODSs forcing (e.g., Huebener et al.,
2007; Charlton-Perez et al., 2008; Bell et al., 2009; Schimanke et al., 2013; Ayarzagiiena et
al., 2013). Thus, the joint effect of negative trend in solar cycle strength and positive trend of
GHGs may just reduce positive correlation, but cannot be its cause.

The 10.7 cm solar radio flux is not the only proxy for solar activity. Most used proxies, which
differs by nature from the F10.7, are Lyman-alpha flux and sunspot numbers (Bruevich et al.,

2014; Mei et al., 2018), and also 3.2 cm, 8 cm, 15 cm, 30 cm solar fluxes (Dudok de Wit et
6
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al., 2014; Vaishnav et al., 2019). Thus, the information about correlation coefficients for the
same database and method potentially can be useful to identify possible reasons of
correlation. Hence, such correlation coefficients with corresponding significance are
calculated and stored in the Table 1. We have not found any clear dependence neither

correlation coefficients nor significance on solar radio flux wavelength.

4. Summary

We investigated the statistical relationship between solar activity and occurrence rate of major
sudden stratospheric warmings (MSSWs). For this purpose, the 10.7 cm solar radio flux has
been used as a proxy for solar activity. The calculations have been performed based on two
datasets of central day (NCEP-NCAR-I and combined ERA) for the period from 1958 to
2013. The analysis of calculations was based on the normalized MSSW occurrence rate. The
analysis revealed a positive correlation between MSSW events and solar activity with a
correlation coefficient equals 0.63 for the ERA dataset and 0.55 for the NCEP-NCAR-I
dataset. Note that the correlation is necessary but not a sufficient condition for a relationship
between the two phenomena. The nature of the correlation is still not clear, and further

investigations in this direction are necessary.

Data availability.

The F10.7 and Lyman-a solar flux data are available at http://lasp.colorado.edu/lisird/. The

sunspot numbers data are accessible at https://www.ngdc.noaa.gov/stp/solar/ssndata.html. The

32 cm, 8 cm, 15 cm, and 30 cm solar fluxes data are available at

https://spaceweather.cls.fr/services/radioflux/.
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460  Figure 1. a) Monthly mean F10.7 values between 1958 and 2013 of 4 months between
461  December and March; b) the number of MSWWs depending on F10.7 values; ¢) normalized
462  occurrence rate of MSSWs depending on F10.7 values; d) correlation analysis for normalized
463  occurrence rate of MSSWs and F10.7 values.
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