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We thank the referee for the numerous comments regarding our methodology and
the various suggestions proposed to better our work. Please find below the detailed
answers to the referee’s questions and comments.

Lines 52-55: I would require more detail in the labeling process. What exactly
is meant by "successive, eventually corrected, predictions"? The term "training
set" is used here, even though the proper training set is defined later, on line 61.

The labels were made by inspecting the data visually and deciding, by selecting inter-
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vals, to which class their points belonged to. This requires to zoom in and out many
intervals and is thus a long and fastidious process. To make it faster, in particular to
zoom in regions of interest, we decided to guide our eyes with the preliminary predic-
tions of a GB classifier trained on a dataset iteratively widened by our labels, plotted
over the data.

Does the final dataset cover the full time range of the 2007-2009 period? Are the
authors concerned that their dataset might not be representative of a variety of
solar/magnetospheric conditions, since 2007-2009 was near the solar minimum
and was a rather quiet time period with regards to geospace activity.

The final labeled dataset we used for THEMIS data does cover the 2007-2009 period.
Past this period, THEMIS B and C became Artemis and this specific case was men-
tioned in the paper. The concern of the variability due to the solar cycle then concerns
the quality of the massive prediction lead on the data provided by THEMIS A, D and E.

Even if the solar cycle induces variability in the physical parameters of the three re-
gions, we will find the same differences between the three different classes on the
dayside part of the near-Earth environment:

• The magnetosphere will still be characterized by a low density, a high tempera-
ture, a high magnetic field and a plasma almost at rest

• The magnetosheath will still be characterized by a high density, a subsonic ion
flow, and a lower magnetic field amplitude than in the magnetosphere

• The solar wind will still be characterized by a supersonic ion flow, a high density
being lower to the one in the magnetosheath and a low magnetic field amplitude.

At first order, this physical differences we have between each classes will prevail on the
variability induced by the solar cycle. The latter can then be neglected in the specific
case of these missions.
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Section 2.2 Algorithm: I would advise the authors to extend this section with
more details on the specific way with which they have implemented the method
(number of decision trees, cost function, how exactly does the final probability
score emerge etc). Providing an entire book as a reference is not particularly
helpful and I believe that many readers would be interested in the technical de-
tails, since ML is being used in an increasing number of applications these days.

Gradient boosting algorithms have proven their capability to rapidly deal with complex,
eventually imbalanced (Brown et al. (2012) ) classification problems. This is the reason
for which we chose this class of algorithms. We computed the method using its python
implementation provided by Scikit-learn (Pedregosa et al. (2011) ). The method has
been computed with the standard hyperparameters provided by Scikit-learn that is to
say:

• 100 decision tree

• The multinominal deviance loss function which is a standard loss function used
for multiclass classification

These precisions will be added in the revised manuscript

Section 2.3: An additional metric would be welcome here, e.g. the Heidke SS,
espe- cially since the AUC scores are pretty close to one another.

We agree with the referee and attach to our answer the evolution of the HSS as a
function of the probabilistic decision threshold. For the decision threshold we chose
for our massive detection (e.g 0.5), the high value of the HSS we obtain for the three
classes confirms the efficiency of our model. This figure will be added to the revised
version of the paper where we will also introduce this metric.

Table 1: Since the scores for all three classes are almost perfect, I would expect
the mislabeled AUC to be 75C2 Do you have any suspicions or thoughts on why
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that might be? Did you also perform 3 different misslabelings to verify this result
(as you did with the training-test dataset selection)?

The two only reasons of a data mislabel by a human observer are the confusion of
magnetosheath points with either magnetosphere or solar wind points. Consequently,
we mislabeled our dataset following this process:

• we selected a fraction of random points of the dataset

• The magnetosphere and the solar wind points were mislabelled as magne-
tosheath points

• magnetosheath points were randomly mislabelled between the two different
classes

This operation has been done for various percentages of mislabelling 10 times each.
We attach to our answer the evolution of the AUC for each class with the mislabelling.

Even if the classifier is almost perfect, we do not expect a particular evolution in the
AUC for each class apart from a drop in the model performance. From then on, having
the same performances for the solar wind and the magnetosphere for this percentages
is a coincidence that is seen by the evolution of the AUC for these two classes.

This mislabelling process and the evolution of the AUC with the mislabelling will be
added in the annex of the revised paper.

Section 3: Since different satellites carry different instruments with varying
sensitivities it would be interesting to see if using some sort of normalization
scheme in the data can help the method to yield high scores without re-training.

Cluster has a polar orbit while THEMIS and Double Star stay in the equatorial plane.
This physical difference in latitude of the different regions traversed by the spacecraft is
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the main reason that explains the variability we notice in the data from a mission to an-
other and prevails on the instrumental specificity of each spacecraft. This is especially
shown with the score we obtain on Double Star and Cluster without retraining.

A global model that takes into account this orbital variability could be a nice improve-
ment of our models in a future work.

Also, it is generally advised to use an as-equal-as-possible sample size for all
the classes in a dataset. Especially in the Double Star case the Solar Wind cate-
gory seems significantly under-represented compare to the other two. Have the
authors tried to replicate their results with a more balanced dataset?

Gradient boosting has proven its efficiency to deal with imbalanced dataset (Brown et
al. 2012) and this is one of the reason for which we chose this algorithm, this will be
precised in the paper.

Additionally, we show in the paper that the model trained on THEMIS data already
gets on well with every categories of data measured by Double Star. As the retrain
already takes into account the differences between the three classes represented in the
THEMIS dataset , the imbalance will have a tiny influence on the model performances
that are already good.

Section 3.3: Wouldn’t a set of Lunar coordinates (selenocentric) be more useful
in properly identifying the fourth class? Or alternatively and additional parameter
that captures the Moon’s Local Time position? Also, I do not see the AUC scores
for the fourth category in Table 1.

We use the plasma moments to take into account all of the possible complexity of the
underlying nature of the object we are trying to detect, without simplifying a priories
coming from modelization

This approach is preferable as long as the different type of signatures we are trying to
detect have strong intrinsic properties. Which is not the case for the magnetosheath
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and the solar wind in the distant night side. This is why we help the algorithm by giving
the position of the spacecraft in this specific case.

We agree we didn’t mention the AUC score for the fourth class that we found equal to
0.997. We will mention this score in the revised version of the manuscript.

Lines 227-228: "Events with high probability would then correspond to undoubt-
ful crossings while the events with the lowest probability would be the most
likely to be actual crossings". Is this correct or was it meant to be "while the
events with the lowest probability would be LESS likely to be actual crossings".

We agree with the referee on the omission we made on this sentence. This will be
corrected.

Section 5: It would be very interesting to see the difference in the position of the
Magnetopause and the Bow Shock for quiet vs disturbed conditions (e.g. low vs
high solar pressure) as predicted by this method and a comparison against an
analytical model.

We agree such study would be interesting and this is why we mention it in the con-
clusion of our paper. The construction of a data-driven bow shock and magnetopause
model is one of the objectives we can have by performing massive crossing detection
from in-situ data and this was studied by an intern from our group. The preliminary plots
we obtained showed consistency with what we know on the position of the bow shock
for varying solar wind dynamic pressure. Nevertheless, this work is very preliminary
and would need a specific focus that goes beyond the scope of this paper.

Interactive comment on Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-149,
2019.
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Fig. 1. Heidke Skill Score of our model trained on THEMIS data for varying decision threshold
for the three classes
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Fig. 2. Evolution of the AUC as a function of the percentage of mislabelled points in the dataset.
The grey dashed lines indicate the error bars obtained for each 10 repetitions of mislabelled
training
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