

Nighttime O(1D) distributions in the mesopause region derived from

2 SABER data

- 3 Mikhail Yu. Kulikov¹, and Mikhail V. Belikovich¹
- 4 Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., 603950 Nizhny Novgorod, Russia
- 5 Correspondence to: Mikhail Yu. Kulikov (mikhail_kulikov@mail.ru)
- 6 Abstract. In this study, the new source of O(1D) in the mesopause region proposed by Kalogerakis (2019) is applied to
- 7 SABER data to estimate the nighttime O(¹D) distributions for the years 2003-2005. It is found that O(¹D) evolutions in these
- 8 years are very similar to each other. Depending on the month, monthly averaged O(1D) distributions may have a pronounced
- 9 maximum (up to 80-110 cm⁻³ in January and July) localized in height (at \sim 97±4 km) and latitude (at \sim 52±4 $^{\circ}$ S or \sim 52±4 $^{\circ}$ N).
- 10 The nightly averaged O(1D) concentrations may reach ~300 cm⁻³. The obtained results are useful data set for subsequent
- estimation of nighttime O(¹D) influence on chemistry of the mesopause region.

12 1 Introduction

- 13 Daytime O(1D) is considered to be one of the important chemical minor species of the stratosphere, mesosphere and
- 14 thermosphere, as it plays a significant role in the chemistry, and the radiative and thermal balance of this region (Brasseur &
- 15 Solomon, 2005). First of all, formed by photolysis of O₂ and O₃, O(¹D) is a mediator involved in the transformation of
- absorbed solar radiation energy into the heating of this region and, in particular, excitation of $N_2(v)$ and $CO_2(v)$ (Harris &
- 17 Adams, 1983; Panka et al., 2017). Also, O(1D) atoms participate in the reactions of destruction of long-lived greenhouse
- 18 gases (Baasandorj et al., 2012), CH₄ oxidation, and HO_x and NO_x production, for example:
- 19 $O(^{1}D)+N_{2}O \rightarrow 2NO$
- 20 $O(^{1}D)+H_{2}O \rightarrow 2OH$
- 21 $O(^{1}D)+H_{2} \rightarrow H+OH$
- $22 \qquad {\rm O(^1D) + CH_4 \rightarrow CH_3 + OH}$
- 23 $O(^{1}D)+CH_{4} \rightarrow H_{2}+CH_{2}O$
- 24 Moreover, the red line emission from O(1D) atoms is one of the most important airglow phenomenon which are used as a
- diagnostic of the ionosphere, for example, to monitor the electron density and neutral winds in the F region (Shepherd et al.,
- 26 2019). Therefore, many papers and experimental campaigns are devoted to measurements of features of O₃ photolysis to
- 27 O(¹D) (Taniguchi et al., 2003; Hofzumahaus et al., 2004).
- 28 Until recently, it was believed that the above mentioned processes stopped at night due to absent of constant source of O(1D)
- 29 in this time and extremely low (less than 1 s) life time of this component. In principle, O(1D) can be generated in sprite halos
- 30 but for a low duration of 1 ms (Hiraki et al., 2004). In this year, based on laboratory experiments, Kalogerakis (2019)
- 31 highlighted a previously unrecognized source of nighttime O(1D) and O2 A-band emission in the mesopause region via
- 32 process:
- 33 $OH(\nu \ge 5) + O(^{3}P) \rightarrow OH(0 \le \nu \le \nu 5) + O(^{1}D),$ (1)
- 34 that is multiquantum quenching of high excited states of OH by collisions with atomic oxygen in ground state. Taking into
- account the major way of this process (Kalogerakis et al., 2016):
- 36 $OH(9) + O(^{3}P) \rightarrow OH(3) + O(^{1}D),$
- 37 Kalogerakis (2019) showed that a new model of O_2 A-band well described (qualitatively and quantitatively) the results of
- 38 early nighttime rocket measurements of volume emission rate profiles of this airglow. Thus, he proved that the process (1)
- really took place in mesopause region and the way (2) was the major source of O(¹D).

In this study, the new source of O(¹D) in the mesopause region proposed by Kalogerakis (2019) is applied to SABER data to estimate the O(¹D) nighttime distributions for the years 2003-2005.

2 O(1D) model and method of derivation from SABER Data

Following Kalogerakis (2019), the nighttime balance of OH(9) and O(¹D) concentrations in the mesopause region is
determined by processes summarized in Table 1. Due to low values of chemical lifetimes (less than 1 s), these components
can be considered in chemical equilibrium:

$$46 OH(9) = \frac{y_9 \cdot k_1 \cdot H \cdot O_3}{k_2 \cdot O_2 + k_3 \cdot N_2 + k_4 \cdot O + k_5}, (3)$$

$$47 O(^{1}D) = \frac{y_{1}\cdot k_{4}\cdot 0H(9)\cdot 0}{k_{6}\cdot O_{2} + k_{7}\cdot N_{2} + k_{8}} = \frac{y_{1}\cdot y_{9}\cdot k_{1}\cdot k_{4}\cdot 0\cdot H\cdot O_{3}}{(k_{2}\cdot O_{2} + k_{3}\cdot N_{2} + k_{4}\cdot 0\cdot + k_{5})\cdot (k_{6}\cdot O_{2} + k_{7}\cdot N_{2} + k_{8})},$$
(4)

- 48 where k_i are the corresponding process rate coefficients. Thus, local $O(^1D)$ concentration is defined by the values of 49 temperature (T), and concentrations of M, O_3 , O, and H. We suggest getting this information from satellite-based
- 50 observations.
- 51 Mlynczak et al. (2013, 2014) proposed the method of nighttime O and H derivation in the range of 0.01-0.0001 hPa
- 52 (approximately 80–105 km) from simultaneous measurements of temperature, ozone (using ozone emission at 9.6 μm) and
- 53 OH(9-7) and OH(8-6) band emissions by the SABER (Sounding of the Atmosphere using Broadband Emission
- Radiometry) instrument onboard the TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics) satellite.
- The method used two assumptions: the chemical equilibrium condition for nighttime ozone, and the model of OH(9–7) and
- 56 OH(8–6) emissions. Recently (Mlynczak et al. (2018), the parameters of the model was corrected. So now, O distributions
- 57 derived from SABER data are in good consistent with O distributions obtained from SCIAMACHY green-line and OH
- 58 nightglow measurements (Zhu & Kaufmann, 2019). In this work, we derive the local values of O and H from SABER data
- and apply all sets of data (T, concentrations of M, O₃, O, and H) to retrieve the local concentrations of O(¹D) with the use of
- 60 eq. (4). At this, we use also the analytical criterion (Kulikov et al., 2018) that allows the localization of the lower boundary
- of nighttime ozone chemical equilibrium (Kulikov et al., 2019) with the use of SABER data.

62 3 O(¹D) nighttime distributions

- We use the version 2.0 of the SABER data product (Level2A) for the simultaneously measured O₃, volume emission rate of
- OH from the v = 9 and v = 8 states and temperature profiles within the 0.01–0.0001 hPa pressure (p) interval (approximately
- 80-105 km in 2003-2005. We take only nighttime data when the solar zenith angle $\chi > 95^{\circ}$. Appling the mentioned criterion
- 66 for each set of simultaneously measured profiles, we find the local position (the pressure level p_{eq}) of the boundary of
- 67 nighttime ozone chemical equilibrium. Thus, we take into account only the upper part of each SABER profile corresponding
- 68 $p \ge p_{eq}$. The range of latitudes covered by the satellite trajectory in a month was divided into 20 bins ~ $(5-8)^{\circ}$ each. 1500-
- 69 3000 single profiles of O(1D) concentration fall into one bin during a month of SABER observations (or 50-100 profiles per
- a one night). For each bin we calculate monthly and nightly averaged zonal mean $< O(^{1}D) >$ distributions (hereafter, the
- angle brackets are used to denote timely and spatially averaged values).
- Monthly averaged $< O(^1D) >$ distributions in corresponding month of 2003-2005 are shown in Figs. 1–3. Firstly, it can be
- 73 noted that O(¹D) evolutions in these years are very similar to each other. Secondly, many features of O(¹D) in the southern
- hemisphere are repeated in the northern hemisphere with a shift of 6 months. In particular, O(¹D) concentration distributions
- 75 in January-February and November-December have a pronounced maximum (up to 80 cm⁻³ in January) localized in height
- 76 (at ~97±4 km) and latitude (at ~52±4°S). In May-August, the distributions have similar maximum (up to 110 cm⁻³ in July)
- 77 localized at ~98±3 km and ~52±4°N. In other months (March-April and September-November), one can see transitional
- 78 O(¹D) distributions with several maxima but their values don't exceed (30-35) cm⁻³. Figs. 4–5 show the nightly averaged

© Author(s) 2019. CC BY 4.0 License.

85

- $79 < O(^1D) > \text{vertical distributions at } (48-54)^\circ N \text{ and } (48-54)^\circ S \text{ as a function of day of year. Examples of these profiles are}$
- 80 presented in Fig. 6. One can see that local value of $< O(^{1}D) >$ at $\sim (97-98)$ km may reach ~ 300 cm⁻³ in both hemispheres.
- 81 The uncertainty of local O(1D) concentration is defined mainly by local uncertainty of O derivation. Taking into account the
- 82 O uncertainty profile presented in Mlynczak et al. (2013), we estimate that uncertainty of local O(1D) varies in the range of
- 83 (30-40)% depending on the pressure level. Due to averaging, the uncertainty of nightly averaged O(¹D) shown in Fig. 6 is
- estimated to be less than 6%.

4 Discussion and Conclusion

- 86 According to different early papers (Nicolet, 1959; Ghosh & Gupta, 1970; Shimazaki & Laird, 1970; Harris & Adams,
- 87 1983), daytime O(¹D) concentrations at 90-100 km varied in the range of (10²-10⁴) cm⁻³. Brasseur & Solomon (2005)
- published the table (see Table A.6.2.c) where daytime O(¹D) changed from 70 cm⁻³ at 90 km to 140 cm⁻³ at 100 km. The
- 89 presented results show that monthly and nightly mean nighttime O(1D) concentrations at these altitudes can reach 100 cm⁻³
- and 300 cm⁻³, respectively. Thus, nighttime concentrations of O(¹D) are comparable with daytime concentrations of this
- 91 component and, in principle, can impact noticeably the chemistry and thermal balance of the mesopause region. More
- 92 detailed analyze of this impact should be carried out with the use of the global 3D chemical transport model of the
- 93 mesosphere lower thermosphere.
- 94 Data availability. The SABER data used in this study can be downloaded from ftp://saber.gats-
- 95 inc.com/Version2_0/Level2A/. The presented data can be downloaded from
- 96 http://www.iapras.ru/english/structure/dep_240/dep_240.html.
- 97 **Author contributions.** Both authors contributed equally to this paper.
- 98 **Competing interests.** The authors declare that they have no conflict of interest.
- 99 Acknowledgments. The authors are grateful the SABER team for data availability.

100 References

- 101 Baasandorj, M., Hall, B. D., and Burkholder, J. B.: Rate coefficients for the reaction of O(1D) with the atmospherically long-
- 102 lived greenhouse gases NF₃, SF₅CF₃, CHF₃, C₂F₆, c-C₄F₈, n-C₅F₁₂, and n-C₆F₁₄. Atmos. Chem. Phys., 12, 11753-11764,
- 103 doi:10.5194/acp-12-11753-201, 2012.
- Brasseur, G. P., and Solomon, S.: Aeronomy of the middle atmosphere: Chemistry and physics of the stratosphere and
- mesosphere (3rd ed). Dordrecht, Netherlands: Springer Science and Business Media, 2005.
- Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., et al.: Chemical kinetics and
- 107 photochemical data for use in atmospheric studies, evaluation no. 18, JPL Publication 15–10, Pasadena, CA: Jet Propulsion
- Laboratory, http://jpldataeval.jpl.nasa.gov, 2015.
- 109 Ghosh, S. N., and Gupta, S. K.: Altitude distributions of and radiations from certain oxygen and nitrogen metastable
- 110 constituents, J. Geomagn. Geoelectr., 22, 329-339, 1970.
- Harris, R. D., and Adams, G. W.: Where does the O(1D) energy go? J. Geophys. Res., 88(A6), 4918-4928,
- 112 doi:10.1029/JA088iA06p04918, 1983.

- Hiraki, Y., Tong, L., Fukunishi, H., Nanbu, K., Kasai, Y., and Ichimura, A.: Generation of metastable oxygen atom O(1D) in
- sprite halos, Geophys. Res. Lett., 31, L14105, doi:10.1029/2004GL020048, 2004.
- Hofzumahaus, A., Lefer, B. L., Monks, P. S., Hall, S. R., Kylling, A., Mayer B. et al.: Photolysis frequency of O₃ to O(¹D):
- Measurements and modeling during the International Photolysis Frequency Measurement and Modeling Intercomparison
- 117 (IPMMI), J. Geophys. Res., 109, D08S90, doi:10.1029/2003JD004333, 2004.
- Hunt, B. G.: A diffusive-photochemical study of the mesosphere and lower thermosphere and the associated conservation
- 119 mechanisms, J. Atm. Terr. Phys., 33, 1869-1892, 1971.
- 120 Kalogerakis, K. S., Smith, G. P., and Copeland, R. A.: Collisional removal of OH(X ²Π, v = 9) by O, O₂, O₃, N₂, and CO₂. J.
- 121 Geophys. Res., 116, D20307, doi:10.1029/2011JD015734, 2011.
- 122 Kalogerakis, K. S., Matsiev, D., Sharma, R. D., and Wintersteiner, P. P.: Resolving the mesospheric nighttime 4.3 µm
- emission puzzle: Laboratory demonstration of new mechanism for OH(v) relaxation, Geophys. Res. Lett., 43, 8835–8843,
- 124 doi:10.1002/2016GL069645, 2016.
- 125 Kalogerakis, K. S.: A previously unrecognized source of the O2 atmospheric band emission in earth's nightglow. Science
- 126 Advances, 5, eaau9255, doi:10.1126/sciadv.aau9255, 2019.
- 127 Kulikov, M. Y., Belikovich, M. V., Grygalashvyly, M., Sonnemann, G. R., Ermakova, T. S., Nechaev, A. A., and Feigin, A.
- 128 M.: Nighttime ozone chemical equilibrium in the mesopause region, J. Geophys. Res., 123, 3228-3242,
- 129 doi:10.1002/2017JD026717, 2018.
- 130 Kulikov, M. Yu., Nechaev, A. A., Belikovich, M. V., Vorobeva, E. V., Grygalashvyly, M., Sonnemann, G. R., and Feigin,
- 131 A. M.; Border of nighttime ozone chemical equilibrium in the mesopause region from saber data: implications for derivation
- 132 of atomic oxygen and atomic hydrogen, Geophys. Res. Lett., 46, 997-1004, doi:10.1029/2018GL080364, 2019.
- 133 Mlynczak, M. G., Hunt, L. A., Mast, J. C., Marshall, B. T., Russell III, J. M., Smith, A. K., Siskind, D. E., Yee, J.-H.,
- 134 Mertens, C. J., Martin-Torres, F. J., Thompson, R. E., Drob, D. P., and Gordley, L. L.: Atomic oxygen in the mesosphere and
- lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty, J. Geophys. Res., 118,
- 136 5724–5735, doi:10.1002/jgrd.50401, 2013.
- 137 Mlynczak, M. G., Hunt, L. A., Marshall, B. T., Mertens, C. J., Marsh, D. R., Smith, A. K., Russell, J. M., Siskind, D. E., and
- 138 Gordley, L. L.: Atomic hydrogen in the mesopause region derived from SABER: Algorithm theoretical basis, measurement
- uncertainty, and results, J. Geophys. Res., 119, 3516–3526, doi:10.1002/2013JD021263, 2014.
- 140 Mlynczak, M. G., Hunt, L. A., Russell, J. M., III, and Marshall, B. T.: Updated SABER night atomic oxygen and
- implications for SABER ozone and atomic hydrogen, Geophys. Res. Lett., 45, 5735-5741, doi:10.1029/2018GL077377,
- 142 2018
- Nicolet, M.: The constitution and composition of the upper atmosphere, Proc. IRE, 47, 142-147, 1959.
- Panka, P. A., Kutepov, A. A., Kalogerakis, K. S., Janches, D., Russell, J. M., Rezac, L., Feofilov, A. G., Mlynczak, M. G.,
- 145 and Yigit, E.: Resolving the mesospheric nighttime 4.3 μ m emission puzzle: Comparison of the CO2(ν ₃) and OH(ν)
- emission models, Atm. Chem. Phys., 17, 9751–9760, doi:10.5194/acp-17-9751-2017, 2017.
- 147 Sharma, R. D., Wintersteiner, P. P., and Kalogerakis, K. S.: A new mechanism for OH vibrational relaxation leading to
- enhanced CO₂ emissions in the nocturnal mesosphere, Geophys. Res. Lett., 42, 4639-4647, doi:10.1002/2015GL063724,
- 149 2015.
- 150 Shepherd, M., Shepherd, G., and Codrescu, M.: Perturbations of O(1D) VER, temperature, winds, atomic oxygen, and TEC
- at high southern latitudes, J. Geophys. Res., 124, 4773–4795, doi:10.1029/2019JA026480, 2019.
- 152 Shimazaki, T., and Laird, A. R.: A model calculation of the diurnal variation in minor neutral constituents in the mesosphere
- and lower thermosphere including transport effects, J. Geophys. Res., 75, 3221–3235, doi:10.1029/JA075i016p03221, 1970.

https://doi.org/10.5194/angeo-2019-154 Preprint. Discussion started: 25 November 2019 © Author(s) 2019. CC BY 4.0 License.

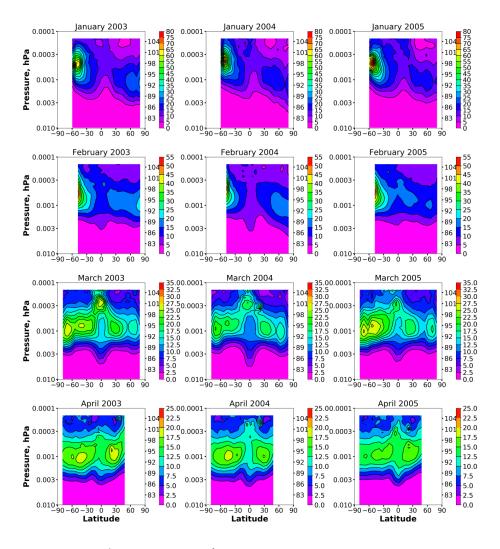
- Taniguchi, N., Hayashida, S., Takahashi, K., and Matsumi, Y.: Sensitivity studies of the recent new data on O(1D) quantum
- yields in O₃ Hartley band photolysis in the stratosphere, Atmos. Chem. Phys., 3, 1293-1300, doi:10.5194/acp-3-1293-2003,
- 156 2003
- 257 Zhu, Y., and Kaufmann, M.: Consistent nighttime atomic oxygen concentrations from O2 A-band, O(1S) green line, and OH
- airglow measurements as performed by SCIAMACHY, Geophys. Res. Lett., 46, 8536-8545, doi:10.1029/2019GL083550,
- 159 2019.

https://doi.org/10.5194/angeo-2019-154 Preprint. Discussion started: 25 November 2019 © Author(s) 2019. CC BY 4.0 License.

160

	Process	Rate coefficient
1	$H + O_3 \rightarrow O_2 + OH(v)$	$1.4 \cdot 10^{-10} \cdot \exp(-470/\text{T}) \text{ cm}^3 \text{ s}^{-1}$
		OH(9) yield is $y_9 = 0.47$.
2	$OH(9) + O_2 \rightarrow products$	$1.15 \cdot 10^{-11} \cdot \exp(195/T) \text{ cm}^3 \text{ s}^{-1}$
3	$OH(9) + N_2 \rightarrow products$	5.03·10 ⁻¹³ ·exp(100/T) cm ³ s ⁻¹
4	$OH(9) + O \rightarrow products$	$6.2 \cdot 10^{-10} \cdot \exp(-135/T) \text{ cm}^3 \text{ s}^{-1}$
	_	$O(^{1}D)$ yield is $y_{1} = 5/6.2$
5	radiative decay of OH(9)	173 s^{-1}
6	$O(^{1}D) + O_{2} \rightarrow O + O_{2}$	$3.3 \cdot 10^{-11} \cdot \exp(55/T) \text{ cm}^3 \text{ s}^{-1}$
7	$O(^{1}D) + N_{2} \rightarrow O + N_{2}$	$2.15 \cdot 10^{-11} \cdot \exp(110/\text{T}) \text{ cm}^3 \text{ s}^{-1}$
8	radiative decay of O(¹ D)	0.009 s^{-1}

161 Table 1. List of processes with corresponding rate coefficients from Kalogerakis et al. (2011), (2016), Sharma et al.


162 (2015) and Burkholder et al. (2015).

164 Figures

165

166 167

Figure 1. Monthly averaged O(¹D) concentration (in cm⁻³) in different months of 2003-2005.

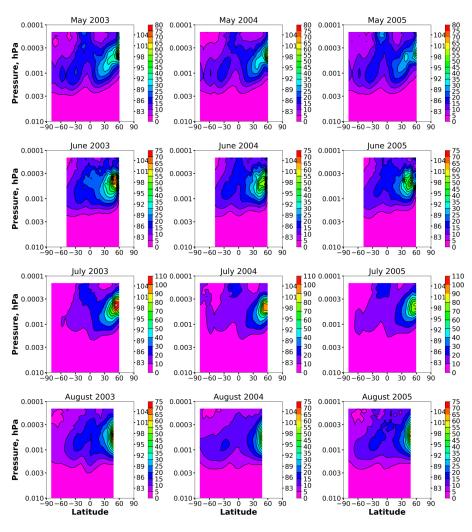


Figure 2. Monthly averaged O(¹D) concentration (in cm⁻³) in different months of 2003-2005.

172173

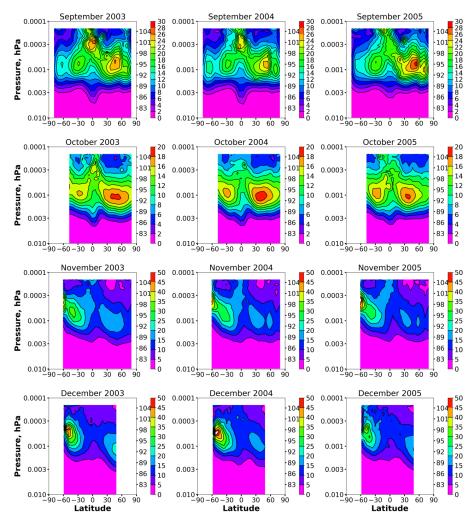


Figure 3. Monthly averaged O(¹D) concentration (in cm⁻³) in different months of 2003-2005.

176177

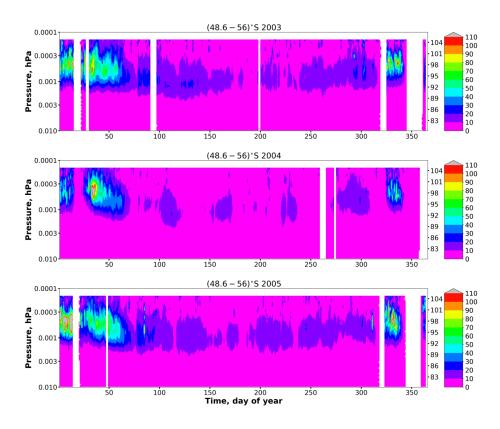
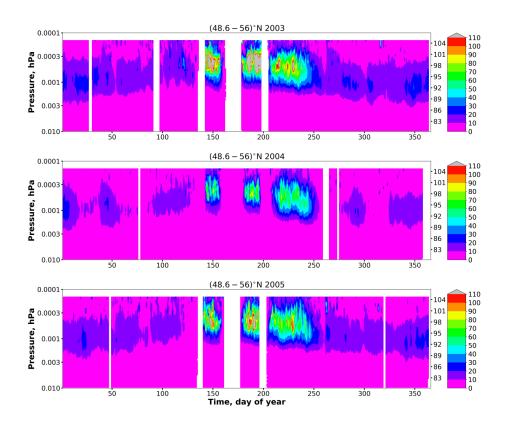



Figure 4. The nightly averaged $< O(^1D) > vertical$ distributions at $(48-54)^{\circ}S$ as a function of day of year. The values of $O(^1D)$ concentration greater than 110 cm^3 are grayed out.

186 187 188

Figure 5. The nightly averaged $< O(^1D) > vertical$ distributions at $(48-54)^\circ N$ as a function of day of year. The values of $O(^1D)$ concentration greater than 110 cm⁻³ are grayed out.

0.0100

100

200

O(1D) concentrations, cm-3

300

192 193 194

195

190 191 0.0001 0.0001 (48-54)°N 105 (48-54)°S-105 0.0002 0.0002 0.0002 0.0003 0.0005 0.0020 0.0030 15.01.2003 Pressure, hPa 14.07.2003 0.0003 Altitude, km 04.02.2004 0.0005 11.07.2005 95 95 12.01.2005 0.0010 06.08.2004 90 0.0020 0.0030 85 85 0.0050 0.0050

 $Figure \ 6. \ Examples \ of \ nightly \ averaged < \mathcal{O}(^1D) > profiles \ vertical \ distributions \ at \ (48-54)^\circ N \ (left) \ and \ (48-54)^\circ S \ (right).$

400

0.0100

100

O(1D) concentrations, cm-3

200