

1 **Earth's radiation belts ions: patterns of the spatial-energy structure**
2 **and its solar-cyclic variations**

3 **Alexander S. Kovtyukh**

4 Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, 119234, Russia;
5 kovtyukhas@mail.ru

6 **Abstract** Spatial-energy distributions of the stationary fluxes of protons, helium ~~ions~~ and ions
7 of carbon-nitrogen-oxygen (CNO) group, with energy from $E \sim 100$ keV to 200 MeV, in the
8 Earth's radiation belts (ERB), at $L \sim 1-8$, are considered here ~~by the using~~ data ~~of the~~ from
9 satellites ~~for in the period~~ 1961–2017. It ~~is find~~ has been found that the results of these
10 measurements line up in the space $\{E, L\}$ ~~by~~ following some regular patterns. Solar-cyclic (11-
11 year) variations in the distributions of protons, helium ~~ions~~ and CNO group ions fluxes in the
12 ERB are studied. It has been observed that in the inner regions of the ERB, ~~the ions~~ ion fluxes
13 decrease with increasing solar activity. ~~It is find and that~~ the solar-cyclic variations of fluxes ~~for~~
14 ~~ions with~~ of $Z \geq 2$ ions are much greater than for protons; moreover, it seems that they ~~and~~
15 increase with increasing ~~an~~ atomic number Z ~~of the ions~~. ~~The~~ Finally, the possible physical
16 mechanisms leading to formation of this spatial-energy structure and to the solar-cyclic
17 variations of the ERB ion fluxes are discussed.

18 **Keywords.** Magnetospheric physics (energetic particles, trapped). Radiation belts.

21 1 Introduction

22 ~~The Earth's radiation belts (ERB)~~ The ERB consist mainly of charged particles with energy from E
23 ~ 100 keV to several hundreds of megaelectronvolt (MeV). These particles are trapped by the
24 geomagnetic field at altitudes from ~ 200 kilometers to ~ 50 – 70 thousands kilometers. The ERB is
25 consisted mainly from electrons and protons. In ~~the~~ ERB there are also ~~ions of~~ helium nuclei and
26 ~~other $Z > 2$ ions (like oxygen etc), oxygen, and other elements with the atomic number $Z \geq 2$,~~ where Z is the charge of the atomic nucleus with respect to the charge of the proton. During
27 geomagnetic disturbances, ~~ion~~ fluxes, and ~~its~~ their distributions are ~~varied~~ changed. These fluxes
28 depend also on the phase of the solar cycle, conditions in the interplanetary space, and other
29 factors.

31 Particles with different energy E and pitch angles α (α is the angle between ~~a~~ the local vector of
32 the magnetic field and ~~the~~ vector of a particle velocity), which ~~are~~ injected into some point of the
33 geomagnetic trap, ~~are~~ drifted ~~with~~ conserving the adiabatic invariants (μ , K , Φ) and populate a
34 narrow layer surrounding the Earth (Alfvén and Fälthammar, 1963; Northrop, 1963). This layer
35 called ~~the~~ the drift shell. Therefore, experimental data on the ERB ~~do most simply~~ are often
36 represented in coordinates $\{L, B\}$, where L is ~~parameter of a drift shell~~ the drift shell parameter and
37 B is ~~a~~ the local induction of the magnetic field (McIlwain, 1961). For the dipole magnetic field L is
38 a distance, in the equatorial plane, from the given magnetic field line to the center of the dipole
39 itself (in ~~the~~ Earth's radii R_E).

40 The stationary fluxes J of the ERB particles with given energy and pitch angle α ~~are~~ decreased
41 usually when the point of observation is shifted from the equatorial plane to ~~a~~ higher latitudes
42 along certain magnetic field line (if we exclude the peripheral regions of the geomagnetic trap,
43 where the drift shells of the captured particles are split and branched). This dependence of the
44 particle fluxes is described by the functions $J(B/B_0)$, where B and B_0 are values of the magnetic field
45 at the point of observation and in the equatorial plane on the same magnetic field line ~~respectively~~.

46 Outer and inner regions of the ERB ~~are~~ maintained in ~~the~~ dynamic equilibrium with the
47 environment by ~~the~~ different mechanisms (see review Kovtyukh, 2018).

48 The outer belt ($L > 3.5$) ~~of ions~~ is formed mainly by the mechanisms of ~~the~~ radial diffusion of
49 ~~these such~~ ions ~~to~~ towards the Earth under the action of fluctuations of ~~an~~ both electric and
50 magnetic fields resonating with ~~a~~ their drift periods ~~of these ions~~. This transport is accompanied by
51 the betatron acceleration ~~of ions~~ and by the ionization losses of the ions ~~in~~ as a result of their
52 interactions with the plasmasphere and with residual atmosphere.

53 The inner belt ($L < 2.5$) of protons with $E > 10$ MeV ~~is was~~ formed mainly as a result of decay
54 of neutrons knocked from the nuclei of the atmospheric atoms by the Galactic Cosmic Rays
55 (GCR). For protons with $E < 10$ MeV this mechanism (CRAND) is supplemented by the radial
56 diffusion of particles from the outer to the inner belt. The inner belt of ions with $Z > 4$ was formed
57 mainly from the ions of the Anomalous component of Cosmic Rays (ACR).

58 In the intermediate region ($2.5 < L < 3.5$) is operated also the mechanism of ~~a~~ ion capture ~~of the~~
59 ~~ions~~ from ~~the~~ Solar Cosmic Rays (SCR) ~~takes place~~ during strong magnetic storms (see, e.g.,
60 Selesnick et al., 2014).

61 Thus, the main mechanisms of formation of the ERB, ~~together with the~~ sources of injection and
62 losses of ~~the~~ ions, are known. However, for ~~the~~ comprehensive verification of the physical models
63 and to ~~identification~~ identify ~~of~~ the mathematical models and ~~their~~ parameters, ~~the~~ formulation of
64 ~~sufficiently~~ complete and reliable empirical models of the ERB for each of ~~the~~ ion components, ~~it~~
65 is necessary; it is ~~also~~ necessary ~~also~~ for ensuring the safety of space flights.

66 These models can be created only ~~on a basis of the~~ using experimental data, ~~are~~ obtained over
67 many years and decades; such models (see, e.g., Ginet et al., 2013) were ~~already~~ created for
68 protons (AP8/AP9). ~~These models~~ and they are widely used in ~~the~~ space research. ~~However,~~ On
69 the contrary, measurements of ~~fluxes of the ions with~~ $Z \geq 2$ ion fluxes ~~are represented a difficult~~

70 suffer from technical problems due to a small ~~fluxes of these ions~~ statistics and high background
71 ~~fluxes~~ of protons and electrons. ~~The~~ For this reasons, empirical and semi-empirical models ~~of the~~
72 ~~ERB developed~~ for ~~ions with~~ $Z \geq 2$ ions, are applicable only to very limited regions of the space
73 $\{E, L\}$.

74 ~~There are problems connected with limited and incomplete information on the fluxes of ions~~
75 ~~with $Z \geq 2$ in the ERB, especially in the energy range from tens to hundreds of megaelectronvolt.~~
76 One of the main problems of this work is to consider the possibility to create a sufficiently
77 complete and reliable empirical models of the ERB for these ions based on currently available
78 experimental data.

79 In the following sections, ~~are considered~~ the spatial-energy structure of the ERB in the spaces
80 $\{E, L\}$ for protons, helium ~~ions~~ and ~~of the~~ CNO group ions on the experimental data (Sect. 2)
81 together with the possible physical mechanisms of formation of these structures and its solar-cyclic
82 variations (Sect. 3) are ~~discussed~~ considered, and the main conclusions of this work are given
83 (Sect. 4).

84 2 Spatial-energy distributions of the ion fluxes near the equatorial plane

85 There can be ~~ions~~ trapped ~~on the in~~ in drift shells only ~~ions~~ with energies less than some maximum
86 values, determined by the Alfvén's criterion: $\rho_i(L, E, M_i, Q_i) \ll R_c(L)$, where ρ_i is the ~~gyroradii~~
87 ~~gyroradius~~ of ions, and R_c is the radius of curvature of the magnetic field near the equatorial plane
88 (M_i and Q_i are mass and charge of ions with respect to the corresponding values for protons).
89 According to this criterion and the theory of stochastic motion of particles, the geomagnetic trap
90 can capture and durably hold only ions with E (MeV) $< 2000 \times (Q_i^2/M_i) L^{-4}$ (Iljin et al., 1984). The
91 green line in Figs 1-6 ~~is present~~ represents this boundary ~~on Figs. 1-6~~.

92 When comparing the data of various experiments in the ERB, the question arises about the
93 compatibility of these results with each other and the reasons for their discrepancies. More or less
94 significant discrepancies in the results of the satellites can be connected with the differences in ~~the~~
95 ~~their~~ trajectories ~~of the satellites~~; in the construction of the instruments and their angular
96 characteristics; in the energy ranges and sets of ~~the~~ energy channels. For the stationary ERB, these
97 discrepancies can also be associated with differences in the general state of the ~~Solar~~ Sun,
98 heliosphere and magnetosphere of the Earth ~~at the different measurements~~ during various periods
99 of data-taking. These factors influence ~~on~~ the fluxes of ions with $Z \geq 2$ in the ERB more
100 significantly ~~than on the~~ with respect to proton fluxes (see, e.g., Kovtyukh, 2018).

101 ~~This~~ In this section, ~~used~~ experimental data of various satellites, which were obtained for quiet
102 periods ($K_p < 2$) and near the equatorial plane of the ERB for ions with equatorial pitch angles α_0
103 $\approx 90^\circ$ ~~have been used. The preference was given to the averaged results of these satellites for quiet~~
104 ~~periods. All values of differential fluxes reduced to one dimension.~~ In the regions of E and L shells,
105 where these data were obtained, the ion fluxes ~~do~~ are not distorted by the background of other
106 particles.

107 In many important experiments, the instruments ~~did not allow~~ were not able to separate fluxes
108 of ions by ~~their~~ charge of ions. ~~For~~ Moreover, for the ions of the CNO group, the separation by
109 mass ~~also~~ are not ~~performing usually~~ usually performed. For heavier ~~ions~~ species, for example for
110 Fe ions, we have very ~~smaller such~~ data-sets. Therefore, this work presents ~~only~~ data on helium
111 ions (without ~~any~~ charge separating ~~them by charge~~) and ~~ions of~~ CNO ions ~~group~~ (without ~~any~~
112 mass or charge separation ~~them by mass and charge~~).

113 To solve the aforementioned problems ~~considered here~~, it is important to choose the form of
114 representation (space of variables), in which the results of ~~different~~ the single experiments can be
115 ~~conformed~~ compared to each other ~~naturally~~. ~~For such representation of the distributions of the ion~~
116 ~~fluxes have~~ In our case, the space $\{E, L\}$ has been used; ~~chosen the space $\{E, L\}$.~~ Such
117 ~~representation is possible~~ this choice is very efficient to better organize ~~of a~~ fragmentary
118 experimental data obtained in different ranges of E and L ~~most effectively~~.

119 Figures 1–6 presented here the spatial-energy distributions of the fluxes of protons, helium ions,
120 and ions of the CNO group near the equatorial plane. These figures united in pairs: odd figures
121 refer to periods near the minima, and even figures refer to periods near the solar activity maxima.
122 The values E and L in these figures are presented in logarithmic scales. Statistical and methodical
123 errors of the experimental points on these figures do not exceed of the size of these points. These
124 points are connected by lines of the equal intensity of ion fluxes (iso-lines); the decimal logarithms
125 of the fluxes J , in unit of $(\text{cm}^2 \text{ s ster MeV/n})^{-1}$, are shown near each iso-lines. ~~The ion fluxes J~~
126 ~~have a dimension $(\text{cm}^2 \text{ s ster MeV/n})^{-1}$ and are corresponded to the energies E (MeV/n) and an~~
127 ~~equatorial pitch angle of α_0 is 90°~~ .

128 Such representations of the experimental data are not only visual, but also ~~are~~ very convenient
129 and rather universal. Obviously, Figs. 1–6 actually show both radial profiles of the fluxes of ions
130 for a given energy (~~if one see along the abscissa axis~~) and ion energy spectra for a given L shell (~~if~~
131 ~~one see along the ordinate axis~~).

132 In this place, it is need to say a few words about the method of constructing these figures. The
133 ~~are have been~~ points in Figs. 1–6 obtained from the ~~dependences~~ radial profiles of fluxes $J(L)$ for a
134 ~~given ions with a certain energy~~ (the average energies of the ions ~~for each~~ in the channels of the
135 ~~instruments~~) ~~and with an equatorial pitch angle close to 90°~~ . Unlike ~~distributions of electrons, as~~
136 ~~well as ion distributions connected with magnetic disturbances~~ electron fluxes or ion fluxes
137 measured during geo-active conditions, ~~the dependences~~ the ion fluxes considered here (i.e. during
138 quiet periods), for ~~the ERB ions with $\alpha_0 \sim 90^\circ$~~ usually have only one maximum ~~in a quiet time in~~ in
139 the functions $J(L)$. As a result, for each experiment, 1 or 2 points were obtained (on the outer and
140 inner edges of these profiles) with certain values of E and L for a given level of ~~stationary~~ ion
141 fluxes. Sometimes, especially for low ~~levels of~~ fluxes, only one point was obtained: in these cases,
142 the radial profile of the ion fluxes was cutoff at small ~~values of L by~~ due to a significant
143 background of ~~other~~ contaminating particles. ~~In these cases, and no interpolations and/~~ extrapolations ~~of the radial profiles of ion fluxes does performing here~~ has been performed
144 ~~whatsoever~~.

145 Each iso-line, shown in these figures, ~~was built has been evaluated~~ separately, ~~for~~ from the
146 corresponding set of experimental points (icons); after that this iso-line was transferred (along with
147 the icons) to the corresponding figure. ~~Thus, ; thus, in the region more~~ abundantly populated
148 sectors of the plots ~~by such icons~~ (i.e. for protons with $E > 1 \text{ MeV}$ at $L > 2$) ~~they~~ such iso-lines are
149 mixing in Figs. 1–2. In ~~the cases~~ of a large distances between neighboring points, the
150 corresponding segments of the iso-lines are shown ~~in dotted as dashed arcs in these figures~~.

151 The radial profiles of the differential fluxes $J(L)$ ~~shown on uniform presentation for~~ of particles
152 ~~of~~ with different ~~energies~~ energy ~~are~~ tend to intersect with each other in those regions where the
153 energy spectra ~~of these fluxes are have a present some~~ local maximum or minimum. ~~In contrast,~~
154 ~~On the contrary,~~ the ~~flux~~ iso-lines cannot intersect with each other: ~~because~~ this would mean that,
155 at the same point in the space $\{E, L\}$, the ion fluxes differ very significantly (by an order of
156 magnitude ~~for the flux step selected here~~). Such uncertainty does not have a physical sense and
157 ~~means a complete discrepancy and contradiction to each other of two close series of data obtained~~
158 ~~in different experiments. In this case,~~ a special analysis is needed to identify ~~all the errors and~~
159 ~~differences in the conditions for different measurements, in order to reconcile them with each other~~
160 ~~other possible sources of errors.~~

161 The ~~largest errors of our method are connected with drawing iso lines of fluxes along~~
162 ~~heterogeneous sets of experimental points (the errors of these points themselves do not exceed of~~
163 ~~the size of the icons on Figs. 1–6). This uncertainty of our work is open for constructive criticism,~~
164 ~~and these figures themselves are open for possible corrections and additions.~~

165 The synthesis of the experimental data on the fluxes of ERB ions in other representations (in
166 other spaces of variables) leads ~~For example, one can present ion fluxes obtained in various~~
167 ~~experiments for different energy channels depending on L (radial profiles of fluxes).~~ However, the

169 sets of these channels are different in different experiments. To compare the radial profiles of ion
170 fluxes for different experiments, it is necessary to bring these fluxes to the same set of energy
171 values. This can be made by energy spectra, but due to discreteness of these spectra, the procedures of
172 their approximation, interpolation, and extrapolation are inevitable. But this work can be done in
173 different ways. With that, methodical errors and uncertainties in the final picture acquire a hidden
174 form. They can be tracked only if consistently, step by step, repeating all these procedures for the
175 experimental data.

176 Representing plots in a different space of variables would lead only to more significant
177 methodological errors and uncertainties, because of the natural differences in the instrumentation
178 of the experiments taken into account; thus, a series of approximations or
179 interpolation/extrapolation techniques would become inevitable.

180 2.1 Spatial-energy structure of the proton fluxes

181 There is a great quantity large number of the experimental data on the concerning ERB protons.
182 The ; the most important of them are presented in the space $\{E, L\}$ in Figs. 1 and 2. These
183 figures are needed here for serve as a comparison with similar distributions of ions with $Z \geq 2$ ions
184 (on the Figs. 3–6).

185 Figure 1 represents a results of from the satellites Relay-1 (Freden et al., 1965); Ohzora or EXIS
186 C: Exospheric Satellite C, Akebono or EXOS-D: Exospheric Satellite D and ETS-VI: Engineering
187 Test Satellite (Goka et al., 1999). These results were obtained near minima have been collected
188 during minimum periods of various solar cycles, i.e. between 19th and 20th (1963), 21th and 22th
189 (1984–1985), and 22th and 23th (1994–1996) of the solar activity cycles.

190 Figure 2 represents a results of from the satellites 1968-81A (Stevens et al., 1970), Injun-5 or
191 Explorer-40 (Krimigis, 1970; Venkatesan and Krimigis, 1971; Pizzella and Randall, 1971), 1969-
192 025C or OV1-19: Orbiting Vehicle 1-19 (Croley et al., 1976), Azur or GRS A: German Research
193 Satellite A (Hovestadt et al., 1972; Westphalen and Spjeldvik, 1982), Molniya-1 (Panasyuk and
194 Sosnovets, 1973), GEOS-2: Geodetic Earth Orbiting Satellite 2 (Wilken et al., 1986), CRRES: The
195 Combined Release and Radiation Effects Satellite (Albert et al., 1998; Vacaresse et al., 1999), GEO-
196 3: Geostationary Orbit 3 (Selesnick et al., 2010) and Van Allen Probes (Selesnick et al., 2014,
197 2018). These results were obtained near maxima during maximum periods of solar activity in
198 cycles: 20th (1968–1971), 22th (1990–1991), 23th (2000), and 24th (2012–2017) solar cycles.

199 The data of the satellites Explorer-45 (Fritz and Spjeldvik, 1979, 1981) and ISEE-1:
200 International Sun-Earth Explorer 1 or Explorer-56 (Williams, 1981; Williams and Frank, 1984) are
201 given in both Figs. 1 and 2 at $L > 2.5$ where because solar-cyclic variations of the ERB proton
202 fluxes are practically do not observed negligible at $L > 2.5$ (see, e.g., Vacaresse et al., 1999).

203 Other experimental data on the ERB protons could be added to these results, but they do not
204 change the general picture shown in Figs. 1 and 2.

205 From a comparison of Figs. 1 and 2 one can see that at $L < 2.5$ (especially at $L < 1.4$) the proton
206 fluxes in the minima of during solar activity minima (Fig. 1) are higher than in the during maxima
207 of solar activity (Fig. 2). In addition, in the minima of solar activity former the inner edge of the
208 proton belt is less steep and achieve it can reach smaller L shells (for $E > 1$ MeV). The
209 distributions functions of protons $f(\mu, K, L)$ in the phase space $\{\mu, L\}$ (see, e.g.,
210 Kovtyukh, (2016a,b) which I constructed from Figs. 1 and 2 confirm these conclusions.

211 In Figs. 1 and 2, the iso-lines of proton fluxes are almost parallel to each other on $L > 3$ at
212 sufficiently high energies. Since these iso-lines have separated from each other by approximately
213 equal intervals on a logarithmic scale of the energy, this region in the space $\{E, L\}$ corresponds to
214 power-law spectra of the ERB protons: for power-law spectra, $J \propto E^{-\gamma}$, index $\gamma = -\Delta(\log J)/\Delta(\log E)$.
215 In these figures, this region is located between the green and red lines.

216 The red line is corresponded corresponds to the lower boundary (E_b) of the power-law tail of the
217 proton spectra. For this line, $E_b \sim 36 \times L^{-3}$ MeV. Some changes in the slope of these iso-lines at $L >$

6 can be connected with an essential distinction of the to a discrepancy between the real configuration of the magnetic field lines of the magnetic field in this region from the dipole and the dipolar configuration (the used here for L shells calculation were calculated for a dipole field).

For the dipole magnetic field region, the points on the red line correspond to particles with a specific value of the 1st adiabatic invariant of motion (μ_b). For Figs. 1 and 2, the average value μ_b is ~ 1.16 keV nT⁻¹. Segments of an iso-lines that are parallel to the red line also correspond to a certain values of the invariant μ . In this region of the space $\{E, L\}$ the ionization and other losses of the ERB protons during radial drift can be neglected, and the fluxes changes of fluxes with changing of L are practically reduced to adiabatic transformations the fluxes in a magnetic field.

It is results from these figures that at $L = 3\text{--}6$ the value $\gamma = 4.8 \pm 0.5$. At $L > 6$ the distances between these iso-lines are increased with L , and the value γ is decreased from $\sim 4.7\text{--}5.0$ at $L = 6$ to $\sim 4.1\text{--}4.5$ at $L = 8$. This is due to the deviation of the magnetic field from the dipole configuration as well as to the increasing variability of this field with increasing L .

According to the data of satellites considered in (Kovtyukh, 2001), invariant parameters μ_b and γ were found only at $L > 3$. In this work, is considered the a wider range of L and E is considered, and for protons with $E > 10$ MeV these parameters can be traced to $L \sim 2$. At $L = 2$, $\gamma = 4.4 \pm 0.6$ (Fig. 1) and $\gamma = 4.7 \pm 1.3$ (Fig. 2). This is due to the fact that the energy range here is significantly extended toward higher energies values (up to 200 MeV), but with increasing the energy of the ERB protons here the ionization losses are decreased rapidly for protons rapidly decrease (see, e.g., Schulz and Lanzerotti, 1974; Kovtyukh, 2016a).

2.2 Spatial-energy structure of the helium ion fluxes

In Figs. 3 and 4 are presented helium ions fluxes averaged for quiet periods ($K_p < 2$) are presented.

Figure 3 represents the data of results from the satellites Molnija-2 (Panasyuk et al., 1977), Prognoz-5 (Lutsenko and Nikolaeva, 1978), ISEE-1: The International Sun-Earth Explorer 1 (Hovestadt et al., 1981); Akebono or EXOS-D: Exospheric Satellite D and ETS-VI: Engineering Test Satellite (Goka et al., 1999). These results were obtained near minima have been collected during minimum periods of various solar cycles, i.e. between 20th and 21th (1975–1977), between 21th and 22th (1984–1985), and between 22th and 23th (1994–1996) of the solar activity cycles.

Figure 4 represents the data of results from the satellites OV1-19: Orbiting Vehicle 1-19 (Blake et al., 1973; Fennell and Blake, 1976), Explorer-45 (Fritz and Spjeldvik, 1978, 1979; Spjeldvik and Fritz, 1981), SCATHA: Spacecraft Charging At High Altitudes (Blake and Fennell, 1981; Chenette et al., 1984). These results were obtained near maxima during maximum periods of solar activity in cycles: 20th (1968–1971) and 21th (1979) solar cycles.

From a comparison of Figs. 1–2 with Figs. 3–4 one can see that at $L > 2$ for helium ions the solar-cyclic (11-year) variations are greater than for protons. For example, at $L \sim 2\text{--}3$ from maximum to minimum of solar activity fluxes of protons with $E > 1$ MeV practically do not changed, and the fluxes of helium ions with $E > 1$ MeV/n are increased by one order of magnitude.

Figures 3 and 4 have the same patterns are observed as for protons, but the distribution of helium ion fluxes is slightly shifted away from the Earth towards higher values of L shell (with respect to protons). Unlike protons, there are significant “white spots” in these figures: for helium ions in this picture no experimental data for helium ions in these regions.

The red line on these figures is corresponds to the lower boundary of the power-law tail of the helium ions spectra. For this line, $E_b/M_i \sim 43.4 \times L^{-3}$ MeV/n (Fig. 3) and $E_b/M_i \sim 21.7 \times L^{-3}$ MeV/n (Fig. 4). If one takes into account that at $L < 6$ for helium ions with $E > 0.2$ MeV/n the average charge $Q_i = +2$ (see, e.g, Spjeldvik, 1979), then for the considered boundary we get: $\mu_b \sim 1.4 \times Q_i$ keV/nxnT⁻¹ at the maximum of solar activity and $\mu_b \sim 1.4 \times M_i$ keV/nxnT⁻¹ at the minimum of solar activity (for the dipole magnetic field region). The iso-lines of helium ion fluxes in Figs. 3 and 4, which pass above the red line at $L > 2.5$, are corresponded to an average value of $\gamma \sim 5.5$.

266 For helium ions spectra, as for protons ones, the values of the parameters of the power-law tail
267 of their spectra are approximately in the middle of the ranges of these parameters, which were
268 obtained by other methods are in good agreement with what has been found in (Kovtyukh, 2001).

269 At the same time, one can see that the iso-lines of the fluxes of helium ions in the region above
270 the red line (in the region of power-law spectra) have at a substantial deviate from the slope to of
271 the red line. At $L > 3$ the fluxes of helium ions with given energy are increased with decreasing L
272 more slowly than follows expected from adiabatic transformations of the fluxes (see
273 Kovtyukh, 2001). This means that the ionization losses of the ERB helium ions significantly
274 exceed these losses for protons, in accordance to well-known calculations (see, e.g.,
275 Schulz and Lanzerotti, 1974), this is means that the ionization losses of the ERB helium ions
276 significantly exceed these losses for protons.

277 2.3 Spatial-energy structure of the CNO group ions fluxes

278 In Figs. 5 and 6 are presented CNO group ions fluxes averaged for quiet periods ($K_p < 2$) are
279 presented.

280 Figure 5 represents the data of results from the satellites ATS-6: Applications Technology
281 Satellite 6 (Spjeldvik and Fritz, 1978; Fritz and Spjeldvik, 1981) and ISEE-1: The International
282 Sun-Earth Explorer 1 (Hovestadt et al., 1978). These results were obtained near the minimum have
283 been collected during minimum period between 20th and 21th of the solar activity cycles (1974–
284 1975, 1977).

285 Figure 6 represents the data of results from the satellite Explorer-45 (Spjeldvik and Fritz, 1978;
286 Fritz and Spjeldvik, 1981). These results were obtained near the during maximum period of solar
287 activity in 20th solar cycle (1971–1972).

288 On Figs. 5–6 the spatial-energy patterns of the ion fluxes for of the CNO group ions are even
289 more shifted away from the Earth towards higher values of L shell and its configuration differ
290 significantly from the Figs. 1–4.

291 From a comparison of Figs. 1–2 with Figs. 5–6 one can see that for ions of CNO group the
292 solar-cyclic (11-year) variations are greater than for protons. For example, at $L \sim 3–5$ from
293 maximum to minimum of solar activity fluxes of protons with $E > 1$ MeV practically do not
294 changed, but the fluxes of the CNO group ions are increase by one order of magnitude and or
295 more. From a comparison of Figs. 3–4 with Figs. 5–6 it is seen also that the fluxes of CNO group
296 ions varies by change several times greater more than the fluxes of helium ions do.

297 This is means that for ions of the CNO group the ionization losses at $L = 3–5$ are much larger
298 than for ions with $Z \leq 2$ and these losses have a significant effect even on the power-law segment
299 of the spectra of the CNO ions (in the part which is seen on Figs. 5–6). Therefore, the lower
300 boundary of the power-law tail of these ions spectra have not monitored on the data given in Figs.
301 5 and 6. The red line on these figures is rather arbitrary: it corresponds to adiabatic laws (see
302 Kovtyukh, 2001); that are not performed here, but this line let us to trace estimate the deviations
303 from these laws. As can be seen from Fig. 5–6, ionization losses for ions of the CNO group are
304 especially large at the maximum of solar activity (Fig. 6): in these times the slope of iso-lines on L
305 > 3 is significantly less than the slope of the red line.

306 At the same time, at $L > 4$ in Fig. 5 and at $L > 3$ in Fig. 6 the iso-lines of fluxes pass almost
307 parallel to each other and at approximately equal distances from each other; the average value of γ
308 corresponding to them is ~ 6 . Thus, for sufficiently large values of E and L , the CNO group ions
309 spectra in the ERB have a power-law form, but these spectra are softer in comparison with the
310 spectra of protons.

311 The red line corresponds here to the dependences $E_b/M_i \approx 43.4 \times L^{-3}$ MeV/n (on Fig. 5) and E_b/M_i
312 $\sim 12.4 \times L^{-3}$ MeV/n (on Fig. 6), which are taken from (Kovtyukh, 2001) where this boundary was
313 more clearly defined also for the ions of the CNO group. If one takes into account that at $L \sim 3–5$
314 for the CNO group ions with $E > 0.1$ MeV/n the average charge $Q_i = +4$ (see, e.g., Spjeldvik and

315 Fritz, 1978), then for this boundary one can get: $\mu_b \sim 1.4 \times Q_i \text{ keV/n} \times \text{nT}^{-1}$ at the maximum of solar
316 activity and $\mu_b \sim 1.4 \times M_i \text{ keV/n} \times \text{nT}^{-1}$ at the minima of solar activity (for the dipole magnetic field
317 region).

318 3 Discussion

319 Let us consider the conclusions following from the results obtained here for solar-cyclic variations
320 in the fluxes of ERB ions. Solar-cyclic (11-year) variations of proton fluxes with $E > 1 \text{ MeV}$ in the
321 inner region of the ERB ~~considered~~ have been studied in many works (see, e.g., Pizzella et al.,
322 1962; Hess, 1962; Blanchard and Hess, 1964; Filz, 1967; Nakano and Heckman, 1968; Vernov,
323 1969; Dragt, 1971; Huston et al., 1996; Vacaresse et al., 1999; Kuznetsov et al., 2010; Qin et al.,
324 2014). These variations ~~achieve~~ reach one order of magnitude at $L = 1.14$ and reduce rapidly with
325 increasing L (see, e.g., Vacaresse et al., 1999).

326 In these works, such variations of the proton fluxes of the inner belt are connected to the solar-
327 cyclic variations of the energy loss rates of protons in this region. However, solar-cyclic variations
328 of fluxes of ions with $Z \geq 2$ ~~have~~ not considered in these works.

329 In quiet periods, only the mechanism of ionization losses is significant for the ERB protons
330 trapped on small L shells (see, e.g., Schulz and Lanzerotti, 1974). Energy loss rates and lifetimes of
331 the ERB protons are determined in this mechanism by the density of atmospheric atoms and
332 ionospheric plasma (N) in a geomagnetic trap. This density ~~is~~ depends on the intensity of the
333 ultraviolet radiation of the Sun.

334 With decreasing solar activity (with a transition from maximum to minimum of the solar cycle),
335 the densities of atmospheric atoms and ionospheric plasma in a geomagnetic trap are decreased.
336 If the proton supply rates to the inner belt under the action of the CRAND mechanism remain
337 unchanged or the effect of these changes is weaker than the effect connected with changes of loss
338 rates of the protons, the stationary proton fluxes will increase~~d~~ with ~~decreasing~~ the solar activity
339 ~~decreasing~~.

340 The lifetimes of protons increase with L , and ~~it lead~~ this leads to ~~decreasing~~ a decrease in the
341 amplitude of the solar-cyclic variations of ~~a~~ proton fluxes. The proton lifetime on a given L shell
342 depends on ~~their~~ its energy and is less than 11 years at $L < L^*(E)$. For example, for protons with E
343 $\sim 10 \text{ MeV}$ the value L^* is ~ 2.5 (see, e.g., Kovtyukh, 2016a). Figs. 1 and 2 show that for protons
344 the solar-cyclic variations of fluxes are small and localized at $L < 2.5$ (mainly at $L < 1.4$).

345 In contrast to protons, Figs. 3–6 show significant solar-cyclic variations of fluxes of helium ions
346 and CNO group ions at $L \sim 2–5$. These variations ~~one~~ can be explained by the same mechanism,
347 ~~which that has been~~ suggested for protons ~~fluxes~~ at $L < 2.5$.

348 For ions with $Z \geq 2$ in the ERB, ionization losses are more significant than for protons. ~~The and~~
349 ~~this can be connected to the absence of ions with $Z \geq 2$ at $L < 2$ (or very low values of these fluxes)~~
350 ~~during quiet geomagnetic conditions ~~one can connect with this fact. More~~ Such~~ short lifetimes ~~of~~
351 ~~these ions compare to protons~~ are manifested also in the slope of the experimental curves in Fig. 4
352 and 6 (this was note in sections 2.2 and 2.3, respectively). Consequently, for ions with $Z \geq 2$, the
353 regions in which ~~the solar cyclic~~ variations can manifested, should be located on higher L shells (at
354 the same energies as for protons).

355 The lifetimes of ions ~~of~~ in the ~~energies~~ energy ranges considered here are $\tau \propto M_i^{-1/2} Q_i^{-2} N^{-1} E^{3/2}$
356 (Schulz and Lanzerotti, 1974). In a first approximation, for $N \propto L^{-4}$, we obtain the value $L_i^* \sim$
357 $(M_i^{1/2} Q_i^2)^{1/4} L^*$, where L^* corresponds to protons of the same energy ~~as other ions of the other ions~~
358 ~~under study~~. For helium ions ($M_i = 4$, $Q_i = 2$) with $E \sim 10 \text{ MeV}$, we obtain $L_i^* \sim 4.2$. For ions of CNO
359 group ($M_i = 14$, $Q_i = 4$) with $E \sim 10 \text{ MeV}$ we obtain $L_i^* \sim 6.9$. These ~~is~~ are very rough ~~estimates~~
360 ~~estimations~~, but they ~~correspond to~~ are in agreement with the results presented in Figs. 3–6.

These estimates are based on the following assumption: during variations in solar activity, the rates of ion supply on $L < L_i^*$ remain unchanged (or these changes are weaker than the effect of changes of the rate of ion losses). This assumption is real for protons with $E > 10-20$ MeV at $L < 2.2$; in fact, the fluxes of these protons forming mainly under the action of the CRAND mechanism. However, at $L > 2.2$ the stationary ion fluxes of the ERB forming mainly under the action of radial diffusion (see, e.g., Schulz and Lanzerotti, 1974; Kovtyukh, 2016b, 2018). Therefore, the solar-cyclic variations of fluxes for ions with $Z \geq 2$ ion fluxes one can be explained only under the assumption that the effect connected with an increasing increase in the ionization losses of such ions significantly exceeds the effect connected with the possible enhance of radial diffusion of ions on the growth rising phase of solar activity.

In the experimental results presented here for the ERB ions, the region of the power-law tail of the ion spectra is distinguished. For many experiments, especially for heavy ions, the values of the parameter of a power-law tail spectra are determined much more accurately by the dependences $J(L)$ of the ion fluxes (in the logarithmic scale) for different pairs of energy channels (see Kovtyukh, 2001). For example, the range of L , in which these dependences for two energy channels are parallel to each other is corresponded connected to the power-law tail of the spectra. On Instead, on smaller values of L these fluxes begin to converge and the radial dependences of the these fluxes intersect with each other, which is corresponded related to the maximum in the spectra. Consider here the physical mechanisms leading to the formation of power law distributions of ions of the ERB.

The main source of ions in the outer regions of the ERB is the solar wind, and usually the high-energy part of these spectra have an exponential shape usually (see, e.g., Ipavich et al., 1981a, 1981b). Immediately before being captured into the magnetosphere, these ions pass through a highly turbulized regions, but the high-energy part of their spectra usually retains an exponential shape. Therefore, the question arises: what physical mechanism converts the form of ion spectra from exponential to power-law?

Evidently, the power-law tail of the ERB ions spectra must be generate-in the outer regions of the magnetosphere. The most likely region for this to happen is the plasma sheet (PS) of the magnetospheric tail, which is adjacent to the geomagnetic trap. High-energy part of the ion spectra in the PS, at $R \sim 20-40$ R_E , have power-law shape and the exponents of these spectra is are close to the corresponding parameters of the spectra of ions in the ERB. On the data of the satellites IMP-7 and IMP-8: Interplanetary Monitoring Platform 7 and 8 (Sarris et al., 1981; Lui et al., 1981) and also satellite ISEE-1 (Christon et al., 1991), the shape of the ion spectra of the PS usually do not change during substorms; they produce only parallel shifts of the spectra along logarithmic axes E and J . These results point out that the time scales of formation processes of these ion spectra in the PS are far exceeds the times of substorms.

Parameters of the power-law tail of the ion spectra of the outer belt (γ and μ_b) reflect, apparently, the most fundamental features of the mechanisms of acceleration of ions in the tail of the magnetosphere. One can try to connect the values of these parameters with the most general representations about of the mechanisms and character of ion acceleration in the PS of the magnetospheric tail.

Most likely, this part of the ion energy spectra is formed in the PS by stochastic mechanisms of the ion acceleration. This ; this hypothesis is supported by many experimental results. Statistical character The statistical aspect of these mechanisms reveals itself, in particular, in the fact that the ratios of fluxes (and partial densities) of ions with different Z can be differ, even greatly, at low and high energies. During their wander in the phase space, ions gradually forget loose information about their origin and, therefore, the high-energy tails of the ion their spectra do not contain unambiguous information on the partial densities of different components of ions in the source (see, e.g., Kovtyukh, 2001).

The high-energy part portion of the ion spectra of the PS can be generated by the mechanisms of acceleration of particles on magnetic irregularities moving relative with respect to each other

412 (Fermi mechanism). The fractal structures of the PS are revealed ~~itself~~ on scales from ~ 0.4 to ~ 8
413 thousands kilometers, for example, in the data of the satellite Geotail (Milovanov et al., 1996). If
414 the mass of the ions are small compared to the masses of the magnetic irregularities in the PS, the
415 average values of the index γ of the power-law tail ~~of the spectra~~ should not depend on mass and
416 charge of ~~these ions~~ such nuclei.

417 Under equilibrium conditions, this parameter is determined by the average part of energetic ions
418 in the total energy density of particles and magnetic irregularities ($\bar{\beta}$). From the theory which was
419 developed by Ginzburg and Syrovatskii (1964), it ~~is~~ follows: $\gamma - 1 \approx (1 - \bar{\beta})^{-1}$. With increasing $\bar{\beta}$
420 in the interval $0 < \bar{\beta} < 1$, the value γ ~~is~~ increases monotonically and $\gamma \rightarrow \infty$ for $\bar{\beta} \rightarrow 1$. For real
421 average values $\bar{\beta}$ in the central PS, we get $\gamma \sim 3.5\text{--}7.0$ ($\gamma \sim 4.3$ at $\bar{\beta} \sim 0.7$).

422 Spectra with power-law tail and quasi-exponential segment at lower energies can be generated
423 when the value $\Delta B / \bar{B}$ for magnetic irregularities is proportional to their size δr and ~~the~~ their
424 spectral density ~~of irregularities~~ is decrease rapidly with increasing δr for $\delta r < r_s$, but for $\delta r > r_s$ it
425 remains almost unchanged. Apparently, the spectra of magnetic irregularities in PS with thickness
426 r_s have just such form. Then the lower boundary μ_b of the power-law tail ~~is-corresponded~~
427 ~~corresponds~~ to the condition $r_s / \rho_i \sim 10$ (ρ_i is the gyroradius of ions), i.e. $\mu_b \sim 0.02(Q_i^2/M_i)B_s r_s^2$ keV
428 nT^{-1} , where B_s is the average magnetic field induction in the PS (in nT) and r_s is normalized to the
429 Earth's radius. Believing that $B_s \sim 30$ nT and $r_s \sim 1.3 R_E$ it can be obtained: $\mu_b \sim 1.0 (Q_i^2/M_i)$ keV
430 nT^{-1} .

431 The energy spectra of ions in the radiation belts of such planets as Jupiter and Saturn have the
432 form analogous to ~~the form~~ that of ion spectra in the ERB (see, e.g., Krimigis et al., 1981; Cheng et
433 al., 1985). As that in the ERB, these spectra have a long power-law tail, which is formed,
434 apparently, by mechanisms of stochastic acceleration of ions as a result of interactions of these
435 ions with the current layer of the magnetospheric tail.

436 5 Conclusions

437 ~~There are analyzed~~ In this work, the experimental results for the stationary fluxes of the main ion
438 components of the ERB (protons, helium ions and ions of the CNO group) in the near equatorially
439 plane, ~~have been analyzed~~. It is found that in the outer belt these fluxes line up in the certain
440 regular patterns in the space $\{E, L\}$. The degree of such similarity ~~is~~ increases with increasing E
441 and L . ~~The similarity of the spatial energy distributions for various ionic components of the ERB is~~
442 ~~based on~~ and it is linked to the nature of the main sources and on the universality mechanisms of
443 transfer, acceleration and losses of ERB ions in the outer belt (radial diffusion while conserving μ
444 and K of ions, betatron acceleration and ionization losses).

445 ~~Solar-cyclic~~ Moreover, ~~solar-cyclic~~ (11-year) variations of the spatial-energy distributions of
446 the ERB ion fluxes ~~are~~ have been investigated. It ~~is find~~ has been noted that the ERB ions fluxes
447 are ~~weaken~~ ~~weaker~~ with increasing ~~the~~ solar activity and this effect increases with increasing ~~an~~
448 atomic number Z ~~of the ions~~. Such a dependence of the amplitude of flux changes on Z is typical,
449 also, for faster variations in the fluxes of the ERB ions, during geomagnetic storms and other
450 disturbances of the Earth's magnetosphere, ~~what is~~ as has been underlined in the review Kovtyukh
451 (2018).

452 The figures presented here make it possible to determine in which regions of the space $\{E, L\}$
453 near the equatorial plane the ionization losses of ions during their radial diffusion can be neglected
454 and where this cannot. These results indicate also that with variations in the level of solar activity
455 the coefficient D_{LL} of the radial diffusion of the ERB ions change much less than the ionization
456 losses rates of ions with $Z \geq 2$.

457 In addition, the figures given here reveal the localization of “white spots”, especially extensive for
458 ions with $Z \geq 2$ and $E > 1$ MeV/n at $L < 3$. ~~The larger As~~ Z and energy ~~of ions~~ become larger and ~~the~~

459 smaller L becomes smaller, the greater the uncertainty uncertainties in the values of the ERB fluxes
460 become larger. These gaps must be filled by the results of the future experiments on the satellites.
461 Now; for now, the extensive gaps in the experimental data for fluxes of ions with $Z \geq 2$ do not allow
462 to create the sufficiently complete and reliable empirical models of the ERB for these ions.

464 Acknowledgements.

465 **Financial support.** This work was supported by Russian Foundation for Basic Research RFFI
466 grant No. 17-29-01022.

467 References

468 Alfvén, H., and Fälthammar, C.-G.: *Cosmical Electrodynamics, Fundamental Principles*,
469 Clarendon Press, Oxford, 1963.

470 Albert, J. M., Ginet, G. P., and Gussenhoven, M. S.: CRRES observations of radiation belt protons,
471 1, Data overview and steady state radial diffusion, *J. Geophys. Res.*, **103**(A5), 9261–9273.
472 <https://doi.org/10.1029/97JA02869>, 1998.

473 Blake, J. B., and Fennell, J. F.: Heavy ion measurements in the synchronous altitude region, *Planet.*
474 *Space Sci.*, **29**(11), 1205–1213, [https://doi.org/10.1016/0032.0633\(81\)90125-2](https://doi.org/10.1016/0032.0633(81)90125-2), 1981.

475 Blake, J. B., Fennell, J. F., Schulz, M., and Paulikas, G. A.: Geomagnetically trapped alpha
476 particles, 2, The inner zone, *J. Geophys. Res.*, **78**(25), 5498–5506,
477 <https://doi.org/10.1029/JA078i025p05498>, 1973.

478 Blanchard, R. C., and Hess, W. N.: Solar cycle changes in inner-zone protons, *J. Geophys. Res.*,
479 **69**(19), 3927–3938, <https://doi.org/10.1029/JZ069i019p03927>, 1964.

480 Chenette, D. L., Blake, J. B., and Fennell, J. F.: The charge state composition of 0.4–MeV helium
481 ions in the Earth’s outer radiation belts during quiet times, *J. Geophys. Res.*, **89**(A9), 7551–
482 7555, <https://doi.org/10.1029/JA089iA09p07551>, 1984.

483 Cheng, A. F., Krimigis, S. M., and Armstrong, T. P.: Near equality of ion phase space densities at
484 Earth, Jupiter, and Saturn, *J. Geophys. Res.*, **90**(A9), 526–530,
485 <http://doi.org/10.1029/JA090iA01p00526>, 1985.

486 Christon, S. P., Williams, D. J., Mitchell, D. G., Huang, C. Y., and Frank, L. A.: Spectral
487 characteristics of plasma sheet ion and electron populations during disturbed geomagnetic
488 conditions, *J. Geophys. Res.*, **96**(A1), 1–22, <https://doi.org/10.1029/90JA01633>, 1991.

489 Croley, D. R., Jr., Schulz, M., and Blake, J. B.: Radial diffusion of inner-zone protons:
490 Observations and variational analysis, *J. Geophys. Res.*, **81**(4), 585–594,
491 <https://doi.org/10.1029/JA081i004p00585>, 1976.

492 Dragt, A. J.: Solar cycle modulation of the radiation belt proton flux, *J. Geophys. Res.*, **76**(10),
493 2313–2344, <https://doi.org/10.1029/JA076i010p02313>, 1971.

494 Fennell, J. F., and Blake, J. B.: Geomagnetically trapped α -particles, *Magnetospheric Particles and*
495 *Fields*, edited by: McCormac, B. M., D. Reidel, Dordrecht, Holland, 149–156, 1976.

496 Filz, R. C.: Comparison of the low-altitude inner-zone 55–MeV trapped proton fluxes measured in
497 1965 and 1961–1962, *J. Geophys. Res.*, **72**(3), 959–963,
498 <https://doi.org/10.1029/JZ072i003p00959>, 1967.

499 Freden, S. C., Blake, J. B., and Paulikas, G. A.: Spatial variation of the inner zone trapped proton
500 spectrum, *J. Geophys. Res.*, **70**(13), 3113–3116, <https://doi.org/10.1029/JZ070i013p03113>,
501 1965.

502 Fritz, T. A., and Spjeldvik, W. N.: Observations of energetic radiation belt helium ions at the
503 geomagnetic equator during quiet conditions, *J. Geophys. Res.*, **83**(A6), 2579–2583,
504 <https://doi.org/10.1029/JA083iA06p02579>, 1978.

505 Fritz, T. A., and Spjeldvik, W. N.: Simultaneous quiet time observations of energetic radiation belt
 506 protons and helium ions: The equatorial α/p ratio near 1 MeV, *J. Geophys. Res.*, **84**(A6),
 507 2608–2618, <https://doi.org/10.1029/JA084iA06p02608>, 1979.

508 Fritz, T. A., and Spjeldvik, W. N.: Steady-state observations of geomagnetically trapped energetic
 509 heavy ions and their implications for theory, *Planet. Space Sci.*, **29**(11), 1169–1193,
 510 [https://doi.org/10.1016/0032-0633\(81\)90123-9](https://doi.org/10.1016/0032-0633(81)90123-9), 1981.

511 Ginzburg, V. L., and Syrovatskii, S. I.: *The Origin of Cosmic Rays*, Pergamon Press, Oxford,
 512 1964.

513 Ginet, G. P., O'Brien, T. P., Huston, S. L., Johnston, W. R., Guild, T. B., Friedel, R., Lindstrom,
 514 C. D., Roth, C. J., Whelan, P., Quinn, R. A., Madden, D., Morley, S., and Su, Yi-J.: AE9, AP9
 515 and SPM: New models for specifying the trapped energetic particle and space plasma
 516 environment, *Space Sci. Rev.*, **179**(1–4), 579–615, <https://doi.org/10.1007/s11214-013-9964-y>,
 517 2013.

518 Goka, T., Matsumoto, H., and Takagi, S.: Empirical model based on the measurements of the
 519 Japanese spacecrafts, *Radiation Measurements*, **30**(5), 617–624, [https://doi.org/10.1016/S1350-4487\(99\)00237-1](https://doi.org/10.1016/S1350-4487(99)00237-1), 1999.

521 Hess, W. N.: Discussion of paper by Pizzella, McIlwain, and Van Allen, ‘Time variations of
 522 intensity in the Earth’s inner radiation zone, October 1959 through December 1960’, *J.
 523 Geophys. Res.*, **67**(12), 4886–4887, <https://doi.org/10.1029/JZ0670i012p04886>, 1962.

524 Hovestadt, D., Häusler, B., and Scholer, M.: Observation of energetic particles at very low
 525 altitudes near the geomagnetic equator, *Phys. Rev. Lett.*, **28**(20), 1340–1343,
 526 <https://doi.org/10.1103/PhysRevLett.28.1340>, 1972.

527 Hovestadt, D., Gloeckler, G., Fan, C. Y., Fisk, L. A., Ipavich, F.M., Klecker, B., O’Gallagher, J. J.,
 528 and Scholer, M.: Evidence for solar wind origin of energetic heavy ions in the Earth’s radiation
 529 belt, *Geophys. Res. Lett.*, **5**(12), 1055–1057, <https://doi.org/10.1029/GL005i012p01055>, 1978.

530 Hovestadt, D., Klecker, B., Mitchell, E., Fennell, J. F., Gloeckler, G., and Fan, C. Y.: Spatial
 531 distribution of $Z \geq 2$ ions in the outer radiation belt during quiet conditions, *Adv. Space Res.*,
 532 **1**(1), 305–308, [https://doi.org/10.1016/0273-1177\(81\)90125-3](https://doi.org/10.1016/0273-1177(81)90125-3), 1981.

533 Huston, S., Kuck, G., and Pfitzer, K.: Low-altitude trapped radiation model using TIROS/NOAA
 534 data, *Radiation Belts: Models and Standards*, edited by: Lemaire, J. F., Heynderickx, D., and
 535 Baker, D. N., AGU, Washington, D. C., 119–122, <https://doi.org/10.1029/GM097/p0119>, 1996.

536 Ilyin, B. D., Kuznetsov, S. N., Panasyuk, M. I., and Sosnovets, E.N.: Non-adiabatic effects and
 537 boundary of the trapped protons in the Earth’s radiation belts, *Bulletin of the Russian Academy
 538 of Sciences: Physics*, **48**(11), 2200–2203, 1984.

539 Ipavich, F. M., Galvin, A. B., Gloeckler, G., Scholer, M., and Hovestadt D.: A statistical survey of
 540 ions observed upstream of the Earth’s bow shock: Energy spectra, composition, and spatial
 541 variation, *J. Geophys. Res.*, **86**(A6), 4337–4342, <https://doi.org/10.1029/JA086iA06p4337>,
 542 1981a.

543 Ipavich, F. M., Scholer, M., and Gloeckler, G.: Temporal development of composition, spectra,
 544 and anisotropies during upstream particle events, *J. Geophys. Res.*, **86**(A13), 11153–11160,
 545 <https://doi.org/10.1029/JA086iA13p11153>, 1981b.

546 Kovtyukh, A. S.: Geocorona of hot plasma, *Cosmic Res.*, **39**(6), 527–558,
 547 <https://doi:10.1023/A:1013074126604>, 2001.

548 Kovtyukh, A. S.: Radial dependence of ionization losses of protons of the Earth’s radiation belts,
 549 *Ann. Geophys.*, **34**(1), 17–28, <https://doi.org/10.5194/angeo-34-17-2016>, 2016a.

550 Kovtyukh, A. S.: Deduction of the rates of radial diffusion of protons from the structure of the
 551 Earth’s radiation belts, *Ann. Geophys.*, **34**(11), 1085–1098. <https://doi:10.5194/angeo-34-1085-2016>, 2016b.

553 Kovtyukh, A. S.: Ion Composition of the Earth’s Radiation Belts in the Range from 100 keV to
 554 100 MeV/nucleon: Fifty Years of Research, *Space Sci. Rev.*, **214**(8), 124:1–124:30,
 555 <https://doi.org/10.1007/s11214-018-0560-z>, 2018.

556 Krimigis, S. M.: Alpha particles trapped in the Earth's magnetic field, Particles and Fields in the
557 Magnetosphere, edited by: McCormac, B. M., D. Reidel, Dordrecht, Holland, 364–379, 1970.

558 Krimigis, S. M., Carbary, J. F., Keath, E. P., Bostrom, C. O., Axford, W. I., Gloeckler, G.,
559 Lanzerotti, L. J., and Armstrong, T. P.: Characteristics of hot plasma in the Jovian
560 magnetosphere: Results from the Voyager spacecraft, *J. Geophys. Res.*, **86**(A10), 8227–8257.
561 <http://doi.org/10.1029/JA086iA10p08227>, 1981.

562 Kuznetsov, N. V., Nikolaeva, N. I., and Panasyuk, M. I.: Variation of the trapped proton flux in the
563 inner radiation belt of the Earth as a function of solar activity, *Cosmic Res.*, **48**(1), 80–85,
564 <https://doi.org/10.1134/S0010952510010065>, 2010.

565 Lui, A. T. Y., and Krimigis, S. M.: Several features of the earthward and tailward streaming of
566 energetic protons (0.29–0.5 MeV) in the Earth's plasma sheet, *J. Geophys. Res.*, **86**(A13),
567 11173–11188, <https://doi.org/10.1029/JA086iA13p11173>, 1981.

568 Lutsenko, V. N., and Nikolaeva, N. S.: Relative content and the range of alpha particles in the
569 inner radiation belt of the Earth by measurements on satellite Prognoz-5, *Cosmic Res.*, **16**(3),
570 459–462, 1978.

571 McIlwain, C. E.: Coordinate for mapping the distribution of magnetically trapped particles, *J.
572 Geophys. Res.*, **66**(11), 3681–3691, <https://doi.org/10.1029/JZ066i011p03681>, 1961.

573 Milovanov, A. V., Zelenyi, L. M., and Zimbardo, G.: Fractal structures and power law spectra in
574 the distant Earth's magnetotail, *J. Geophys. Res. Space Phys.*, **101**(A9), 19903–19910,
575 <https://doi.org/10.1029/96JA01562>, 1996.

576 Nakano, G., and Heckman, H.: Evidence for solar-cycle changes in the inner-belt protons, *Phys.
577 Rev. Lett.*, **20**(15), 806–809, <https://doi.org/10.1103/PhysRevLett.20.806>, 1968.

578 Northrop, T. G.: The Adiabatic Motion of Charged Particles, Wiley-Interscience, NY, USA, 1963.

579 Panasyuk, M. I., and Sosnovets, E. N.: Differential energy spectrum of low-energy protons in the
580 inner region of the radiation belt, *Cosmic Res.*, **11**(3), 436–440, 1973.

581 Panasyuk, M. I., Reizman, S. Ya., Sosnovets, E. N., and Filatov, V. N.: Experimental results of
582 protons and α -particles measurements with energy more 1 MeV/nucleon in the radiation belts,
583 *Cosmic Res.*, **15**(6), 887–894, 1977.

584 Pizzella, G., McIlwain, C. E., and Van Allen, J. A.: Time variations of intensity in the Earth's
585 inner radiation zone, October 1959 through December 1960, *J. Geophys. Res.*, **67**(4), 1235–
586 1253, <https://doi.org/10.1029/JZ067i004p01235>, 1962.

587 Pizzella, G., and Randall, B. A.: Differential energy spectrum of geomagnetically trapped protons
588 with the Injun 5 satellite, *J. Geophys. Res.*, **76**(10), 2306–2312,
589 <https://doi.org/10.1029/JA076i010p02306>, 1971.

590 Qin, M., Zhang, X., Ni, B., Song, H., Zou, H., and Sun, Y.: Solar cycle variations of trapped
591 proton flux in the inner radiation belt, *J. Geophys. Res. Space Phys.*, **119**(12), 9658–9669,
592 <https://doi.org/10.1002/2014JA020300>, 2014.

593 Sarris, E. T., Krimigis, S. M., Lui, A. T. Y., Ackerson, K. L., Frank, L. A., and Williams, D. J.:
594 Relationship between energetic particles and plasmas in the distant plasma sheet, *Geophys. Res.
595 Lett.*, **8**(4), 349–352, <https://doi.org/10.1029/GL008i004p0349>, 1981.

596 Schulz, M., and Lanzerotti, L. J.: Particle Diffusion in the Radiation Belts, Springer, NY, USA,
597 1974.

598 Selesnick, R. S., Hudson, M. K., and Kress, B. T.: Injection and loss of inner radiation belt protons
599 during solar proton events and magnetic storms, *J. Geophys. Res. Space Phys.*, **115**(A8),
600 A08211, <https://doi.org/10.1029/2010JA015247>, 2010.

601 Selesnick, R. S., Baker, D. N., Jaynes, A. N., Li, X., Kanekal, S. G., Hudson, M. K., and Kress, B.
602 T.: Observations of the inner radiation belt: CRAND and trapped solar protons, *J. Geophys.
603 Res. Space Phys.*, **119**(8), 6541–6552, <https://doi.org/10.1002/2014JA020188>, 2014.

604 Selesnick, R. S., Baker, D. N., Kanekal, S. G., Hoxie, V. C., and Li, X.: Modeling the proton
605 radiation belt with Van Allen Probes Relativistic Electron-Proton Telescope data, *J. Geophys.
606 Res. Space Phys.*, **123**(1), 685–697, <https://doi.org/10.1002/2017JA024661>, 2018.

607 Spjeldvik, W. N.: Expected charge states of energetic ions in the magnetosphere, *Space Sci. Rev.*,
608 **23**(3), 499–538, <https://doi.org/10.1007/BF00172252>, 1979.

609 Spjeldvik, W. N., and Fritz, T. A.: Quiet time observations of equatorially trapped
610 megaelectronvolt radiation belt ions with nuclear charge $Z \geq 4$, *J. Geophys. Res.*, **83**(A9), 4401–
611 4405, <https://doi.org/10.1029/JA083iA09p04401>, 1978.

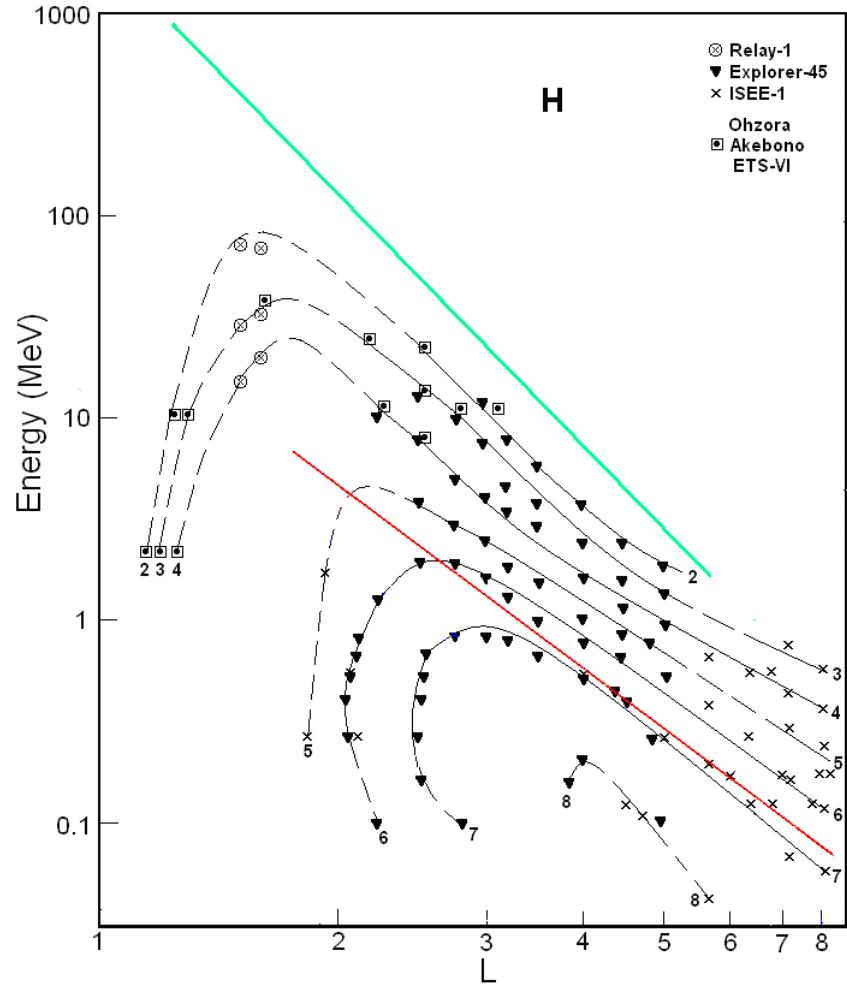
612 Spjeldvik, W. N., and Fritz, T. A.: Observations of energetic helium ions in the Earth's radiation
613 belts during a sequence of geomagnetic storms, *J. Geophys. Res.*, **86**(A4), 2317–2328,
614 <https://doi.org/10.1029/JA086iA04p02317>, 1981.

615 Stevens, J. R., Martina, E. F., and White, R. S.: Proton energy distributions from 0.060 to 3.3 MeV
616 at 6.6 Earth radii, *J. Geophys. Res.*, **75**(28), 5373–5385,
617 <https://doi.org/10.1029/JA075i028p05373>, 1970.

618 Vacaresse, A., Boscher, D., Bourdarie, S., Blanc, M., and Sauvaud, J. A.: Modeling the high-
619 energy proton belt, *J. Geophys. Res. Space Phys.*, **104**(A12), 28601–28613,
620 <https://doi.org/10.1029/1999JA900411>, 1999.

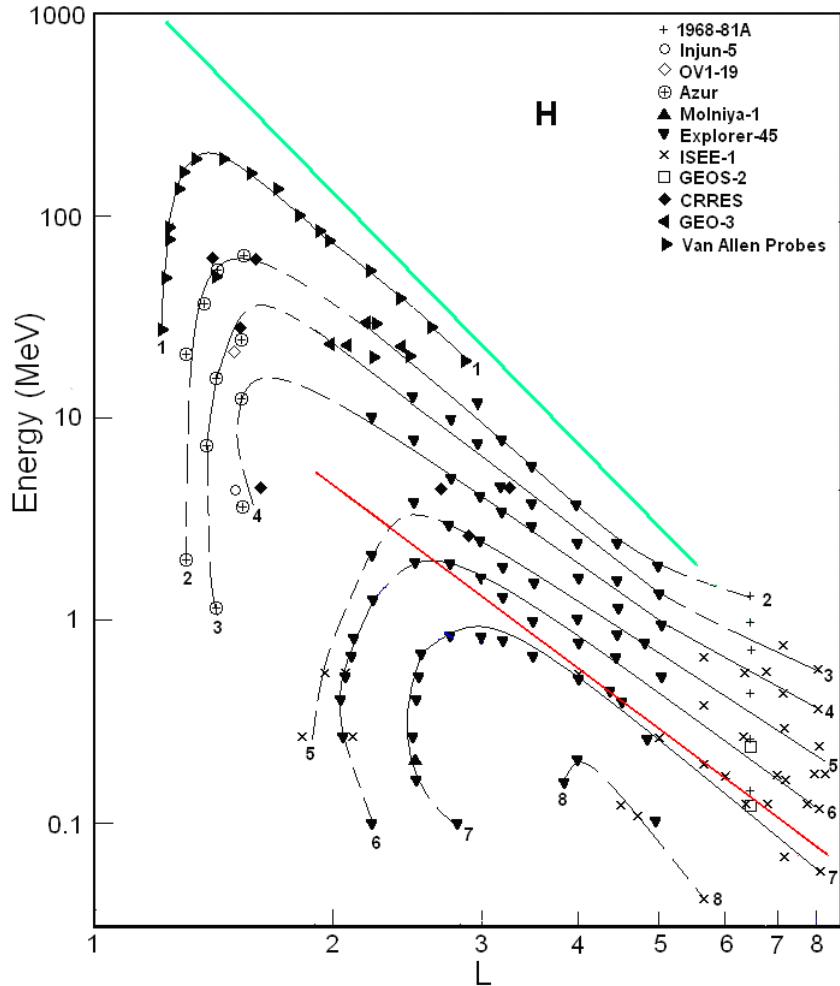
621 Venkatesan, D., and Krimigis, S. M.: Observations of low-energy (0.3– to 1.8–MeV) differential
622 spectrums of trapped protons, *J. Geophys. Res.*, **76**(31), 7618–7631,
623 <https://doi.org/10.1029/JA076i031p07618>, 1971.

624 Vernov, S. N.: The Earth's radiation belts. In G. Bozóki, E. Gombosi, A. Sebestyén, A. Somogyi
625 (Eds.), *Proc. 11th ICRC*, Budapest, 85–162, 1969.


626 Westphalen, H., and Spjeldvik, W.N.: On the energy dependence of the radial diffusion coefficient
627 and spectra of inner radiation belt particles: Analytic solution and comparison with numerical
628 results, *J. Geophys. Res.*, **87**(A10), 8321–8326, <https://doi.org/10.1029/2000JA087iA10p08321>,
629 1982.

630 Wilken, B., Baker, D. N., Higbie, P. R., Fritz, T. A., Olson, W. P., and Pfitzer, K. A.:
631 Magnetospheric configuration and energetic particle effects associated with a SSC: A case study
632 of the CDAW 6 event on March 22, 1979, *J. Geophys. Res.*, **91**(A2), 1459–1473,
633 <https://doi.org/10.1029/JA091iA02p01459>, 1986.

634 Williams, D. J.: Phase space variations of near equatorially mirroring ring current ions, *J. Geophys.
635 Res.*, **86**(A1), 189–194, <https://doi.org/10.1029/JA086iA01p00189>, 1981.


636 Williams, D. J., and Frank, L. A.: Intense low-energy ion populations at low equatorial altitude, *J.
637 Geophys. Res.*, **89**(A6), 3903–3911, <https://doi.org/10.1029/JA089iA06p03903>, 1984.

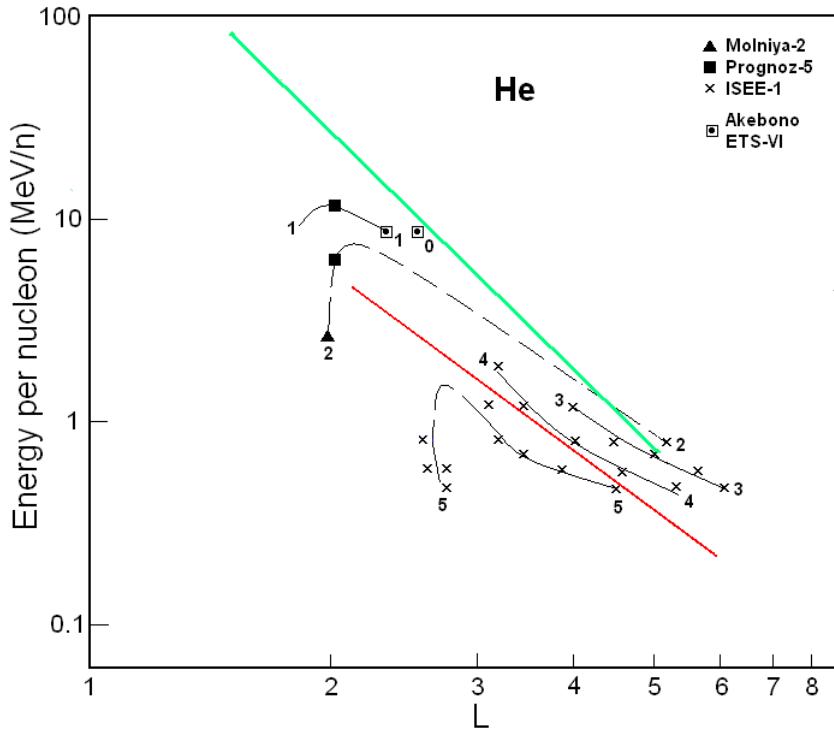
638

639
640
641
642
643
644

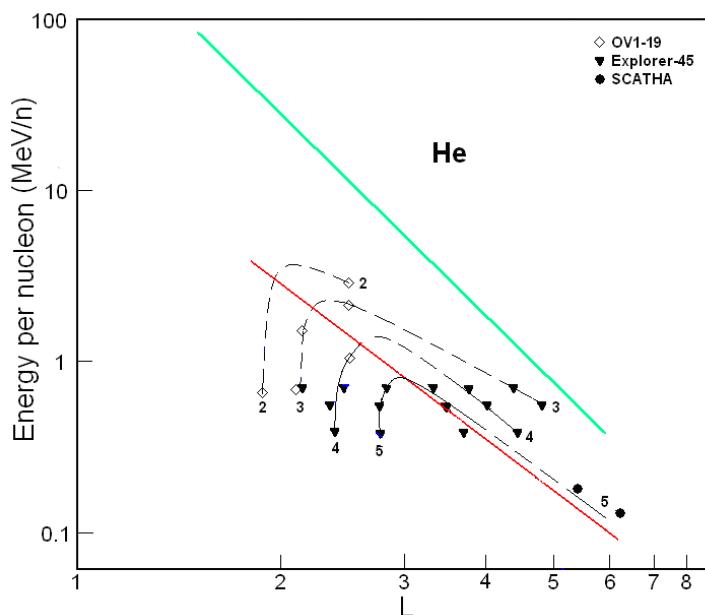
Figure 1. Proton fluxes in the ERB near minima of the solar activity. **A** The numbers on the curves **are equal** refer to the values of the decimal logarithms of J where J is given in $(\text{cm}^2 \text{ s ster MeV})^{-1}$; **it** is the differential fluxes of protons with $\alpha_0 \approx 90^\circ$ (near the plane of the geomagnetic equator). Data of satellites are **presented** associated by different symbols. The red line **corresponded** corresponds to the lower boundary of the power-law tail of the proton spectra; while green line **corresponded** corresponds to the maximum energy of protons trapped in the ERB (Ilyin et al., 1984).

645

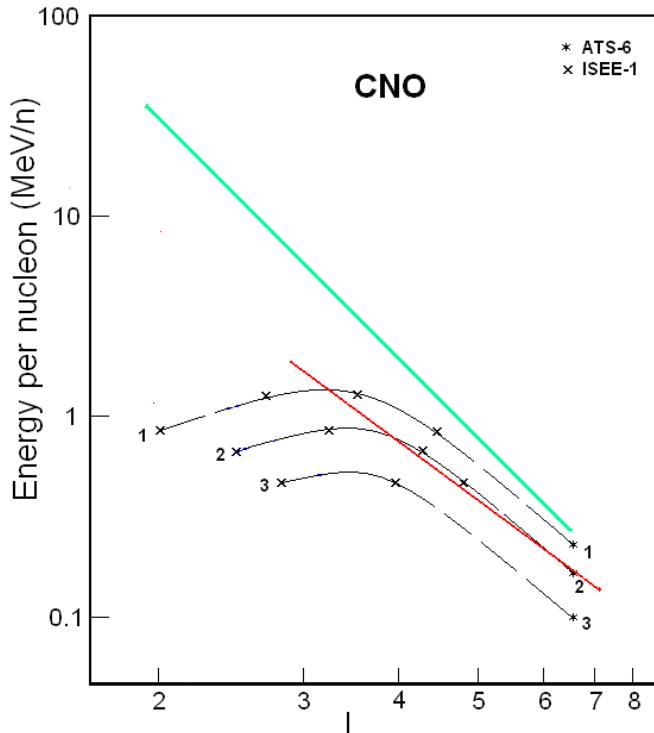
646

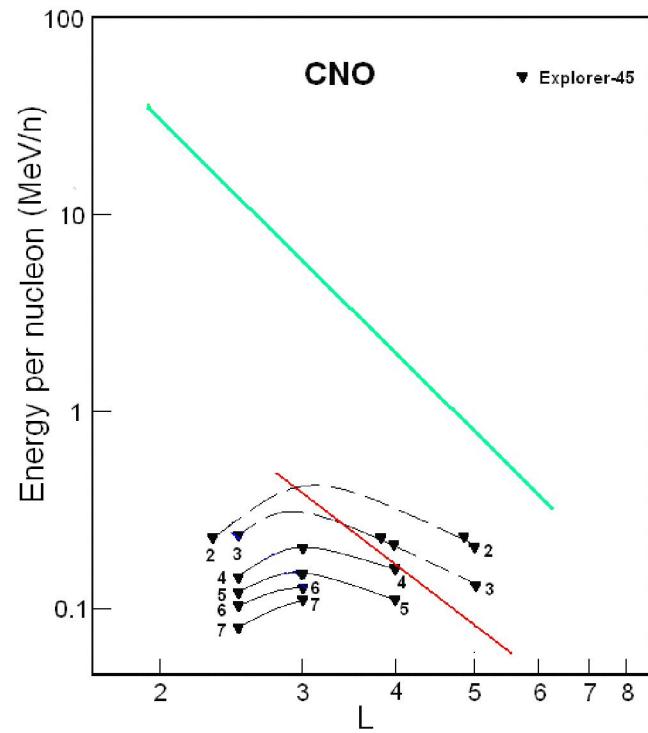

647

648


649

650


Figure 2. Proton fluxes in the ERB near maxima of the solar activity. The numbers on the curves refer to the values of the decimal logarithms of J where J is given in $(\text{cm}^2 \text{ s ster MeV})^{-1}$ is the differential fluxes of protons with $\alpha_0 \approx 90^\circ$ (near the plane of the geomagnetic equator). Data of satellites are associated by different symbols. The red line corresponds to the lower boundary of the power-law tail of the proton spectra; while green line corresponds to the maximum energy of protons trapped in the ERB (Ilyin et al., 1984).


651
652 **Figure 3.** Helium ion fluxes in the ERB near minima of the solar activity. The numbers on the curves refer to the
653 values of the decimal logarithms of J where J is given in $(\text{cm}^2 \text{ s ster MeV/n})^{-1}$ is the differential fluxes of helium ions
654 with $\alpha_0 \approx 90^\circ$ (near the plane of the geomagnetic equator). Data of satellites are associated by different symbols. The
655 red line corresponds to the lower boundary of the power-law tail of the helium spectra; while green line corresponds to
656 the maximum energy of these ions trapped in the ERB (Ilyin et al., 1984).

657
658 **Figure 4.** Helium ion fluxes in the ERB near maxima of the solar activity. The numbers on the curves refer to the
659 value of the decimal logarithms of J where J is given in $(\text{cm}^2 \text{ s ster MeV/n})^{-1}$ is the differential fluxes of ions with $\alpha_0 \approx$
660 90° (near the plane of the geomagnetic equator). Data of satellites are associated by different symbols. The red line
661 corresponds to the lower boundary of the power-law tail of the helium spectra; while green line corresponds to the
662 maximum energy of these ions trapped in the ERB (Ilyin et al., 1984).

663
664 **Figure 5.** CNO ion fluxes in the ERB near minima of the solar activity. The numbers on the curves refer to the values
665 of the decimal logarithms of J where J is given in $(\text{cm}^2 \text{ s ster MeV/n})^{-1}$ is the differential fluxes of ions with $\alpha_0 \approx 90^\circ$
666 (near the plane of the geomagnetic equator). Data of satellites are associated by different symbols. The red line
667 corresponds to the lower boundary of the power-law tail of the CNO ion spectra; while green line corresponds to the
668 maximum energy of these ions trapped in the ERB (Ilyin et al., 1984).

669
670 **Figure 6.** CNO ion fluxes in the ERB near the maximum of the solar activity. The numbers on the curves refer to the
671 values of the decimal logarithms of J where J is given in $(\text{cm}^2 \text{ s ster MeV/n})^{-1}$ is the differential fluxes of ions with α_0
672 $\approx 90^\circ$ (near the plane of the geomagnetic equator). Data of satellites are associated by different symbols. The red line
673 corresponds to the lower boundary of the power-law tail of the CNO ion spectra; while green line corresponds to the
674 maximum energy of these ions trapped in the ERB (Ilyin et al., 1984).