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Key Points:
. First application of in situ plasma densities for the direct analysis of the stratification in F2 layer.
. Refined features of exact location and continuous morphology for the stratification phenomenon.

. A new discovery of stratification covering all longitudes in southern mid-latitudes.

Abstract: Stratification phenomenon is investigated using the simultaneous in situ plasma density
measurements obtained by the Swarm satellites orbiting at different altitudes above F2 peak. For
the first time, the continuous distribution morphology and the exact locations are obtained for the
nighttime stratification, which show that the stratification events are centered at the EIA (equatorial
ionization anomaly) trough and extend towards the two EIA crests with the most significant part
being located at the EIA trough. Another new discovery is the stratification in southern mid-latitudes;
stratification events in this region are located on a local plasma peak sandwiched by two lower
density strips covering all the longitudes. The formation mechanism of the stratification for the two
latitudinal regions is discussed, but the stratification mechanism in southern mid-latitudes remains
an unsolved problem.

Key words: stratification, ionospheric F2 layer, in situ plasma density, Swarm satellites, southern
mid-latitudes stratification, stratification morphology

1. Introduction

Stratification is a kind of phenomenon appearing in the ionospheric F2 layer at low-latitudes
near geomagnetic equator, where additional layer is shown above the F2 layer peak due to the
combined effect of the upward E>B drift at the geomagnetic equator and the meridional neutral
wind (Balan et al., 1997, 1998; Jenkins et al, 1997). This additional layer was called G layer and
renamed to F3 layer by Balan et al. (1997) due to its same chemistry as the F region.

Since stratification was first reported in the mid-20th century (Sen, 1949; Skinner et al., 1954),
many studies have been conducted to study the formation mechanism, diurnal, seasonal and solar
activity dependence of this phenomenon using different measurements, such as ground-based
ionospheric sounding ionograms (Balan et al., 1997; Batista et al., 2002; Jenkins et al., 1997; Zhao
et al., 2011a), ground-based TEC (Thampi et al., 2005), satellite-based ionospheric sounding
ionograms (Depuev and Pulinets, 2001; Karpachev et al., 2013; Lockwood and Nelms, 1964),
satellite-based radio occultation (RO) observations (Zhao et al., 2011b), satellite-based in situ
measurements (Wang et al., 2019). All these studies have shown that stratification above F2 peak is
a regular rather than an anomalous phenomenon appearing both during the day and at night and is
limited in a narrow zone near the geomagnetic equator regions, and the occurrence of this
stratification phenomenon depends on season, solar activity and geomagnetic activity (Balan et al.,
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2008; Batista et al., 2002; Jenkins et al., 1997; Zhao et al., 2011a).

The features and formation mechanism of the ionospheric F2 layer stratification have been
extensively investigated for several decades, but unsolved problems, such as the exact locations and
distribution morphology that are useful to understand this phenomenon, still exist due to the
scattered and limited spatial coverage of the observations used in previous studies. So far, most of
these studies are based on ground-based or satellite-based ionograms. For the former, stratification
can only be observed during the period when the peak density of the stratification layer exceeds that
of the F2 layer; and for the latter, only during the period when the peak density of the stratification
layer is lower than the F2 peak. Continuous global distribution of the stratification cannot be
obtained from these scattered observations though local season and solar activity dependence
features can be obtained from these long-term observations. Moreover, there are contradictory
results in these studies. Whereas, simultaneous satellite-based in situ observations at different
altitudes above the F2 layer peak can provide spatial coverage of more extensive region, which can
incorporate all local time and longitudes. And the most important is that the morphology of the
stratification along the latitudinal direction can be obtained using the continuous measurements.

In this paper, for the first time, the in situ plasma measurements from the Swarm satellites are
used to study the precise locations, distribution and morphology of the stratification phenomenon.
Nighttime stratification on the southern mid-latitudes is found, which is never mentioned in previous
studies. Our results can provide new perspective for the stratification phenomenon, which is helpful
to the insight of the ionospheric F2 layer.

2. Data and method

Swarm, launched on 22 November 2013 by the European Space Agency (ESA), is a constellation
mission comprising three identical satellites (A, B & C). The three satellites are placed in two
different polar orbits, two flying side by side (A &C) at an altitude of about 460km with longitudinal
separation of about 1.4< and a third (B) at an altitude of about 510km (Knudsen et al, 2017).
Consistent in situ plasma densities are measured by the Langmuir probes (LP) onboard the three
Swarm satellites with a time resolution of 2Hz (Lomidze et al, 2018).

The three satellites began to separate in altitudes from the end of January 2014 and the separation
operations were completed in April 2014, as shown in Fig. 1. During and immediately after the
separation operations, the three satellites orbit at similar local time and similar locations in different
altitudes above the F2 peak region, which provides a good opportunity to check and understand the
distribution and morphology of the F2 layer stratification phenomenon using simultaneous in situ
measurements obtained on a global scale.
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((a) Variations of orbiting altitude of the three satellites with time; (b) Variations of altitude difference between
Swarm B and A with time; (c)Variations of Swarm B LT with time. The orbiting altitude, altitude difference, and
Swarm B LT in (a), (b), and (c) indicate the daily average values near the geographical Equator.)

Separation of the three satellites follow different schemes as shown in Fig. 1(a). To simplify the
calculation, we use only the measurements from Swarm A and B as the two satellites are closer to
each other, and they have more co-located orbit tracks after altitude separation. Therefore, co-
located in situ plasma density measurements from Swarm A and B are selected using the criteria
defined below to conduct this study.

We also give the solar and geomagnetic activity indices during the select period, as shown in
Fig.2. According to Fig.2(a) and (b), the solar activity during the selected period is medium. Since
there are few geomagnetic events as shown in Fig.2(c), we won’t distinguish the data into disturbed
and undisturbed cases here. Therefore, all the selected co-located orbit pairs are used in this study.
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Fig. 2 Variations of solar and geomagnetic indices with time
( (a) Variations of Sun spot index with time; (b)Variation of F10.7 index with time; and (c) Variation of Dst index
with time.)

To detect stratification events, measurements of the co-located orbit pairs from the two satellites
are compared directly. Spatial and temporal criteria to search co-located orbit tracks are defined as:
(1) longitude difference between two orbit tracks near the equator region is within 5° , which can
keep true for nearly all the mid-Ilatitudes as the orbit tracks of the Swarm satellites are almost parallel
to longitude for mid- and low-latitudes. This 5° spatial difference in longitude direction is
reasonable because of the little and negligible variation of the ionosphere in a small spatial scale.
According to Shim et al. (2008), the longitudinal correlation can vary from 23° at mid-latitudes
and 15° at low-latitudes during the day to 11° at mid-latitudes and 10° at low latitudes during the
night; and (2) time difference of measurements at similar latitude between two orbits is less than 30
min as appearance of stratification is normally much longer than this criterion (Balan et al., 1997);
moreover, variations of electron densities within 30 minutes can be neglected comparing to the
diurnal variation under geomagnetic quiet conditions.

A search of the dataset from Swarm A and B using the criteria, 1313 matched orbit pairs are found
from January to June 2014. Here, matched orbits indicate ascending (from south to north) or
descending (from north to south) half orbit tracks as a satellite passes the same location twice a day,
corresponding to daytime and nighttime respectively, as shown in Fig.1(c), which gives the local
time (LT) of Swarm B for both ascending and descending orbit during the selected data period.

Using these co-located orbit pairs, stratification events are identified by the following process. (1)
In situ plasma density measurements along the orbit tracks are down-sampled by averaging the data
over 1° latitude range; (2) The down-sampled data at same latitude from the two satellites are
compared, then data points, where average plasma density from Swarm B is greater than that from
Swarm A, are picked out; (3) Stratification events are identified only when at least 5 continual data
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difference (Swarm B minus Swarm A) points are positive, which means a continual latitude of at
least 5< Adoption of continual 5<at latitudinal direction is because the auto-detecting process may
make wrong decisions if less data points are considered due to the small data fluctuations of the
observations. Some very small stratification may be discarded in this way, but it won’t affect the
final results. After all the stratification events are determined, the morphology along the latitude,
the location, and the global distribution of the stratification events are then studied based on the
detected events.

3. Results

The global distribution of the detected stratification events from all the co-located orbit pairs from
January to June 2014 is given in Fig. 3, also given in this figure is the variations of the occurrence
number with local time and month. As more than one event may be detected from one orbit track,
Fig. 3(a) plots all the detected stratification events, but only one event is counted per orbit track in
Fig.3(b) and (c) when comparing the statistical results. The location of each stratification event is
identified as the place where maximum data difference is located, and the color of each point
represents occurrence month of that event.
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Fig. 3 Distribution of detected stratification events and variations of occurrence number with local time and month

(In (a), each point represents a stratification event, and the location of each point indicates the position of the maximum data difference
of that detected event. Color of each points indicates the occurrence month of the stratification event. Grey dash line indicates the
geomagnetic equator and 35° S geomagnetic latitude under dipole coordinates, and black dash line indicates dip equator. In (b) and (c),
“Event’ indicates detected stratification events, “Total’ indicates total co-located orbit number)AS shown in Fig. 3(c), most of
the detected stratification events are mainly concentrated during 18:00 to 01:00 LT, with 18:00 to
23:00 LT being the most clustered period. In contrast, daytime stratification events are fewer, which
is quite different from those studies that stratifications are concentrated from morning to noon period
(Balan et al., 1998; Batista et al., 2002; Rama Rao et al., 2005). As to the seasonal variations in
Fig.3(b), the most frequent occurrence of the stratification is in January, February, May and June
when comparing to the total number of co-located orbit pairs. The lower event number in January
is because the altitudes separation began at the end of this month, its occurrence rate (detected events
divide by total) is comparable to that in February, May, and June. As to the very small event number
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in March and April, it is necessary to point out that the local time of the two satellites coincides to
dawn and dusk during these two months, as shown in Fig.1(c), which may be the reason why
detected events are fewer during this period. Fewer stratification events during March and April is
consistent with the fewer events during the day, which we will discuss in Section 4.

It can be seen clearly from Fig.3(a) that stratification events are concentrated on two geomagnetic
latitudes, one is the geomagnetic equator region, where most previous studies are concentrated on;
and the other is the mid-latitude region on the Southern Hemisphere, where the distribution of the
stratification events also show the feature of being parallel to the geomagnetic equator. It should be
noted here that the geomagnetic equator and latitude shown by grey dash line in Fig.3(a) are from
dipole coordinates, and dip equator shown by black dash line is also given as a comparison.
Geomagnetic control of the stratification events in southern mid-Ilatitudes is obviously shown
according to its distribution feature. In Fig.3(a), stratification events near the geomagnetic equator
can occur in each month from January to June, whereas stratification on the southern mid-Ilatitudes
only occur in May and June, just the local winter.

As to the longitudinal distribution, stratification events can cover all longitudes, generally
showing a slightly denser distribution in the eastern hemisphere than in the western hemisphere,
which may be related to the limited statistical data. The all longitude coverage feature is consistent
with the results from Zhao et al. (2011b). A longitudinal peak is shown between longitude (-50,0)
in Fig.3(a), though it is not very obvious. This longitude peak coincides with the region where the
dip equator, the black dash line in Fig.3(a), transits from the south to the north of geographical
equator. This region is also the place where the ground-based sounding observations are used by
many previous studies (Balan et al., 1998; Batista, 2001; Jenkins et al, 1997; Zhao et al., 2011a).

To demonstrate the latitudinal distribution morphology, stratification events obtained from
continual orbit tracks observed in one day and different days are given in Fig.4 and Fig.5. In both
figures, red and blue color represent data from Swarm A and Swarm B respectively. Stratification
events are located on the places where measurements from Swarm B are greater than that from
Swarm A, namely on places where blue color curves are above red color ones. Also given in Fig.
4(b) are the ground tracks of the two satellites, which can be used to locate the longitude of the
stratification events.

As shown in Fig.4(a) and Fig.5(a), morphology of the nighttime stratification events, located near
the geomagnetic equator, shows that the stratification is centered at the equator ionization anomaly
(E1A) trough, where the geomagnetic equator is located at or near for most event cases, and extend
towards the EIA crests on both hemisphere. Occurrence of the nighttime phenomenon can be
accompanied by or without plasma depletion as shown in Fig.4(a) and Fig.5(a). Stratification can
be seen clearly from the satellite measurements even if there are plasma bubbles, whereas it cannot
be easily identified from ground-based ionograms under this disturbed situation. Latitudinal
distribution of this phenomenon indicates that most of the nighttime stratification can cover all the
regions between the two EIA crests, which is quite different from the locations of daytime
stratification, where the occurrence position is near, but not the geomagnetic equator (Balan et al.,
1998; Bastita et al., 2001; Uetomo et al., 2011).
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Fig. 4 Morphology of nighttime stratification examples from continual orbit tracks
((a) Morphology of nighttime stratification from continual orbits on 2014-02-03; (b) Ground tracks corresponding to the continual orbit in
(a). The dot line in (b) indicates the geomagnetic equator from dipole coordinate and numbers on the line corresponds to the numbers shown
in (a).)

We also give some examples in Fig.5(b) to show the typical morphology for daytime stratification.
These latitudinal distribution morphologies demonstrate clearly the results, reported by many
ground-based studies, that daytime stratification can appear on one side, frame 1 and 2 in Fig.5(b),
or both sides, frame 4 in Fig.5(b), of the EIA crests. We also show an example of the daytime
stratification centered at the EIA trough, frame 3 in Fig.5(b), which is seldom observed from ground-
based ionograms. An interesting point in daytime data is that there is a small spike centered at the
EIA trough occasionally as shown by frame 4 in Fig.5(b), which is never seen in nighttime
measurements and needs further confirmation. As there are only a few daytime stratification events,
no statistical results can be obtained from these data. We only focus on nighttime stratification in
this study.
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( (a) Morphology of nighttime stratification from different LTs. Figures 1-3 are from 2014-02-12 with LT 19:20; figures 4-9 are from 2014-
02-28 with LT 17:50; and figures 10-12 are from 2014-06-12 with LT 21:00; (b) Typical morphology of daytime stratification; Figures 1-2
is from 2014-04-22 with LT about 13:40, figure 3 is from 2014-03-22 with LT 16:00, and figure 4 is from 2014-03-20 with LT about 16:20.)

There is another southern mid-latitude regions where the detected stratification events are
concentrated on and can cover all the longitudes as shown in Fig.3(a). Stratification phenomenon in
this region is never mentioned in previous studies. All the detected stratification events in this region
occur at local nighttime in May and June as mentioned above. Typical stratification events in this
region are located on the local plasma peak along latitudinal direction, which is sandwiched by two
lower density strips as shown in Fig. 6. Stratification events in this region can occur simultaneously
with that located near the geomagnetic equator region as indicated by frame 11 and 12 in Fig.6. The
morphology and locations of the stratification events in southern mid-latitudes are quite different
from that in geomagnetic equator region, which may imply the different formation mechanism for
the two situations.
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Fig. 6 Examples of stratification in southern mid-latitudes

4. Discussion

To get the peak height range of the ionospheric F2 layer during the selected data period, a
statistical analysis is performed using the radio occultation (RO) measurements from the COSMIC
mission. Of all the 16753 RO events located between 320° geographical latitude, only 994 events
have peak height greater than 450km, including those with false peak height caused by disturbed
data, which indicates that the normal F2 peak height is lower than 450km at the equatorial region.
A small number of RO events, located along geomagnetic equator with a higher peak height, show
the morphology of two peaks on the profiles, which may imply stratification phenomenon.
Therefore, we can determine that the orbiting altitudes of the Swarm satellites are above the F2 peak
height for most cases, and the stratification events, appearing at the orbiting altitudes, can be
detected by the in situ plasma density measurements from the Swarm satellites.

The continuous morphology of the stratification and its global distribution obtained in this paper
give us a more intuitive image of the stratification phenomenon and are very useful to understand
this phenomenon. But some problems requires further analysis.

Stratification events detected in this study are mainly concentrated during nighttime period,
which is different from previous studies that occurrence of stratification is mainly during daytime,
especially during morning to noon period when the stratification are most frequently observed from
ground-based ionograms (Balan et al., 1998; Jenskin et al., 1997; Batista et al., 2001). As to the
reason why daytime stratification events are fewer for the Swarm measurements, a possible reason
is that the altitude of the F2 peak and the stratification (F3 layer) are higher during the day than they
are at night. Karpachev et al. (2013) demonstrate that the F3 layer height increases from ~450km in
the early morning to 600-750km in the afternoon, and Balan et al. (1997) also suggeste that the
daytime F3 layer occurs above 550km, all of which exceed the orbiting altitudes of the Swarm
satellites. As a result, only a few daytime stratification events can be observed. This is also the
reason why there are only a few events during March and April as the orbiting LTs of the two
satellites are both during the day during this two months. In fact, nighttime stratification is suggested
to be a permanent phenomenon by studies using satellite-based iongorams (Depuev and Pulinets,
2001; Lockwood and Nelms, 1964; Uemoto et al., 2011), the results obtained from the Swarm
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satellites in this paper support this suggestion.

Using the measurements of the Swarm satellites, the continuous latitudinal morphology and the
exact locations of the stratification events are shown clearly for the first time, which demonstrate
that the nighttime stratification can cover all the latitudes continuously between the two EIA crests
with the most significant part being located at the EIA trough. This arch-like distribution
morphology is in accord with those studies using satellite-based observations (Depuev and Pulinets,
2001; Lockwood and Nelms, 1964; Wang et al., 2019). Depuev and Pulinets (2001) suggest that the
intensity of the stratification has a maximum just above the equator and decreases poleward within
#0° dip; and Lockwood and Nelms (1964) also report that the field-aligned ledge is concentrated
above the geomagnetic equator, producing a dome-like cross-section in the equatorial region. Wang
etal. (2019) also suggest an arch-like distribution of the nighttime stratification. This feature is quite
different from the daytime stratification, which is more probable at low latitudes around the equator,
rather than at the equator itself (Balan et al.,1998; Batista et al., 2003; Uemoto et al., 2011; Zhao et
al., 2011b); and this location feature is demonstrated clearly by the typical daytime morphology in
Fig.5(b). In contrast, the morphology of most nighttime stratification suggest that the most
significant part is located at the EIA trough rather than at low latitudes on both sides. The different
features of locations and distribution morphology may suggest different formation mechanism for
nighttime and daytime stratification.

According to the widely accepted suggestion by Balan et al. (1998), daytime stratification (F3
layer) in equatorial region is formed due to the combined effect of the upward E X B drift and neutral
wind; the upward plasma drift causes the F2 peak to drift upward and form F3 layer while the normal
F2 layer develops at lower altitudes through the usual photochemical and dynamical effects. They
also suggest that the upward plasma drift due to the pre-reversal enhancement (PRE) cannot form
stratification because of the absence of the ionization production after sunset, which is later denied
by Zhao et al. (2011a) due to the existence of post-sunset stratification. Their observations show
that post-sunset stratification is different from daytime stratification due to the different solar
activity and season dependence features and they suggest that post-sunset stratification is formed
due to the PRE upward plasma lifts and the existence of ionization production at the high altitudes
of F2 layer after sunset. However, this formation mechanism cannot explain the midnight/post-
midnight stratification shown in this study and mentioned in previous studies (Depuev and Pulinets,
2001; Uemoto et al., 2011), we therefore deduce that nighttime stratification may be resulted from
a different formation mechanism. According to some studies (Balan et al., 2008; Paznukhov, 2007),
the mechanism responsible for the storm time stratification is similar to that in quiet periods but
with a much faster processing time due to the rapid uplift of the F layer by an upward E X B drift
resulting from an eastward penetration electric field. We therefore speculate that the upward plasma
drift caused by the PRE will produce the same effects as that of the magnetic disturbances. As a
result, plasma can be lifted up quickly by the PRE from lower altitudes to higher altitudes, which
can lead to the higher densities at higher altitudes and plasma depletion and plasma bubbles at lower
altitude. After the PRE, the downward vertical drift resulting from the reversal electric field will
replenish the depleted region by carrying the plasma from higher altitudes to lower altitude, as a
result stratification can be formed during the downward carrying process at the EIA trough. At the
same time, the field aligned diffusion of the uplifted plasma can maintain the EIA structure on both
sides of the geomagnetic equator and form stratification at low latitudes. By this way, the nighttime
stratification morphology, centering at EIA trough and extending towards the two EIA crests as

9
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shown in Fig.4(a) and Fig.5(a), can be formed. The EIA structure, which accompanies all the cases
of stratification near geomagnetic equator, is supposed to be the necessary condition to form the
stratification in this region. The existence of nighttime EIAs is common during geo-magnetically
quiet conditions, and re-appearance of EIA is triggered by the occasionally reversed upward vertical
plasma drift as nighttime vertical velocities are normally directed downwards (Yizengaw et al.,
2009). In addition, the nighttime downward vertical velocities are greater after midnight than before
midnight, both during magnetically quiet and perturbed times (Rajarm, 1977). Combining these
results, we can explain the formation process of the nighttime stratification at and near geomagnetic
equator and why most of the nighttime stratification events are concentrated between post-sunset to
midnight period as shown in Fig.3(c). In addition, according to Balan et al. (2000), variations of
daytime stratification arise from variations of the vertical plasma drift velocities due to the F region
zonal electric field. Similarly, the variations of the nighttime stratification may be related to the
variations of the PRE amplitude, variations of the upward and downward vertical velocities, as well
as variations of the frequency of the EIA re-appearance.

The new discovery in this study is the stratification on the southern mid-Iatitudes, which has never
been mentioned in previous studies. Wang et al. (2019) propose that a small stratification may exist
on southern mid-latitudes when comparing the in situ electron densities observed at different
altitudes by the same payload onboard DEMETER satellite, but a definite conclusion cannot be
given as the data is not observed simultaneously. The results in this paper further confirm their
proposal. However, we also notice that the season and solar activity of the data used in their study
are different from that in this study. Whether stratification on southern mid-Ilatitudes can occur in
all seasons or only in summer (Wang et al., 2019) or winter (in this study), both their studies and
ours cannot give a definite answer due to the limit data coverage, which requires further studies
when enough data are obtained. Zhao et al. (2011b) notice that there are a few cases of stratification
that are far away from the geomagnetic equator in their global stratification distribution obtained
from COSMIC RO data, they attribute it to the result of the propagation of atmospheric gravity
waves (AGWs) often observed in mid-latitudes. We don’t think their cases are similar as ours as
their cases are distributed randomly on both hemisphere. As no literatures can be referenced on the
stratification located in the southern mid-latitudes, a brief discussion on its possible formation
mechanism is given here.

As shown in Fig.6, stratification events in this region are located on the local plasma peak, and it
seems that the more obvious the local peak is, the more obvious the stratification is. Plasma
enhancement in southern mid-latitudes is noticed by Tsurutani et al. (2004). They call the local peak
“shoulder”, and this “shoulder” can be found from TOPEX, SAC-C, and CHAMP data sets, as well
as ground GPS data. Yizengaw et al. (2009) also report TEC enhancement in southern mid-latitudes
and attribute it to the meridional thermospheric wind that drives the F layer plasma upward as this
is the region where the wind-induced uplifting is most efficient. The morphology of the daytime
“shoulder” is similar as the nighttime TEC enhancement and local peak in this study. As this local
peak can exist both during the day and at night as well as under geomagnetic disturbed and quiet
conditions, we suppose that it is a normal phenomenon on southern mid-latitudes. Another
interesting feature from the study of Tsurutani et al. (2004) is the “shoulder” occurs only on Southern
Hemisphere, similar as the feature that mid-latitudes stratification occur only on Southern
Hemisphere. We speculate that the stratification in southern mid-latitudes is closely related with the
local peak structure according to their common feature. Tsurutani et al. (2004) suppose the “shoulder”
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is likely the signature of the plasmapause, which can be used as a downward plasma source to form
the stratification in the mid-latitudes, but this cannot explain why this phenomenon doesn’t appear
in northern mid-latitudes.

Abdu et al. (2005) suggest that precipitation of low energy (<10 keV) electrons in the SAA
(South Atlantic Anomaly), namely source of ion production, together with the ionization loss
process, might be a mechanism for the F2 layer stratification at mid-latitudes, but the locations of
their stratification are on the southern EIA crest, quite different from the locations in this study.
Moreover, precipitation mechanism cannot explain why the stratification can cover all the
longitudes.

According to Lin et al. (2005), large (storm time) upward E>B drifts can lift the ionospheric layer
to higher altitudes, and therefore can expand the EIA peaks to higher latitudes. However, the
proposal, transporting of equatorial plasma to higher geomagnetic latitudes by the super fountain
effect, still cannot satisfactorily explain the stratification in southern mid-Ilatitudes. For one reason,
field-aligned diffusion of the uplift plasma by super fountain may lead to the mid-latitude
stratification, but it cannot explain the trough between the local peak and the southern EIA crest as
shown in Fig.6; the second reason, when there is no EIA signature near the geomagnetic equator,
and as a result no super fountain effect, there are still many stratification cases in this region; and
the third reason, this mechanism cannot explain the absence of stratification in northern mid-
latitudes either. As no existing research results can satisfactorily explain the formation mechanism
of the stratification in southern mid-Ilatitudes, we put it as an open question here, and subsequent
studies are anticipated.

5. Summary

Stratification above F2 peak is investigated in this paper using the continuous in situ plasma
densities observed simultaneously by the Swarm satellites orbiting at different altitudes, some
refined features and new discovery on the F2 layer stratification are summarized as follows:

(1) It is the first time that stratification phenomenon is investigated using direct in situ plasma

density measurements.

(2) Most of the detected stratification events occur after sunset, and cluster between about 18:00
to 23:00 LT.

(3) The continuous morphology of the nighttime stratification events, located near geomagnetic
equator, shows that it centers at the EIA trough and extends towards both sides, but
sandwiched by the two EIA crests. This distribution feature is quite different from the
daytime stratification, which is located near but not the equator.

(4) Anew discovery is found that some detected nighttime stratification events are concentrated
near mid geomagnetic latitudes on Southern Hemisphere along all the longitudes, and the
stratification in this region is found to be located on the local plasma peak. Further studies
are expected on its formation mechanism.
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