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Abstract 13 

This study developed a model of Total Electron Content (TEC) over the African region. 14 

The TEC data were obtained from radio occultation measurements done by the 15 

Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) 16 

satellites. Data during geomagnetically quiet time (Kp < 3 and Dst > -20 nT) for the 17 

years 2008 - 2011, and 2013 – 2017 were binned according to local time, seasons, 18 

solar flux level, geographic longitude and latitude. B splines were fitted to the binned 19 

data to obtain model coefficients. The model was validated using actual COSMIC TEC 20 

data of the years 2012 and 2018. The validation exercise revealed that, approximation 21 

of observed TEC data by our model produces root mean squared error of 5.02 TECU. 22 

Moreover, the modeled TEC data correlated highly with the observed TEC data (r = 23 

0.93). Due to the extensive input data and the applied modeling technique, we were 24 

able to reproduce the well-known TEC features such as local time, seasonal, solar 25 

activity cycle, and spatial variations over the African region. Further validation of our 26 

model using TEC measured by ionosonde stations over South Africa at Hermanus, 27 

Grahamstown and Louisville revealed r values > 0.92 and RMSE < 5.56 TECU. These 28 

validation results imply that our model can estimate fairly well TEC that would be 29 

measured by ionosondes over locations which do not have the instrument. Another 30 
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importance of this study is the fact that it has shown the potential of using basis spline 1 

functions for modeling ionospheric parameters such as TEC over the entire African 2 

region. 3 

1.  Introduction 4 

Among the error sources that affect the positioning in Global Navigation Satellite 5 

Systems (GNSS) are the propagation medium related errors. In particular, the 6 

ionospheric refraction is the largest contributor of the user equivalent range error. This 7 

type of frequency dependent error can virtually be eliminated in dual frequency 8 

receivers by differential techniques (Hofmann-Wellenhof et al., 2007). For the case of 9 

single frequency receivers, some GNSS (e.g Global Positioning System (GPS) and 10 

Galileo) broadcast message includes the parameters of an ionospheric model which 11 

can be used to compute and correct the ionospheric effects (Guochang, 2007). For 12 

instance, the GPS uses the Klobuchar model which represents the zenith delay as a 13 

constant value at night and a half cosine function during the day (Klobuchar, 1987). In 14 

the framework of the European Galileo constellation, the NeQuick G based on NeQuick 15 

model has been proposed to be used for single frequency positioning (see Issue 1.2, 16 

September, 2016 of European Commission, titled, European GNSS (Galileo) Open 17 

Service - Ionospheric correction algorithm for Galileo single frequency users). The 18 

NeQuick and its subsequent modifications (NeQuick G and NeQuick 2) are a three-19 

dimensional, time dependent ionospheric electron density model developed by the 20 

Aeronomy and Radio Propagation Laboratory (ARPL) of the Abdus Salam  International 21 

Center for Theoretical Physics (ICTP) in Trieste, Italy and the Institute for Geophysics, 22 

Astrophysics and Meteorology of the University of Graz, Austria (Nava et al., 2008). 23 

In addition to using models to reduce ionospheric refraction errors, Space Based 24 

Augumentation Systems (SBAS) such as the Wide Area Augmentation System (WAAS), 25 

the European Geostationary Navigation Overlay Service (EGNOS), and the GPS-aided 26 

Geo Augmented Navigation (GAGAN) are also used (Hofmann-Wellenhof et al., 2007). 27 

For the international standard specification of ionospheric parameters (such as electron 28 

density, electron and ion temperatures, and equatorial vertical ion drift), the Committee 29 
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on Space Research (COSPAR) and the International Union of Radio Science (URSI) 1 

recommended the International Reference Ionosphere Model (IRI) (Bilitza, 2001). 2 

IRI is an empirical model primarily based on all available experimental data (ground and 3 

space based) sources. However, theoretical considerations have been used in bridging 4 

data gaps and for internal consistency checks (Bilitza, 2001). 5 

The ionospheric Total Electron Content (TEC) is one of the important descriptive 6 

physical quantities of the ionosphere (Rama Rao et al., 1997; Ercha et al., 2012). The 7 

GNSS measurements obtained from the global and regional networks of 8 

International GNSS Service (IGS) ground receivers have become a major source of 9 

TEC data. As one of the IGS analysis centers, Center for Orbit Determination in Europe 10 

(CODE) provides Global Ionosphere Maps (GIMs) containing vertical TEC data daily 11 

using the GNSS data collected from over 200 tracking stations of IGS and other 12 

institutions. Several studies have used GIMs from CODE and other IGS analysis 13 

centers such as the Jet Propulsion Laboratory (JPL) to construct TEC models (Jakowski 14 

et al. 2011a; Mukhtarov et al. 2013; Ercha et al. 2012; Sun et al., 2017). Jakowski et al. 15 

(2011a) proposed the Global Neustrelitz TEC Model (NTCM-GL) that describes the 16 

average TEC under quiet geomagnetic conditions. The NTCM-GL was developed using 17 

GIMs during 1998 - 2007 provided by CODE. A global background TEC model was also 18 

built using CODE GIMs by Mukhtarov et al. (2013). The model describes the 19 

climatological behavior of the ionosphere. The GIMs from JPL were used by Ercha et al. 20 

(2012) to construct a global ionosphere model using Empirical Orthogonal Function 21 

(EOF) analysis method. The Taiwan Ionosphere Group for Education and Research 22 

constructed a global ionosphere model from GNSS and the Constellation Observing 23 

System for Meteorology, Ionosphere, and Climate (COSMIC) GPS radio occultation 24 

(RO) observations (Sun et al., 2017). The map of all the averaged Root Mean Squared 25 

(RMS) error values of CODE GIMs during the years 2010 - 2012 presented by Najman 26 

and Kos (2014) showed high values over low latitude African regions. This could be due 27 

to the poor distribution of IGS tracking stations over Africa and inability of the spherical 28 

harmonics function used in GIM to describe ionospheric structure over low latitudes.  29 
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In addition to the existing GIMs discussed in the previous paragraph, regional TEC 1 

maps and models have also been constructed. In comparison with the global models, 2 

regional TEC models might have better accuracy over the particular region for which it 3 

was constructed. Opperman (2008) stated that the higher time and spatial resolution 4 

imaging achievable with regional models permits the analysis of localized ionospheric 5 

structures and dynamics not observable in global models. Examples of studies that 6 

developed TEC models over some parts of Africa are the following. A neural network 7 

model of GNSS - vertical TEC (GNSS-VTEC) over Nigeria was developed by Okoh et 8 

al., (2016) using all available GNSS data from the Nigerian GNSS Permanent Network 9 

(NIGNET). An adjusted spherical harmonic-based TEC model was developed by 10 

Opperman, (2008) using a network of South African dual frequency GPS receivers. 11 

Habarulema et al., (2011) presented the Southern Africa TEC prediction (SATECP) 12 

model that was based on the Neural Network technique. The SATECP generates TEC 13 

predictions as function of input parameters, namely, local time, day number of the year, 14 

solar and magnetic activity levels, and the geographical location. A neural network 15 

based ionospheric model was developed using GPS-TEC data over the East African 16 

sector by Tebabal et al. (2019). Recently, Okoh et al., (2019) used neural network 17 

technique to develop TEC model over the entire African region. In addition to using TEC 18 

obtained by COSMIC RO technique, they used TEC measured by GPS receivers on 19 

ground. 20 

Due to the lack of a dense network of ground-based GNSS receivers and poor 21 

coverage of COSMIC RO data over the African region, the TEC model over the entire 22 

African region presented by Okoh et al. (2019) sometimes failed to capture the 23 

equatorial ionization anomaly (EIA) over the region. This point has been illustrated with 24 

examples in sections 2 and 5. In this study, we applied data binning method to the 25 

COSMIC RO TEC data that allowed development of an improved TEC model over the 26 

region. Moreover, we demonstrate the potential of the basis spline functions to model 27 

TEC over the African region. These basis functions never vanish over limited intervals 28 

and add up to one at all local times and longitudes (De-Boor, 1978). Moreover, 29 

according to Scherliess and Fejer, (1999), they are ideally suited to model the equatorial 30 
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ionosphere which exhibit smooth and rapid changes during daytime and near sunset, 1 

respectively, by proper placement of the mesh of nodes. In section 2, the data and 2 

methods of analysis that were used in the study are described.  The details of the model 3 

proposed in this study are described in section 3. We present comparison between the 4 

observed and modeled TEC in section 4.  The model validation and the conclusions are 5 

presented in sections 5 and 6, respectively.  6 

 7 

2.   The Data and methods   8 

2.1 Data sources  9 

In order to overcome the problem of lack of a dense network of ground based GNSS 10 

receivers over the African region, this study used TEC data obtained from RO 11 

measurements done by the COSMIC satellites. The integrated electron density 12 

(integration being done up to the altitudes of the COSMIC satellites) which is being 13 

referred to as TEC in this study can be obtained from ionPrf files which are processed at 14 

the COSMIC Data Analysis and Archive Centre (CDAAC)(http://cosmic-15 

io.cosmic.ucar.edu/cdaac/index.html). The TEC for the individual occultation events 16 

were assigned to the geographic coordinates of NmF2 in the same file.  17 

In order to get integrated electron density approximately up to the altitudes of GPS 18 

satellites, Okoh et al., (2019) used neural networks to learn the relationship between 19 

coincident TEC measurements done by ground based GPS receivers and COSMIC RO. 20 

They showed that the ratio between TEC data from the two sources vary spatially. This 21 

observation implies that the neural networks may not learn very well the relationship 22 

between TEC measured by ground-based GPS receivers and COSMIC RO over 23 

locations which do not have the former data set during the entire study period. As it can 24 

be seen in Figure 1 of Okoh et al., (2019), there were large spatial coverage’s that do 25 

not have ground-based GPS receivers. Unlike what has been done in Okoh et al., 2019 26 

and Mungufeni et al., 2019, in the current work we used only COSMIC TEC without any 27 

adjustments. 28 
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In this regard, an analysis of coincident ground-based GNSS TEC and TEC from 1 

COSMIC occultation data performed by Mungufeni et al. (2019) reveals that the upper 2 

quartile of the differences between the two data sets may reach up to ∼11 TECU over 3 

the northern crest of the Equatorial Ionization Anomaly. Over the southern mid-latitude 4 

region, the differences were low (∼4 TECU). Since the upper quartiles of the differences 5 

can reach up to ~11 TECU, the median/mean values in the worst cases might obviously 6 

be much lower than this value. This might be the reason for observing most of the well-7 

known ionospheric TEC features over the African region when the COSMIC RO TEC 8 

were appropriately binned as in Mungufeni et al. (2019). Therefore, this study used the 9 

TEC obtained from COSMIC occultation measurements to develop TEC model over the 10 

African region in order to reproduce these ionospheric features. Such endeavors are 11 

important for educational purposes. 12 

During geomagnetic storms, the variations in zonal electric fields and composition of the 13 

neutral atmosphere contribute significantly to the occurrence of negative and positive 14 

ionospheric storm effects in the low latitude region (Rishbeth and Garriot, 1969; 15 

Buonsanto, 1999; Adewale et al., 2011). Therefore, since the ionosphere changes in a 16 

complex manner during geomagnetic storms, we only considered data on quiet days. 17 

The quiet geomagnetic days were identified by examining the 3 hourly Kp and 18 

Disturbance storm time (Dst) indices that were obtained from the World Data Center of 19 

Kyoto, Japan (http://swdcwww.kugi.kyoto-u.ac.jp/). A day was considered to be quiet if 20 

all the 8 Kp values in that day were ≤ 3. In addition to satisfying this condition, the hourly 21 

values of Dst in that day should also have values ≥ -20 nT. The two conditions were 22 

applied to ensure that both low and mid/sub-auroral latitude geomagnetic disturbances 23 

are detected by Dst and Kp indices, respectively. In future, we intend to use TEC data 24 

during disturbed geomagnetic conditions to construct a TEC model during 25 

geomagnetically disturbed conditions.  26 

 27 

2.2 Methods of Data Analysis  28 

The TEC data during the years 2008 - 2011 and 2013 - 2017 were used for developing 29 
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the TEC model over the African region. Due to the adequate data needed to develop 1 

an empirical model, we only reserved the data of the years 2012 and 2018 for 2 

validation. The period considered in this study represents data of both low and high 3 

solar activity level in sunspot cycles 23 and 24. The data within geographic latitude and 4 

longitude ranges of -35 – 35o and -20 – 60o, respectively, were used to cover the African 5 

region. Table 1 presents the number of days per year when there were TEC data over 6 

the African region. Since there are many geomagnetically disturbed days in high (2012 - 7 

2015) and medium (2011 and 2016) solar activity years, the number of days with data is 8 

also reduced in such years compared to low solar activity years (2008 - 2010, 2018).  9 

Table 1: Distribution of number of days with data 10 

 11 

 12 

It would be good to bin the TEC data according to geomagnetic latitudes since many 13 

structural and dynamical features of the ionized and neutral upper atmosphere are 14 

strongly organized by the geomagnetic field (e.g. Emmert et al., 2010). This may be 15 

complicated since geomagnetic latitude lines are not usually straight. For convenience 16 

and simplicity, we binned the data based on geographic coordinates. In order to 17 

observe small scale ionospheric structures, small grid resolutions of 3 and 5 degrees in 18 
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geographic latitude and longitude, respectively were used to bin the TEC data. These 1 

grid resolutions resulted into 24 and 16 latitudinal and longitudinal bins, respectively. 2 

Several studies (e.g. Krankowski et al., 2011 and Mengist et al., 2019) that have used 3 

COSMIC data commonly consider measurements with horizontal smear > 1500 km 4 

prone to errors and they reject such measurements. We established that after applying 5 

this restriction, there were ~40 RO measurements per day during the year 2013 over 6 

our study area (not shown here).  Based on the previous discussions, this value is far 7 

less than the 9,216 (16 longitudinal, 24 latitudinal, and 24 local time) TEC data points 8 

required in all grid cells in a day. As stated in section 1, this poor amount of data to 9 

represent day of year TEC variation might be the reason for the failure of TEC model 10 

presented by Okoh et al. (2019) to capture in some cases the EIA over the African 11 

region. Another reason might be the discrepancy which arises due to some locations 12 

being represented by adjusted COSMIC RO TEC while others by the ground-based 13 

GPS TEC data. 14 

Since empirical modeling requires adequate data for the mathematical functions to 15 

capture the physics inherent in the data, this study did not reject COSMIC RO TEC 16 

measurements with horizontal smear > 1500 km. Although not presented here, we 17 

observed that the COSMIC TEC data values with smear > 1500 km did not introduce 18 

alarming errors. This observation was made when we analyzed COSMIC TEC data 19 

which were coincident with TEC observed by ionosonde stations over South Africa (see 20 

details in section 5.2) located at Hermanus, Grahamstown, and Louisvale. Interestingly, 21 

compared to measurements with horizontal smear > 1500 km, some measurements 22 

with horizontal smear < 1500 km were observed to be far from the linear least squares 23 

fitting line. Further analysis of COSMIC RO observations over our study area revealed 24 

that without restricting horizontal smear, there were ~80 RO measurements per day 25 

during the year 2013 (not shown here). Still this value is far less than the 9,216 TEC 26 

data values required to fill all spatial grid cells in a day. To partially solve this problem, 27 

instead of binning data according to year, we binned the data according to different 28 

solar flux levels as shown below.  29 
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For each spatial grid cell, the data were binned at 1-hour interval. TEC values within the 1 

bins were averaged to yield 1-hour resolution TEC data over the grids. TEC data for the 2 

different days were binned according to F10.7 flux of that day. The F10.7 flux indices 3 

were obtained from the Space Weather Prediction Center (SWPC) of the National 4 

Oceanic and Space Administration (NOAA) (http://www.swpc.noaa.gov/). The F10.7 flux 5 

ranges for low solar activity (LSA), medium solar activity (MSA), and high solar activity 6 

(HSA) were < 76, 76 - 108, and > 108 sfu, respectively. The boundary values 76 and 7 

108 sfu of the F10.7 flux ranges correspond to the 75th and 25th percentiles of all F10.7 8 

flux values on the days in low (2008 - 2010, 2017 -2018) and high (2012 - 2015) solar 9 

activity years, respectively. 10 

Table 2: Average monthly F10.7 flux values used in the study 11 

 

Month 

F10.7 flux (sfu) 

LSA MSA HSA 

January 71.10 83.94 140.65 

February 71.14 87.06 126.23 

March 69.81 85.40 130.98 

April 71.02 86.09 130.46 

May 70.29 90.59 123.80 

June 69.51 89.91 118.73 

July 68.09 88.14 128.92 

August 67.45 85.46 114.53 

September 69.20 86.34 122.98 

October 70.06 81.88 131.50 

November 71.66 82.40 142.95 

December 70.82 82.97 142.72 

 12 
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The data within a specific solar flux bin were further binned based on months of a year. 1 

The average of the corresponding F10.7 flux of the days used to represent seasonal 2 

TEC were determined and used to capture the variation of TEC with solar flux. Table 2 3 

presents the average F10.7 flux values that were determined in the months of a year. In 4 

summary, a total of 331,776 TEC data values were needed to exist in 16 longitudinal, 5 

24 latitudinal, 3 solar flux, 12 monthly, and 24 hourly bins, in order to determine the 6 

model coefficients. However, from the data of the entire study period, only 121,447 bins 7 

were filled with TEC data values. The average of the standard deviations of the bins that 8 

contained more than 1 TEC data during low (sample size = 21,108), medium (sample 9 

size = 6,180) and high (sample size = 7,495) solar flux levels were 1.28, 2.15, and 4.31 10 

TECU, respectively.  11 

The bins which did not have TEC data were filled by estimation following the procedures 12 

described in 3 steps below. 13 

1. At a particular spatial grid cell, the diurnal TEC was divided into two local time 14 

sectors, namely, (i) 10:00 – 24:00 LT, and (ii) 0:00 – 10:00 LT. Sector (i) which is 15 

day time and before mid-night includes the time when daily and secondary TEC 16 

peaks are expected, while (ii) which is mostly at night is when TEC varies slowly. 17 

When slow variation of TEC was expected as in sector (ii) and there were at least 18 

a few (> 2) TEC data available, smoothing spline (De-Boor, 1978) data fitting 19 

method was used to estimate missing TEC values. In cases where rapid TEC 20 

variations are expected as in sector (i) and at least half of the total expected 21 

number of data points were filled with TEC data, piece-wise cubic interpolation 22 

(De-Boor, 1978) data fitting method was used to estimate missing TEC values. 23 

For example, when there were at least 4 measurements in sector (ii) the missing 24 

values were obtained by evaluating the fitted function through the existing TEC 25 

data values. On the other hand, when there were at least 7 (half the number of 26 

hours during 10:00 – 24 LT) TEC values in sector (i), the missing values were 27 

obtained by evaluating the fitted function to the available data values. After 28 

estimating the missing TEC data from the two sections of the diurnal TEC, the 29 
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entire diurnal TEC data over a particular grid cell was then considered to 1 

estimate the missing values. When there were at least 12 (half the number of 2 

hours in a day) values, the missing values were obtained by evaluating a 3 

smoothing spline function fitted to the existing data values. 4 

2. At a particular latitude and local time, the values of TEC along all the longitudes 5 

were divided into western (-20 – 20o E) and eastern (20 – 60o E) longitude 6 

sectors. Each of the longitude sectors contained 8 bins.  At night, when there 7 

were at least 3 TEC values over any longitude sector, the missing values were 8 

obtained by evaluating smoothing spline function fitted to the available data 9 

points, while during the day, when there were at least 4 Tec values, the missing 10 

values were obtained by evaluating a smoothing spline function fitted to the 11 

available data points. After estimating the missing TEC values over the two 12 

longitude sectors, the TEC over all longitudes were then considered to estimate 13 

the missing values. At night, when there were at least 8 values, the remaining 14 

values where obtained by evaluating a smoothing spline fitted to the available 15 

TEC data points. The missing values during day-time were estimated when there 16 

were at least 10 measurements available. 17 

3. Procedure 3 is similar to 2, except for variations of TEC as a function of latitude 18 

were considered at specific values of longitude and time. TEC values over the 19 

latitudes were divided into lower (-35 – 0o S) and upper (0 – 35o N) latitudinal 20 

sectors. There were 12 bins in each of the latitudinal sector. To estimate missing 21 

TEC values at night over a latitudinal sector, at least 4 measurements were 22 

required to be available, while during the day, at least 6 values were required. 23 

When TEC data over the combined latitudinal sectors were considered to 24 

estimate the missing values, at least 12 values were required to be available. 25 

After repeating procedures 1 – 3 three times, all the 331,776 bins were filled with TEC 26 

data. For purposes of minimizing the effects of outliers, the diurnal TEC at spatial grid 27 

cells were then separately fitted with smoothing splines which were evaluated to obtain 28 

the TEC data that were later used to determine the model coefficients as explained in 29 
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section 3. In order to demonstrate the appropriateness of our estimation of missing TEC 1 

data values and its use for determining model coefficients, we present Figure 1. Panels 2 

(a) – (c) of the figure present the available TEC data (*) and estimated (red line) TEC 3 

values during low, medium, and high solar flux levels, respectively.  4 
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Figure 1: Panels (a) – (c) present available (*) and estimated (red line) TEC values 6 
during low, medium and high solar flux levels, respectively. The data are for the month 7 
of January and fall within the grid cell centered at longitude and latitude of 17.5o W and 8 
34.5o S, respectively. 9 

 10 

The TEC data plotted in Figure 1 correspond to January and the grid cell centered at 11 

longitude 17.5o W and latitude 34.5o S. Figure 1 clearly shows that the available and 12 

estimated TEC variations depict the well-known diurnal and solar activity level 13 

dependence patterns. Moreover, the figure shows that the available data values are in 14 

most cases close to the estimated TEC values. Therefore, the estimated TEC values 15 

were then used to obtain the model coefficients. 16 
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3. The Model  1 

The TEC over the African region was expressed as 2 

∑∑∑∑∑
= = = = =

×××××=
24

1

12

1

3

1

16

1

24

1
)()()()()(),,,,(

i j k l m
mlkjiijklm NNFNdNtNaFdtTEC φλφλ      (1) 3 

where the linear model coefficients ijklma  were determined by the least square fitting 4 

procedure to the 331,776  TEC data values as in Abdu et al. (2003); Jakowski et al. 5 

(2011b); Mungufeni et al. (2015). In Equation 1, Ni(t), Nj(d), Nk(F), Nl(λ), and Nm(φ ) are 6 

B splines of different orders to represent variations of TEC with local time, seasons, 7 

solar flux level, longitude, and latitude respectively. Most of the B splines were of 8 

order 2, except for those used to represent LT and latitudinal variations which were of 9 

order 4. The order of splines used to represent LT and latitude was higher to cater for 10 

the rapid variations of TEC with these two parameters. Twenty-four local time nodes 1, 11 

2, ..., 24 were used. For simple interpolation between months, seasonal/monthly 12 

nodes were placed at the 15th day of each month. Solar flux nodes used in the various 13 

months are as shown in Table 2. The longitudinal nodes were separated by 5o and 14 

placed at longitudes -17.5, 12.5 7.5, ..., 57.5 degrees, while the latitudinal nodes were 15 

separated by 3o and placed at latitudes -34.5, -31.5, -28.5, … , 34.5 degrees. 16 

 17 

4. Comparison of Observed and Modeled TEC 18 

  19 

In order to assess the ability of the model to describe the data used to construct it, 20 

modelled data were compared with the binned data that were used to solve equation 1. 21 

The results of the self-consistency check are presented in Figure 2. It is important to 22 

note that validation using data that was not included during modeling is provided in 23 

section 5. Panels in column (i) of Figure 2 present the observed binned TEC data while 24 

column (ii) presents the corresponding modeled TEC data. In column (iii), we present 25 

the differences between the observed and modeled TEC data, referred to as errors. In 26 

Figure 2, rows (a), (b), and (c) correspond to LSA, MSA, and HSA, respectively. The 27 

horizontal magenta lines in Figure 2 and later also in Figure 3 indicate the location of 28 

~0o dip latitude on the corresponding panel. As expected, Figure 2 clearly shows that 29 
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the corresponding modeled TEC almost perfectly matches the observed binned TEC. 1 

This can be confirmed by the small (< 0.1 TECU) error values presented in panels of 2 

column (iii). The variations of the ionosphere with local time, solar flux level as well as 3 

location that are exhibited in Figure 2 gives the confidence of relying on the binned data 4 

as a good representation of the ionosphere. The physical explanations for these 5 

variations are as follows. The increase of both observed and modeled TEC that occurs 6 

when solar flux level increases is usually attributed to increased ionizing radiations in X-7 

ray and Extreme Ultra-Violet (EUV) bands, which in turn leads to increased TEC in the 8 

ionosphere (Hargreaves, 1992). 9 

  10 
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Figure 2. Variation of TEC as a function of geographic latitude and local time in March 12 
equinox at 37.5o E. Panels in rows (a) - (c) correspond to LSA, MSA, and HSA, 13 
respectively, while panels in columns (i) - (iii) correspond to observed binned, modeled 14 
TEC, and difference between observed and modeled TEC (errors), respectively. 15 
Magenta line indicates ~0o dip latitude. 16 
 17 
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The diurnal variation of TEC matches very well with the variation of photo-ionising 1 

radiations. At sunrise, the electron density begins to increase rapidly owing to photo-2 

ionization (Schunk and Nagy, 2009). After this initial increase at sunrise, electron 3 

density displays a slow rise throughout the day, and then it decays at sunset as the 4 

photo-ionization source disappears. Another diurnal feature of variation of TEC 5 

exhibited in Figure 2 is the existence of a secondary maximum of TEC. This can clearly 6 

be seen in panels of row (c) along the magenta lines, where the first peak occurs at 7 

~15:00 LT and the second at ~18:00 LT. The formation of a secondary maximum of 8 

TEC that was mentioned previously may be explained as follows. During the day, the 9 

thermospheric wind generates a dynamo electric field in the lower ionosphere that is 10 

eastward (Schunk and Nagy, 2009). The eastward electric field, E in combination with 11 

the northward geomagnetic field, B produces an upward E×B drift of the F region 12 

plasma. As the ionosphere co-rotates with the Earth toward dusk, the zonal (eastward) 13 

component of the neutral wind increases. The increased eastward wind component, in 14 

combination with the sharp day-night conductivity gradient across the terminator leads 15 

to the pre-reversal enhancement in the eastward electric field (Batista et al., 1986; 16 

Schunk and Nagy, 2009). The F layer therefore rises as the ionosphere co-rotates into 17 

darkness. Although in the absence of sunlight after sunset, the lower ionosphere rapidly 18 

decays, there exists high electron density at high altitudes, yielding the secondary 19 

maximum in TEC.  20 

 21 

Panels in rows (b) and (c) of Figure 2 demonstrate the existence of the EIA region, 22 

where there exist two belts of high electron density on both sides of 0o dip latitude. The 23 

EIA is usually attributed to the upward E×B drift which lifts plasma to higher altitudes. 24 

The plasma then diffuses north and south along magnetic field lines. Due to gravity and 25 

pressure gradient forces, there is also a downward diffusion of plasma. The net effect is 26 

the formation of the EIA region (Appleton, 1946). Another feature of EIA that can be 27 

seen on panels in rows (b) and (c) of Figure 2 is the asymmetry of the crests. Along 28 

120o longitude sector Zhang et al. (2009) reported the asymmetry of EIA crests. As 29 
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described later at the end of this section, the direction of neutral meridional winds in 1 

March may favour high values of electron density over the southern crest.  2 

 3 

Generally, Figure 2 shows that, the locations outside the EIA region have lower TEC 4 

values compared to locations around and within the EIA region. The low values of TEC 5 

over locations outside the EIA region might be due to lower elevation angle of solar 6 

radiation flux which is responsible for creation of electrons (Schunk and Nagy, 2009). 7 

The solar radiation flux is usually low for locations far from the sub-solar point. The latter 8 

situation is dominant over locations outside the EIA region, especially in March. The 9 

closeness of the sub-solar point to the locations within the EIA regions result into high 10 

solar radiations over these locations. As a result, high TEC values were observed over 11 

locations within the EIA region.  12 

 13 

To demonstrate that the modeled TEC captures TEC variation with seasons, we present 14 

Figure 3. In the figure, columns (i)  and (ii) present observed binned and the 15 

corresponding modeled TEC respectively. Moreover, rows (a) - (d) present TEC data 16 

during March, June, September and December, respectively.  17 

 18 
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Figure 3. Variation of TEC as a function of latitude and local time in HSA at 37.5oE. 2 
Panels in rows (a) - (d) are for March equinox, June solstice, September equinox, and 3 
December solstice respectively, while panels in columns (i) and (ii) are observed binned 4 
and modeled TEC respectively. Magenta line indicates 0o dip latitude. 5 

 6 

As already observed in Figure 2, it can clearly be seen from Figure 3 that the modeled 7 

TEC almost perfectly matches the observed TEC data. Among the many features of 8 

TEC exhibited by both observed and modeled TEC data, we would like to emphasize 9 

the (i) equinoxial asymmetry of TEC, (ii) occurrence of lowest TEC in June solstice, and 10 

(iii) high values of TEC in December. Features (ii) and (iii) were recently reported based 11 

on a similar data by Mungufeni et al. (2019). The reader may refer to this study for more 12 

discussions. Mungufeni et al. (2016a) observed equinoxial asymmetry when studying 13 

ionospheric irregularities over the African low latitude region. They observed over the 14 

East African region that, the irregularity strength in March equinox was higher than that 15 

in September equinox. They attributed the equinoxial asymmetry to meridional winds in 16 
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March which might blow northward. Such a direction would lift plasma up where 1 

recombination is not common. On the other hand, in September, the winds might blow 2 

southward. This could lead to recombination at low altitudes.  3 

 4 

5. Model Validation 5 

5.1 Validation using reserved COSMIC RO TEC  6 

In addition to comparing observed binned TEC with the corresponding modeled TEC, 7 

we validated our model using observed TEC in the years 2012 and 2018. The data 8 

during these two years were not used in developing the model. The TEC data in 9 

the years 2012 and 2018 were binned according to local time and spatially in a similar 10 

manner to that mentioned in subsection 2.2. The corresponding local time, day of the 11 

year, solar flux, and spatial coordinates of the data were noted and then used to 12 

generate the corresponding modeled TEC. Despite the advantages of B spline modeling 13 

mentioned in section 1, one of its limitations is the inability to extrapolate. Therefore, in 14 

situations where the solar flux level is higher (lower) than those specified in Table 2, the 15 

maximum (minimum) value in the table was used to generate the corresponding 16 

modeled TEC. This idea was also applied when the day number of year, longitude, and 17 

latitude values were higher (lower) than those specified in section 3.  18 

Figure 4 presents a scatter plot showing the observed TEC against the corresponding 19 

modeled TEC. The red line in the figure indicates linear least squares fit to the data in 20 

the panel. Furthermore, indicated in Figure 4 are: (i) the correlation coefficients, r, (ii) 21 

the r squared values, (iii) the number of data points, n plotted and (iv) the root mean 22 

squared error, RMSE when the modeled TEC is used to represent the observed TEC.  23 
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Figure 4. Scatter plot of observed TEC against modeled TEC. 2 

 3 

The following observations can be noted from Figure 4. (i) The modeled TEC correlates 4 

highly (r ∼0.93) with the observed TEC. (ii) The r squared values indicate that high 5 

proportions (∼87 %) of the variations in the observed TEC can be predicted 6 

by the modeled TEC. (iii) The RMSE value of 5.05 TECU signify that the modeled TEC 7 

closely approximates the observed TEC. 8 

In order to show that the observed and modeled TEC have similar magnitudes in 9 

addition to their similar variation depicted in Figure 4, we computed the differences 10 

between corresponding values of the data plotted in the figure. These were referred to 11 

as errors. We also computed the percentage of the different errors. The left and right 12 

vertical axes in Figure 5 present the distribution of the number of observed errors and 13 

their percentages, respectively. It can be seen from the figure, the errors are randomly 14 
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distributed since the distribution curve is symmetric about 0 TECU. Indeed, the 1 

magnitudes of the modeled TEC values are close to that of the observed TEC since the 2 

majority of the error values are close to zero.  3 
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Figure 5. The blue and red curves show the distribution of the number of observed 5 
errors (difference between observed and modeled TEC) and the percentage of the 6 
errors, respectively. 7 

The cases of high error values (> 10 TECU mostly have < 2.5 % occurrence probability, 8 

as can be seen on the right vertical axis. These high errors may be partly attributed to 9 

the limitation of spline modeling technique (inability to extrapolate) which was discussed 10 

earlier in this subsection 5.1.  11 

 12 

5.2 Validation using ionosonde TEC measurements 13 

 14 
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The TEC data measured by the digisonde ionosonde stations over South Africa located 1 

at Hermanus, Grahamstown and Louisvale can be accessed from the National Oceanic 2 

and Atmospheric Administration (NOAA) website via the link, ftp://ftp.ngdc.noaa.gov. 3 

The data obtained from the NOAA website is in form of auto-scaled ionospheric 4 

parameters such as peak height in F2 layer, critical frequency in F2 layer, and TEC 5 

which are stored in Standard Archiving Output (SAO) format files. It should be noted 6 

that the TEC data provided in SAO files are obtained by integrating electron density 7 

profiles up to altitude of ~700 km. More details about the auto-scaling program (real-8 

time ionogram scaler with true height (ARTIST)) and the electron density profiles they 9 

produce can be found in Reinisch and Huang, 2001 and Klipp et al., 2020. 10 

Figure 6 presents with magenta lines the diurnal patterns of TEC measured by 11 

ionosonde stations at Hermanus (panels in column (i)), Grahamstown (panels in column 12 

(ii)) and Louisvale (panels in column (iii)). The corresponding TEC generated by our 13 

spline technique model (spline), Nequick 2, and IRI-2016 are superimposed with red, 14 

green and blue lines, respectively. We need to mention that during computation of TEC 15 

using NeQuick 2 and IRI-2016, the height was limited to the approximate altitude of the 16 

COSMIC satellites (800 km). Moreover, for the case of IRI-2016, NeQuick model option 17 

was specified to estimate topside electron density. 18 

The panels in rows (a) - (c) show TEC on day of year 170 (June), 260 (September), and 19 

350 (December), respectively. All these three days of the year 2013 were 20 

geomagnetically quiet. Preliminarily, Figure 6 appears to reveal that IRI-2016 either 21 

overestimates (December) or underestimates (June and September) the TEC measured 22 

by the ionosonde stations. On the other hand, our spline model and NeQuick 2 seem to 23 

depict good correspondence between the observed and the modeled TEC. It can also 24 

be seen from Figure 6 that over a particular station, the shape of curves on different 25 

days representing TEC generated by the IRI-2016 and NeQuick 2 models are similar. 26 

This is expected since these two models were meant to reproduce monthly median 27 

values of the ionosphere. This means that our model, based on spline functions may 28 

capture better the day-to-day variability of the ionosphere. 29 

ftp://ftp.ngdc.noaa.gov/
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Figure 6: Magenta color shows diurnal TEC observed by ionosonde stations at 4 
Hermanus (panels in column (i)), Grahamstown (Panels in column (ii)), and Louisvale 5 
(Panels in column (iii)). The green, blue, and red colors show TEC estimations using 6 
NeQuick 2, IRI-2016 and Spline models, respectively. Panels in rows (a) - (c) show 7 
diurnal TEC during the year 2013 on DOY 170, 260, and 350, respectively.  8 

 9 

We generated such data plotted in Figure 6 for geomagnetically quiet days of the entire 10 

year 2013 and then performed statistical analysis of the observed and the model TEC 11 

data. Table 3 presents in columns 3 the correlation coefficients, r for the correlations 12 

between modeled and ionosonde TEC. Moreover, the table presents the RMSE when 13 

the ionosonde TEC was estimated using the models listed in column 2. The number of 14 

observations, n over each station that were used to determine, r and RMSE are put in 15 

brackets below the station name. 16 
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 1 

 2 

Table 3: Correlation coefficients, r and RMSE associated with estimation of TEC 3 
observed by ionosonde stations using models 4 

Ionosonde Station 

/number of observations 

Model R RMSE 

(TECU) 

Hermanus 

(n = 5,110) 

Spline 0.92 4.64 

IRI-2016 0.86 5.45 

NeQuick 2 0.92 4.10 

Grahamstown 

(n = 4,450) 

Spline 0.88 5.56 

IRI-2016 0.82 6.29 

NeQuick 2 0.86 5.27 

Louisville 

(n = 4,543) 

Spline 0.94 3.82 

IRI-2016 0.87 5.62 

NeQuick 2 0.94 3.73 

 5 

It can be seen from Table 3 that the r values associated with NeQuick 2 and spline 6 

based model are consistently better when compared with that of IRI-2016. Moreover, 7 

the RMSE values associated with IRI-2016 are the highest in all the cases. These two 8 

observations indicate that compared to spline and NeQuick 2, IRI-2016 poorly estimates 9 

TEC at the locations of the ionosondes. The RMSE values associated with NeQuick 2 10 

are always slightly lower than that of spline, while the r values associated with spline are 11 

mostly comparable or slightly higher than that of NeQuick 2. These discussions 12 

demonstrate that our spline model generates TEC values consistently with that 13 

observed by ionosondes. This implies that equivalent TEC measured by ionosondes 14 

over mid-latitude locations which do not have ionosonde stations can be predicted fairly 15 

well using our model. We might validate our model over low-latitude region that falls 16 
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within the current study area when in future ionosonde observations become available 1 

over the region.  2 

 3 

5.3 Comparison of our model with existing regional models 4 

It would be good to compare error levels produced when some measured TEC are 5 

compared with modeled TEC generated by (i) the existing regional TEC models 6 

discussed in section 1 and (ii) our spline technique TEC model. We may not perform 7 

such analysis since models in (i) are based on electron density integrated from ground 8 

up to GPS satellites (~20,200 km), while model in (ii) is based on electron density 9 

integrated up to ~800 km. However, we present Figures 7 and 8 to compare EIA 10 

features captured by our spline technique model with those by the neural networks 11 

technique of Okoh et al., (2019). The TEC plots based on the neural networks technique 12 

can be obtained from MATLAB Central website (Okoh et al., 2019).  13 

(https://www.mathworks.com/matlabcentral/fileexchange/69257‐african‐gnss‐tec‐afritec‐14 

model?s_tid=prof_contriblnk).  We present in Figure 7 examples of TEC generated by 15 

neural network model during the year 2012 at 11:00 UT. Over the East African sector 16 

(LT = UT + 3), this time translates to 14:00 LT and falls within the range of LT when EIA 17 

exists over the region (Mungufeni et al., 2018). Panels (a) and (b) in Figure 7 present 18 

TEC during March (DOY 81) and September (DOY 260) equinoxes, respectively, while 19 

(c) and (d) present during June (DOY 171) and December (DOY 347) solstices, 20 

respectively. It is important to mention that these 4 days were geomagnetically quiet. 21 

 22 

 23 

 24 

 25 

 26 

https://www.mathworks.com/matlabcentral/file
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 1 

Figure 7: Neural Network TEC maps during the year 2012 at 11:00 UT. Panels (a) and 2 

(b) are for March (DOY 81) and September (DOY 260) equinoxes, respectively, while 3 

(c) and (d) are for June (DOY 171) and December (DOY 347) solstices, respectively. 4 

 5 

In order to generate TEC maps using our model for purposes of comparing with TEC 6 

maps in Figure 7, we noted and used the F10.7 flux values on the days indicated in the 7 

figure. The TEC maps generated using our model that correspond to TEC maps 8 

presented in Figure 7 are presented in Figure 8. 9 
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 1 

Figure 8: Similar to Figure 7, but generated by spline modeling technique. Magenta 2 

arrows indicate approximate locations of EIA trough. 3 

Unlike our TEC maps in Figure 8 which clearly show the EIA trough (see magenta 4 

arrows) in all the seasons, the neural network technique TEC maps (Okoh et al., 2019) 5 

of Figure 7 only clearly capture the EIA trough in December solstice. As pointed before, 6 

this short fall in neural network TEC model might be due to poor amount of data to 7 

represent day of year during model development. Another observation that can be 8 

made from Figures 7 and 8 is that unlike the neural network model which yields smooth 9 

spatial TEC variation, the spline modeling technique does not yield smooth spatial TEC 10 

variation. In real life, measurement or observed values rarely vary smoothly. Since the 11 
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spline modeling technique produces results (see Figure 2) which demonstrate that the 1 

modeled data matches almost perfectly the observed data, it is expected that the spatial 2 

variations of TEC in maps of Figure 8 are not smooth. 3 

 4 

6. Conclusions  5 

 6 

This study developed a model of TEC measured by COSMIC satellites. The TEC data 7 

were binned according to local time, seasons, solar flux level and spatially. The 8 

coefficients of B splines that were fitted to the binned data were determined 9 

by means of the least square procedure. As expected, the modeled TEC almost 10 

perfectly matched the corresponding observed binned TEC data. The model was 11 

validated with independent data that were not used in the model development. The 12 

validation revealed that (i) the observed and the modeled TEC correlate highly (r = 0.93), 13 

(ii) the coefficient of determination R2 which is the proportion of variance in the observed 14 

data predicted by our model was 87 %, and (iii) the modeled TEC closely approximates 15 

the observed TEC (RMSE of 5.05 TECU). Due to the extensive input data and the 16 

applied modeling technique, we were able to reproduce the well known features of TEC 17 

variation over the African region. Further validation of our model using TEC obtained 18 

from ionosonde stations over South Africa at Hermanus, Grahamstown and Louisville 19 

reported r values > 0.92 and RMSE < 5.56 TECU. These validation results imply that 20 

our model can estimate fairly well TEC that would be measured by ionosondes over 21 

locations which do not have the instrument. 22 

 23 
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