

1 Notes on the correlation between SSWs and solar activity

2

3 Ekaterina Vorobeva (st062133@student.spbu.ru)

4

5 Department of Atmospheric Physics, Saint-Petersburg State University, Universitetskaya

6 Emb. 7/9, 199034, Saint-Petersburg, Russia

7

8 **Abstract**

9 A correlation between solar activity and normalized occurrence rate of sudden stratospheric

10 warmings (SSWs) has been found. As a proxy for solar activity, the 10.7 cm solar radio flux

11 has been used. In order to find the correlation, we derived a normalized occurrence rate of

12 MSSWs based on both ERA40/ERA-Interim dataset and NCEP data. Based on this

13 distribution, we calculated the correlation coefficient, which amounts to 0.63, with a

14 significance of 90.68% for ERA40/ERA-Interim, and 0.55 for NCEP-NCAR-I, with a

15 significance of 83.80%. Additionally, we calculate correlation coefficients for Lyman-alpha

16 flux and sunspot numbers with the analogous method for the same period.

17

18 Keywords: Middle atmosphere – composition and chemistry; Waves and tides; Middle

19 atmosphere dynamics

20

21 **1. Introduction**

22

23 In the middle of the last century, Scherhag (1952) and Scrase (1953) independently found an

24 incident of sudden stratospheric warming (SSW). A corresponding mesospheric cooling has

25 been found shortly after (Quiroz, 1969). The SSW effect is manifested in sudden and short

26 (several days) increase in temperature (up to 60 K) in the stratosphere and joint cooling in the

27 mesosphere at high and middle latitudes during winter. More strict definition of SSW one can
28 find in reviews on this subject (e.g. Butler et al., 2015). According to current knowledge (see
29 e.g. Shepherd et al., 2014; Zülicke et al., 2018; and references therein) the genesis of the
30 effect goes from mesopause at high latitudes toward stratosphere at middle latitudes with peak
31 of intensity around 65° N. There are two types of sudden stratospheric warmings: minor
32 warmings and major warmings. Minor warmings also consist of the temperature increase, but
33 at 10 hPa it is about 30 K smaller than for major warmings. The main difference is that unlike
34 to the major warming, during the minor one, the zonal wind weakens but does not reverse the
35 direction (e.g. Labitzke, 1981). In this study, we consider just major sudden stratospheric
36 warming effect.

37 SSW events play a rather important role in atmospheric investigations not only because these
38 pronounced events have impacts on all processes in the middle atmosphere but also because
39 they provide a natural examination of our understanding of atmospheric interactions. The first
40 step to understanding the nature of SSWs was the theory of planetary waves (PWs)
41 propagation by Charney and Drazin (1961), who derived the dispersion relationship for
42 vertically propagating Rossby waves. The theoretical explanation was proposed by Dickinson
43 (1968a,b; 1969a,b) and consists of an interaction of PWs which penetrate into the winter
44 middle atmosphere and affect general mean circulation when they dissipate. Steady
45 dissipating waves can weaken the zonal mean flow and maintain the winter stratosphere
46 above radiative equilibrium temperatures (Dickinson, 1969b). This theory was confirmed by
47 model simulations (Matsuno, 1970, 1971). Currently, this explanation is generally accepted;
48 nevertheless, we should note that there are alternatives. For example, based on model
49 simulations, Peters (1985 a,b) found that SSW-like effects may occur due to nonlinear wave–
50 wave interactions. However, the role of wave–wave interaction during SSWs is not clear until
51 the present time. Recently, Gavrilov et al. (2017) have touched upon this problem.

52 Since SSWs have been observed and modeled in numerous works (e.g. Holton, 1976;
53 Schoeberl, 1978; Tao, 1994; Siskind et al., 2005; Smith et al., 2011, and references therein),
54 the topic has attracted genuine interest in all fields of atmospheric science. Using a 3D model,
55 Sonnemann et al. (2006) studied the distributions of minor chemical species in the mesopause
56 region in time of SSWs. The most-detailed investigation of the variability of the hydroxyl
57 airglow layer during SSWs has been represented in the work of Shepherd et al. (2010). The
58 response of OH* and the infrared atmospheric band has been found by satellite observations
59 (Gao et al., 2011), and Shepherd et al. (2014) investigated the impact of this phenomenon on
60 distributions of CO and NO_x based on a joint analysis of model simulation and satellite
61 observations. The impact of SSWs on the secondary ozone layer has been highlighted in the
62 work of Tweedy et al. (2013) based on model simulations and in the work Smith et al. (2009)
63 based on the SABER instrument onboard the TIMED satellite. The temperature and dynamic
64 structure of the mesopause region during sudden stratospheric warmings were investigated by
65 reanalysis data (Siskind et al., 2010) and based on a global circulation model (Zülicke and
66 Becker, 2013). A large number of works are devoted to the role and propagations of gravity
67 waves in times of SSWs (Limpasuvan et al., 2011, 2012; McLandress et al., 2013; de Wit et
68 al., 2014; Ern et al., 2016). Recently, an effect on the troposphere (Hinssen et al., 2011) and
69 equatorial latitudes has been found (Bal et al., 2017). More about SSWs and related fields can
70 be found in reviews of this subject (e.g. Holton, 1980; McIntyre, 1982; Plumb, 2010; Butler et
71 al., 2015).

72 Solar irradiance strongly affects the Earth's atmosphere and climate (Seppälä et al., 2014);
73 hence, naturally, the question of what the effect of solar variations on the SSW occurrence
74 rate arises. The strongest solar variation is the 11-year solar cycle. Labitzke and van Loon
75 (1990) did not find any significant correlation between the 11-year solar cycle and MSSWs
76 based on their analysis of the 10.7 cm solar radio flux. Nevertheless, Labitzke (2004, and
77 references therein) showed that such a correlation exists for MSSW events distributed by

78 phases of QBO (quasi biennial oscillation). This is partially in contradiction with work of
79 Sonnemann and Grygalashvyly (2007), who found such a correlation without considering a
80 relation to QBO phases based on an analysis of Lyman-alpha flux and sunspot numbers. The
81 reason for the discrepancy is either the difference in fluxes or methods.

82 We decided to narrow this gap in the knowledge and conduct an analysis of the solar radio
83 flux at 10.7 cm (F10.7). However, based on SSW statistics and F10.7 data, we derived a
84 normalized occurrence rate for MSSW events. The data, method, and results are described in
85 Sect. 2, the discussion is presented in Sect. 3 followed by concluding remarks in the last
86 section.

87

88 **2. Data, Method, and Result**

89

90 We investigate the statistical connection between MSSWs and solar activity. As a proxy for
91 solar activity, we use the 10.7 cm solar radio flux
92 (http://lasp.colorado.edu/lisird/data/noaa_radio_flux/). Because MSSWs are phenomena that
93 commonly occur from December until March (Charlton et al., 2007), we calculated monthly
94 mean values of F10.7 for December, January, February, and March through the entire period
95 from 1958 to 2013. The lowest mean F10.7 value did not fall below 67 solar flux units (sfu).
96 The uppermost value did not exceed 267 sfu. We chose a difference of 25 sfu for the flux
97 subdivision (8 subintervals) and calculated a number of monthly mean F10.7 values which
98 fell into each subinterval (Fig. 1a).

99 Next, we calculated the mean F10.7 values for the month prior to the MSSWs' central day
100 (the day when zonal mean zonal wind at 10 hPa becomes negative). In this study, we used two
101 databases of central day. The first database combines the central day of MSSW events from
102 ERA-40 reanalysis for the period 1958 to 1979 (14 events) and ERA-interim reanalysis for
103 the period 1979 to 2013 (23 events) (Butler et al., 2017). The central days by NCEP-NCAR-I

104 reanalysis (35 events) (Butler et al., 2017) were used as the second database. Then, we
 105 calculated the number of MSSWs that occurred in each F10.7 subinterval (Fig. 1b) based on
 106 two databases of central day. The dependence of MSSWs on F10.7 is rather negative (Fig.
 107 1b), but we should take into account that the distribution of wintertime monthly averaged
 108 values of F10.7 is non-uniform. The values corresponding to low solar activity occur most
 109 often, and values corresponding to high solar activity are rare. Hence, for calculations of
 110 correlation between MSSW and F10.7, number of MSSWs at given solar activity should be
 111 normalized by the duration of the solar activity in the respective phase. A detailed description
 112 of this procedure is presented in (Sonnenmann and Grygalashvily, 2007). We calculated the
 113 MSSWs' occurrence rate normalized by the occurrence rate of F10.7 values as shown in
 114 (Sonnenmann and Grygalashvily, 2007):

$$115 \quad R^i = \frac{\left(\frac{N_{MSSW}^i}{N_{F10.7}^i} \right) \sum N_{MSSW}^i}{\sum \left(\frac{N_{MSSW}^i}{N_{F10.7}^i} \right)}, \quad i = 1, \dots, 8, \quad (1)$$

116 where $N_{F10.7}^i$ and N_{MSSW}^i are the number of F10.7 values and number of MSSWs in
 117 subinterval i , respectively. Note that calculation by Eq. (1) entails a statistical uncertainty
 118 which decreases with the number of solar cycles.

119 Fig. 1c illustrates dependence between the normalized occurrence rate of MSSWs and the
 120 values of F10.7 according to Eq. (1) for ERA and NCEP-NCAR-I databases. We conducted
 121 the correlation analysis for the normalized occurrence rate of MSSWs and the F10.7 values
 122 with 8 subdivisions (Fig. 1d). The correlation coefficient equals 0.63 for the ERA case and
 123 0.55 for the NCEP-NCAR-I case. The significance amounts to 90.68% and 83.80% for ERA
 124 and NCEP-NCAR-I, respectively. The results demonstrate a distinct statistical connection
 125 between the normalized MSSW events and the F10.7 values. Our correlation coefficients are
 126 smaller than those of Sonnenmann and Grygalashvily (2007), probably, because we use
 127 different solar proxies, subdivisions and periods.

128 **3. Discussion**

129 A possible explanation for the correlation is the impact of solar activity either on PWs
130 strength and activity or on propagation conditions (e.g. Arnold and Robinson, 1998; Fröhlich
131 and Jacobi, 2004). Recently, Koval et al. (2018) found that solar activity might affect
132 meridional temperature gradients and consequently change the vertical structure of the zonal
133 wind and PWs' propagation conditions. This may point to a potential explanation. Another
134 one possibility to explain obtained correlation is the interaction of cosmic rays (which anti-
135 correlate with solar activity) with atmosphere, and, particularly, with stratosphere, and have
136 an impact on climate (see Fig. 7 in (Usoskin, 2017), Fig. 3 in (Seppälä et al., 2014) and
137 corresponding discussions). In addition, a variation in the ozone concentration over a solar
138 cycle (Keating et al., 1987; Hartogh et al., 2011) could influence the occurrence rate of
139 MSSWs by changing of the thermal structure of the middle atmosphere.

140 The separation of the effects of long-term changes in a solar cycle and long-term changes of
141 anthropogenic greenhouse gases (GHGs) and ozone-depleting substances (ODSs) on the
142 middle atmosphere remains an unsolved problem. In general, joint declining of solar cycle
143 and growth of GHGs and ODSs may produce bias in correlation. However, according to
144 current knowledge, there is no statistically significant impact of anthropogenic changes on the
145 frequency of SSWs (e. g. Butchart et al., 2000; SPARC CCMVal, 2010; Mitchell et al., 2012;
146 Hansen et al., 2014, Ayarzagüena et al., 2018). Moreover, some of the recent works show
147 enhancement of the SSWs frequency under GHGs and ODSs forcing (e.g., Huebener et al.,
148 2007; Charlton-Perez et al., 2008; Bell et al., 2009; Schimanke et al., 2013; Ayarzagüena et
149 al., 2013). Thus, the joint effect of negative trend in solar cycle strength and positive trend of
150 GHGs may just reduce positive correlation, but cannot be its cause.

151 The 10.7 cm solar radio flux is not the only proxy for solar activity. Most used proxies, which
152 differs by nature from the F10.7, are Lyman-alpha flux and sunspot numbers (Bruevich et al.,
153 2014; Mei et al., 2018), and also 3.2 cm, 8 cm, 15 cm, 30 cm solar fluxes (Dudok de Wit et

154 al., 2014; Vaishnav et al., 2019). Thus, the information about correlation coefficients for the
155 same database and method potentially can be useful to identify possible reasons of
156 correlation. Hence, such correlation coefficients with corresponding significance are
157 calculated and stored in the Table 1. We have not found any clear dependence neither
158 correlation coefficients nor significance on solar radio flux wavelength.

159

160 **4. Summary**

161

162 We investigated the statistical relationship between solar activity and occurrence rate of major
163 sudden stratospheric warmings (MSSWs). For this purpose, the 10.7 cm solar radio flux has
164 been used as a proxy for solar activity. The calculations have been performed based on two
165 datasets of central day (NCEP-NCAR-I and combined ERA) for the period from 1958 to
166 2013. The analysis of calculations was based on the normalized MSSW occurrence rate. The
167 analysis revealed a positive correlation between MSSW events and solar activity with a
168 correlation coefficient equals 0.63 for the ERA dataset and 0.55 for the NCEP-NCAR-I
169 dataset. Note that the correlation is necessary but not a sufficient condition for a relationship
170 between the two phenomena. The nature of the correlation is still not clear, and further
171 investigations in this direction are necessary.

172

173 **Data availability.**

174 The F10.7 and Lyman- α solar flux data are available at <http://lasp.colorado.edu/lisird/>. The
175 sunspot numbers data are accessible at <https://www.ngdc.noaa.gov/stp/solar/ssndata.html>. The
176 3.2 cm, 8 cm, 15 cm, and 30 cm solar fluxes data are available at
177 <https://spaceweather.cls.fr/services/radioflux/>.

178

179 **Acknowledgements.**

180 The author is grateful to her teachers Prof. Dr. V. A. Yankovsky, Prof. Dr. G. Sved, and Prof.
181 Dr. E. L. Genikhovich.

182

183 **References**

184

185 Arnold, N. F., Robinson, T. R.: Solar cycle changes to planetary wave propagation and their
186 influence on the middle atmosphere circulation, *Ann. Geophys.*, 16, 69-76,
187 <https://doi.org/10.1007/s00585-997-0069-3>, 1998.

188

189 Ayarzagüena, B., Langematz, U., Meul, S., Oberlander, S., Abalichin, J., and Kubin, A.: The
190 role of climate change and ozone recovery for the future timing of major stratospheric
191 warmings, *Geophys. Res. Lett.*, 40, 2460–2465, doi:10.1002/grl.50477, 2013.

192

193 Ayarzagüena, B., Polvani, L. M., Langematz, U., Akiyoshi, H., Bekki, S., Butchart, N.,
194 Dameris, M., Deushi, M., Hardiman, S. C., Jöckel, P., Klekociuk, A., Marchand, M., Michou, M.,
195 Morgenstern, O., O'Connor, F. M., Oman, L. D., Plummer, D. A., Revell, L., Rozanov, E.,
196 Saint-Martin, D., Scinocca, J., Stenke, A., Stone, K., Yamashita, Y., Yoshida, K., and
197 Zeng, G.: No robust evidence of future changes in major stratospheric sudden warmings: a
198 multi-model assessment from CCMI, *Atmos. Chem. Phys.*, 18, 11277-11287,
199 <https://doi.org/10.5194/acp-18-11277-2018>, 2018.

200

201 Bal, S., Schimanke, S., Spangehl, T., and Cubasch, U.: Variable influence on the equatorial
202 troposphere associated with SSW using ERA-Interim, *J. Earth Syst. Sci.*, 126, 1-13, DOI
203 10.1007/s12040-017-0802-6, 2017.

204

205 Bell, C. J., Gray, L. J., Charlton-Perez, A. J., Joshi, M. M., and Scaife, A. A.: Stratospheric
206 communication of El Nino teleconnections to European winter, *J. Clim.*, 22(15), 4083–4096,
207 doi:10.1175/2009JCLI2717.1, 2009.

208

209 Bruevich, E. A., Bruevich, V. V., and Yakunina. G. V.: Changed Relation between Solar
210 10.7-cm Radio Flux and some Activity Indices which describe the Radiation at Different
211 Altitudes of Atmosphere during Cycles 21–23, *J. Astrophys. Astr.*, 35, 1–15, DOI:
212 10.1007/s12036-014-9258-0, 2014.

213

214 Butchart, N., Austin, J., Knight, J. R., Scaife, A. A., and Gallani, M. L.: The response of the
215 stratospheric climate to projected changes in the concentrations of well-mixed greenhouse
216 gases from 1992 to 2051, *J. Clim.*, 13(13), 2142–2159, doi:10.1175/1520-
217 0442(2000)013<2142:TROTSC>2.0.CO;2, 2000.

218

219 Butler, A. H., Seidel, D., Hardiman, S., Butchart, N., Birner, T., and Match, A.: Defining
220 sudden stratospheric warmings, *Bull. Amer. Meteor. Soc.*, 96, 1913–1928,
221 <https://doi.org/10.1175/BAMS-D-13-00173.1>, 2015.

222

223 Butler, A. H., Sjoberg J. P., Seidel D. J., Rosenlof K. H.: A sudden stratospheric warming
224 compendium, *J. Earth Syst. Sci. Data*, 9, 63-76, doi 10.5194/essd-9-63-2017, 2017.

225

226 Charlton, A. J., and Polvani, L. M.: A new look at stratospheric sudden warmings. Part I.
227 Climatology and modeling benchmarks, *J. Clim.*, 20, 449–469,
228 <https://doi.org/10.1175/JCLI3996.1>, 2007.

229

230 Charlton, A. J., Polvani, L. M., Perlitz, J., et al.: A new look at stratospheric sudden
231 warmings. Part II. Evaluation of model simulations, *J. Clim.*, 20, 470–488,
232 <https://doi.org/10.1175/JCLI3994.1>, 2007.

233

234 Charlton-Perez, A. J., Polvani, L. M., Austin, J., and Li, F.: The frequency and dynamics of
235 stratospheric sudden warmings in the 21st century, *J. Geophys. Res.*, 113, D16116,
236 doi:10.1029/2007JD009571, 2008.

237

238 Charney, J. G., and Drazin, P. G.: Propagation of planetary-scale disturbances from the lower
239 into the upper atmosphere, *J. Geophys. Res.*, 66, 83-109,
240 <https://doi.org/10.1029/JZ066i001p00083>, 1961.

241

242 de Wit, R. J., Hibbins, R. E., Espy, P. J., Orsolini, Y. J., Limpasuvan, V., and Kinnison, D. E.:
243 Observations of gravity wave forcing of the mesopause region during the January 2013 major
244 Sudden Stratospheric Warming, *Geophys. Res. Lett.*, 41, 4745–4752,
245 doi:10.1002/2014GL060501, 2014.

246

247 Dickinson, R. E.: On the exact and approximate linear theory of vertically propagating
248 planetary Rossby waves forced at a spherical lower boundary, *Mon. Weather Rev.*, 96, 405–
249 415, 1968a.

250

251 Dickinson, R. E.: Planetary Rossby waves propagating vertically through weak westerly wind
252 wave guides, *J. Atmos. Sci.*, 25, 984-1002, 1968b.

253

254 Dickinson, R. E.: Vertical propagation of planetary Rossby waves through an atmosphere
255 with Newtonian cooling, *J. Geophys. Res.*, 74, 929-938, 1969a.

256

257 Dickinson, R. E.: Theory of planetary wave-zonal flow interaction, *J. Atmos. Sci.*, 26, 73-81,
258 1969b.

259

260 Dudok de Wit, T., Bruinsma, S., and Shibasaki, K.: Synoptic radio observations as proxies for
261 upper atmosphere modelling, *J. Space Weather Space Clim.*, 4, A06, DOI:
262 10.1051/swsc/2014003, 2014.

263

264 Ern, M., Trinh, Q. T., Kaufmann, M., Krisch, I., Preusse, P., Ungermann, J., Zhu, Y., Gille, J.
265 C., Mlynczak, M. G., Russell III, J. M., Schwartz, M. J., and Riese, M.: Satellite observations
266 of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient
267 during recent stratospheric warmings, *Atmos. Chem. Phys.*, 16, 9983-10019,
268 <https://doi.org/10.5194/acp-16-9983-2016>, 2016.

269

270 Fröhlich, K., and Jacobi, Ch.: The solar cycle in the middle atmosphere: changes of the mean
271 circulation and of propagation conditions for planetary waves, *Rep. Inst. Meteorol. Univ.*
272 Leipzig 34, 106-117, 2004.

273

274 Gao, H., Xu, J., Ward, W., and Smith, A. K.: Temporal evolution of nightglow emission
275 responses to SSW events observed by TIMED/SABER, *J. Geophys. Res.*, 116, D19110,
276 doi:10.1029/2011JD015936, 2011.

277

278 Gavrilov, N. M., Koval, A. V., Pogoreltsev, A. I., and Savenkova, E. N.: Numerical
279 Simulation of Wave Interactions during Sudden Stratospheric Warming, *Izvestiya Atmos.*
280 *Ocean. Phys.*, 53(6), 674–685, DOI: 10.1134/S0001433817060044, 2017.

281

282 Hansen, F., Matthes, K., Petrick, C., and Wang, W.: The influence of natural and
283 anthropogenic factors on major stratospheric sudden warmings, *J. Geophys. Res. Atmos.*, 119,
284 8117–8136, doi:10.1002/2013JD021397, 2014.

285

286 Hartogh, P., Sonnemann, G.R., Grygalashvily, M., and Jarchow, Ch.: Ozone trends in the
287 mid-latitude stratopause region based on microwave measurements at Lindau (51.66 N, 10.13
288 E), the ozone reference model, and model calculations, *Adv. Space Res.*, 47, 1937-1948,
289 <https://doi.org/10.1016/j.asr.2011.01.010>, 2011.

290

291 Hinssen, Y., van Delden, A., and Opsteegh, T.: Influence of sudden stratospheric warmings
292 on tropospheric winds, *Meteorol. Zeitschr.*, 20(3), 259-266, DOI: [10.1127/0941-2948/2011/0503](https://doi.org/10.1127/0941-2948/2011/0503), 2011.

294

295 Holton, J. R.: A semi-spectral numerical model for wave-mean flow interactions in the
296 stratosphere: Application to sudden stratospheric warmings, *J. Atmos. Sci.*, 33, 1639–1649,
297 [https://doi.org/10.1175/1520-0469\(1976\)033<1639:ASSNMF>2.0.CO;2](https://doi.org/10.1175/1520-0469(1976)033<1639:ASSNMF>2.0.CO;2), 1976.

298

299 Holton, J. R.: The dynamics of sudden stratospheric warmings, *Ann. Rev. Earth Planet. Sci.*,
300 8, 169-190, 1980.

301

302 Huebener, H., Cubasch, U., Langematz, U., Spangehl, T., Niehorster, F., Fast, I., and Kunze,
303 M.: Ensemble climate simulations using a fully coupled ocean-troposphere-stratosphere
304 general circulation model, *Philos. Trans. R. Soc. A*, 365(1857), 2089–2101,
305 doi:10.1098/rsta.2007.2078, 2007.

306

307 Keating, G. M., Pitts, M. C., Brasseur, G. and De Rudder, A., Response of the middle
308 atmosphere to short-term solar ultraviolet variations, 1. Observations, *J. Geophys. Res.*, 92,
309 889– 902, 1987.

310

311 Koval, A.V., Gavrilov, N. M., Pogoreltsev, A. I., Shevchuk, N. O.: Propagation of stationary
312 planetary waves to the thermosphere at different levels of solar activity, *J. Atmos. Sol. Terr.
313 Phys.*, 173, 140-149, <https://doi.org/10.1016/j.jastp.2018.03.012>, 2018.

314

315 Labitzke, K.: Stratospheric-mesospheric midwinter disturbance: A summary of
316 characteristics, *J. Geophys. Res.*, 86, 9665– 9678, <https://doi.org/10.1029/JC086iC10p09665>,
317 1981.

318

319 Labitzke, K.: On the signal of the 11-year sunspot cycle in the stratosphere over the Antarctic
320 and its modulation by the Quasi-Biennial Oscillation, *J. Atmos. Sol. Terr. Phys.*, 66, 1151–
321 1157, <https://doi.org/10.1016/j.jastp.2004.05.011>, 2004.

322

323 Labitzke, K., and van Loon, H.: The state of the atmosphere on the Northern Hemisphere at
324 solar maximum, July 1989 - February 1990, *Beilage zur Berliner Wetterkarte*, SO 6/90. In:
325 *Meteorolog. Abh.*, FU-Berlin, Band 64, No.4, 1990.

326

327 Limpasuvan, V., Alexander, M. J., Orsolini, Y. J., Wu, D. L., Xue, M., Richter, J. H., and
328 Yamashita, C.: Mesoscale simulations of gravity waves during the 2008–2009 major
329 stratospheric sudden warming, *J. Geophys. Res.*, 116, D17104, doi:10.1029/2010JD015190,
330 2011.

331

332 Limpasuvan, V., Richter, J. H., Orsolini, Y. J., Stordal, F., and Kvissel, O.-K.: The roles of
333 planetary and gravity waves during a major stratospheric sudden warming as characterized in
334 WACCM, *J. Atmos. Sol.-Terr. Phys.*, 78–79, 84–98, doi:10.1016/j.jastp.2011.03.004, 2012.

335

336 Matsuno, T.: Vertical propagation of stationary planetary waves in the winter northern
337 hemisphere, *J. Atmos. Sci.*, 27, 871–883, DOI: 10.1175/1520-
338 0469(1970)027<0871:VPOSPW>2.0.CO;2, 1970.

339

340 Matsuno, T.: A dynamical model of the stratospheric sudden warming. *J. Atmos. Sci.*, 28,
341 1479–1494, [https://doi.org/10.1175/1520-0469\(1971\)028%3C1479:ADMOTS%3E2.0.CO;2](https://doi.org/10.1175/1520-0469(1971)028%3C1479:ADMOTS%3E2.0.CO;2),
342 1971.

343

344 McIntyre, M. E.: How well do we understand the dynamics of stratospheric warmings?, *J.*
345 *Meteorol. Soc. Jpn.*, 60, 37–65, https://doi.org/10.2151/jmsj1965.60.1_37, 1982.

346

347 McLandress, C., Scinocca, J. F., Shepherd, T. G., Reader, M. C. and Manney, G. L.:
348 Dynamical control of the mesosphere by orographic and nonorographic gravity wave drag
349 during the extended northern winters of 2006 and 2009, *J. Atmos. Sci.*, 70, 2152-2169, doi:
350 [DOI: 10.1175/JAS-D-12-0297.1](https://doi.org/10.1175/JAS-D-12-0297.1), 2013.

351

352 Mei, Y., Deng, H., and Wang, F.: On midrange periodicities in solar radio flux and sunspot
353 areas, *Astrophys. Space Sci.*, 363, 84, <https://doi.org/10.1007/s10509-018-3306-1>, 2018.

354

355 Mitchell, D. M., Osprey, S. M., Gray, L. J., Butchart, N., Hardiman, S. C., Ciarlton-Perez, A.
356 J., and Watson, P.: The effect of climate change on the variability of the Northern Hemisphere

357 stratospheric polar vortex, *J. Atmos. Sci.*, 69(8), 2608–2618, doi:10.1175/JAS-D-12-021.1,
358 2012.

359

360 Peters, D.: Zur resonanten Wechselwirkung von planetaren Wellen in einem
361 Zweischichtenmodell unter Berücksichtigung der externen Anregung einer Welle. Tiel1: Der
362 Amplitudenverlauf, *Z. Meteorol.*, 35(5), 239-251, 1985a.

363

364 Peters, D.: Zur resonanten Wechselwirkung von planetaren Wellen in einem
365 Zweischichtenmodell unter Berücksichtigung der externen Anregung einer Welle. Tiel2: Die
366 zonal gemittelte Bewegung, *Z. Meteorol.*, 35(5), 252-256, 1985b.

367

368 Plumb, R. A.: Planetary waves and the extratropical winter stratosphere, *Stratos. Dyn. Transp.*
369 *Chem., Geophys. Monogr. Ser.*, 190, 23–41, <https://doi.org/10.1002/9781118666630.ch2>,
370 2010.

371

372 Quiroz, R. S.: The warming of the upper stratosphere in February 1966 and the associated
373 structure of the mesosphere, *Mon. Weather Rev.*, 97, 541, [https://doi.org/10.1175/1520-0493\(1969\)097<0541:TWOTUS>2.3.CO;2](https://doi.org/10.1175/1520-0493(1969)097<0541:TWOTUS>2.3.CO;2), 1969.

375

376 Scherhag, R.: Die explosionsartige Stratosphärenerwärmung des Spätwinters 1951/1952, *Ber.*
377 *Deut. Wetterdienst*, 6, 51–63, 1952.

378

379 Schimanke, S., Spangehl, T., Huebener, H., and Cubasch, U.: Variability and trends of major
380 stratospheric warmings in simulations under constant and increasing GHG concentrations,
381 *Clim. Dyn.*, 40(7-8), 1733–1747, doi:10.1007/s00382-012-1530-x, 2013.

382

383 Schoeberl, M. R.: Stratospheric warmings: Observations and theory, *Rev. Geophys.*, 16, 521–
384 538, <https://doi.org/10.1029/RG016i004p00521>, 1978.

385

386 Scrase, F. J.: Relatively high stratospheric temperatures of February 1951, *Meteorol. Mag.*,
387 82, 19– 27, 1953.

388

389 Seppälä, A., Matthes, K., Randall, C. E., and Mironova, I. A.: What is the solar influence on
390 climate? Overview of activities during CAWSES-II, *Progress in Earth and Planetary Sci.*,
391 1:24, doi:10.1186/s40645-014-0024-3, 2014.

392

393 Shepherd, M. G., Beagley, S. R., and Fomichev, V. I.: Stratospheric warming influence on the
394 mesosphere/lower thermosphere as seen by the extended CMAM, *Ann. Geophys.*, 32, 589–
395 608, doi:10.5194/angeo-32-589-2014, 2014.

396

397 Shepherd, M. G., Cho, Y.-M., Shepherd, G. G., Ward, W., and Drummond, J. R.:
398 Mesospheric temperature and atomic oxygen response during the January 2009 major
399 stratospheric warming, *J. Geophys. Res.*, 115, A07318, doi:10.1029/2009JA015172, 2010.

400

401 Siskind, D. E., Coy, L., and Espy, P.: Observations of stratospheric warmings and
402 mesospheric cooling by the TIMED SABER instrument, *Geophys. Res. Lett.*, 32, L09804,
403 <https://doi.org/10.1029/2005GL022399>, 2005.

404

405 Siskind, D. E., Eckermann, S. D., McCormack, J. P., Coy, L., Hoppel, K. W., and Baker, N.
406 L.: Case studies of the mesospheric response to recent minor, major, and extended
407 stratospheric warmings, *J. Geophys. Res.*, 115, D00N03, doi:10.1029/2010JD014114, 2010.

408

409 Smith, A. K., López-Puertas, M., García-Comas, M., and Tukiainen, S.: SABER observations
410 of mesospheric ozone during NH late winter 2002–2009, *Geophys. Res. Lett.*, 36, L23804,
411 doi:10.1029/2009GL040942, 2009, 2009.

412

413 Smith, A. K., Garcia, R. R., Marsh, D. R., and Richter, J. H.: WACCM simulations of the
414 mean circulation and trace species transport in the winter mesosphere, *J. Geophys. Res.*, 116,
415 D20115, doi:10.1029/2011JD016083, 2011.

416

417 Sonnemann, G. R., and Grygalashvily, M.: The relationship between the occurrence rate of
418 major stratospheric warmings and solar Lyman-alpha flux, *J. Geophys. Res.*, 112, D20101,
419 doi:10.1029/2007JD008718, 2007.

420

421 Sonnemann, G. R., Grygalashvily, M., and Berger, U.: Impact of a stratospheric warming
422 event in January 2001 on the minor constituents in the MLT region calculated on the basis of
423 a new 3D-model LIMA of the dynamics and chemistry of the middle atmosphere, *J. Atmos.*
424 *Sol. Terr. Phys.*, 68, 2012–2025, DOI: 10.1016/j.jastp.2006.04.005, 2006.

425

426 SPARC CCMVal, SPARC report on the evaluation of chemistry-climate models, SPARC-
427 Report No. 5, WCRP-132, WMO/TD-No. 1526, SPARC CCMVal, 2010.

428

429 Tao, X.: Wave-mean flow interaction and stratospheric warming in an isentropic model, *J.*
430 *Atmos. Sci.*, 51, 134–153, 1994.

431

432 Tweedy, O. V., Limpasuvan, V., Orsolini, Y. J., Smith, A. K., Garcia, R. R., Kinnison, D.,
433 Randall, C. E., Kvissel, O.-K., Stordal, F., Harvey, V. L., and Chandran, A.: Nighttime

434 secondary ozone layer during major stratospheric sudden warmings in specified-dynamics
435 WACCM, *J. Geophys. Res. Atmos.*, 118, 8346–8358, doi:10.1002/jgrd.50651, 2013.

436

437 Usoskin, I. G.: A history of solar activity over millennia, *Living Rev. Sol. Phys.*, 14, 1-97,
438 <https://doi.org/10.1007/s41116-017-0006-9>, 2017.

439

440 Vaishnav, R., Jacobi, Ch., and Berdermann, J.: Long-term trends in the ionospheric response
441 to solar EUV variations, *Ann. Geophys. Discuss.*, <https://doi.org/10.5194/angeo-2019-34>,
442 2019.

443

444 Zülicke, C., and Becker, E.: The structure of the mesosphere during sudden stratospheric
445 warmings in a global circulation model, *J. Geophys. Res.*, 118, 2255-2271,
446 doi:10.1002/jgrd.50219, 2013.

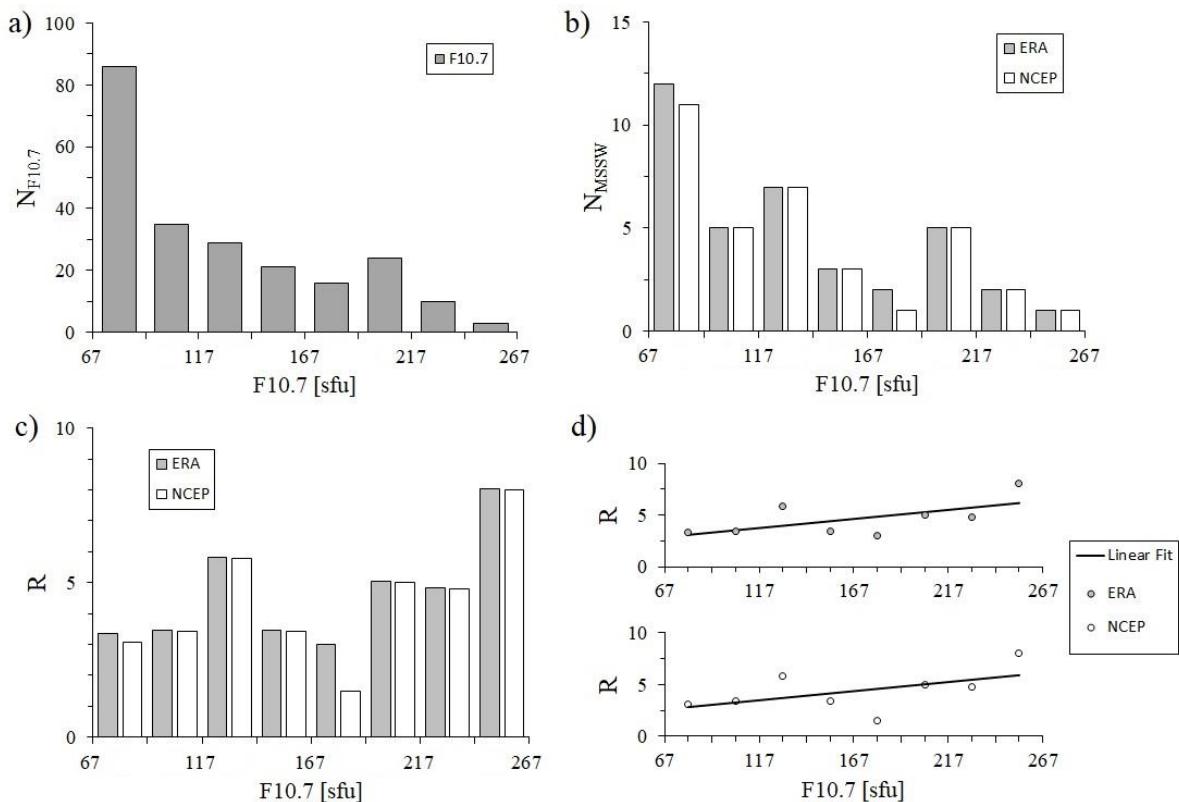
447

448 Zülicke, C., Becker, E., Matthias, V., Peters, D. H. W., Schmidt, H., Liu, H.-Li, de la Torre-
449 Ramos, H., and Mitchell, D. M.: Coupling of stratospheric warmings with mesospheric
450 coolings in observations and simulations, *J. Climate*, 31, 1107-1133, doi:10.1175/JCLI-D-17-
451 0047.1, 2018.

452

453 **Tables.**

454 Table 1. Values of the correlation coefficient between solar activity and MSSWs for different
455 proxies. The number of subintervals is the same for all calculations.


	American Sunspot numbers	Lyman-alpha flux	3.2 cm flux	8 cm flux	10.7 cm flux	15 cm flux	30 cm flux
ERA40/ERA-Interim	0.58 86.66%	0.54 83.36%	0.62 89.86%	0.44 72.32%	0.63 90.68%	0.45 74.21%	0.59 87.72%

NCEP-NCAR-I	0.49	0.58	0.64	0.43	0.55	0.35	0.71
	78.00%	86.57%	91.35%	70.93%	83.80%	60.65%	95.17%

456

457 **Figures.**

458

459

460 **Figure 1.** a) Monthly mean F10.7 values between 1958 and 2013 of 4 months between
 461 December and March; b) the number of MSWWs depending on F10.7 values; c) normalized
 462 occurrence rate of MSSWs depending on F10.7 values; d) correlation analysis for normalized
 463 occurrence rate of MSSWs and F10.7 values.

464