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Reply to Anonymous Referee #1 
 
(https://doi.org/10.5194/angeo-2019-140-RC1, 2019) 
 

Authors thank the Reviewer for her/his positive comments and suggestions. Please note that 
point by point replies are given below in blue. We sincerely hope that the revised manuscript 
is now clear and concise. 

The paper by Uma Das et al. presents a tidal analysis based on COSMIC temperature data 
derived during the years 2009 and 2010. The analysis uses the least-square fitting technique 
concerning the zonal wave number, the longitude, and considering a mean, a diurnal, 
semidiurnal and terdiurnal tidal as well as a stationary planetary wave component. The data is 
divided into two groups containing four micro satellites each with a third group containing all 
6 satellites as comparison. The present study focuses on the investigation of different lengths 
of data sets and thus, their influence on each tidal component according to their generation, 
variability and potentially produced aliasing effects. The findings are relevant especially for 
the satellite community because they give evidence to new interpretation possibilities 
regarding the nature of tides in the Earth’s atmosphere. 
 
The paper is well written, the methods are adequately described and the results are properly 
discussed, therefore a publication in AnnalesGeophysicae is highly recommended (Thank 
you).  But nevertheless, some major and minor concerns should be addressed as indicated 
below before publishing. 
 
Specific comments: 
 
1) In the introduction the authors mentioned that a short-term variability from satellite data 
cannot be retrieved due to the local time coverage at one particular location, which takes 
several tens of days (Page 2, line 33-34). In general this statement is true, but nevertheless, 
there are attempts to derive a short-term variability using the deconvolution method for non-
migrating tides or by combining satellite data with ground-based measurements. For a 
comprehensive overview please add some information about this in the introductory part (for 
this see e.g.: Oberheide et al., 2002; Pedatella et al.,2016). 
Ans: Authors thank the Reviewer for providing these important references. They are now 
discussed in the revised manuscript in Section 1 (Introduction). 
 
2) The classification of the different groups (G1 and G2) seems to be somehow oversampled 
because 50% of the data is in both groups. The similarity of the results from the different 
groups is not really surprising when almost the same data is used for each group (G0 contains 
all six data sets). Perhaps, it is worth to add some information about the exact amount of data 
from each satellite in form of a table or something like that? 
The following figure shows the data availability of the number of profiles available at various 
latitudes from each of the COSMIC satellites. This figure will be given in a Supplementary 
Section of the paper. 
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Figure S1: Number of profiles available over equator, 30N, 45N and 65N, from each of the COSMIC 

satellites C001 to C006. The last panel shows data available from all satellites taken together. 
 
3) Page 4, line 96: What is meant with the statement: “This non-uniform and patternless 
sampling is in a way supportive to the current study”? Even if there would be a pattern 
sampling, by knowing this, it would be also possible to distinguish between such a pattern 
and a real geophysical variation of a tidal signal. Please clarify the meaning with some 
arguments. 
Ans: The non-uniform and pattern-less spatial and temporal sampling is in a way supportive 
to the current study to characterise the variability of tides in the middle atmosphere as we 
have used the method of least squares fitting. So, aliasing effects are reduced. 
 
4) Page 4, line 126: “the phase sampling is uniform on any given day for all waves”. The 
reviewer does not see this in Fig. 1 as just the phase of the DW1 component is shown here. In 
addition to this, perhaps misleading, statement, it seems to be a contradiction to the comment 
in the beginning about the non-uniform sampling (see point 3). Uniform suggests a complete 
sampling for each season. This seems to be not true, especially for the winter months. Please 
rethink about both statements and rewrite them. 
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Ans: COSMIC sampling of the atmosphere is irregular in space and time [Please refer to 
Figure 1 of Pirscher et al., 2010]. The same can be seen in figure below, which shows the 
sampling in longitude-UT space for one day and 21 days. 

 
 
Thus, the information in line 96 is correct. These observations, on the other hand sample the 
different waves at various phase points. We extracted the phase information of each wave as 
2ft+2s, where f is frequency and s is wave number of the wave, t is time (UT) and  is 
longitude of observation, which is plotted in Figure 1.  
 
Here we would like to draw the attention of the Reviewer towards an error in the figure. 
Figure 1 actually shows phase sampling distribution of the DS0 Wave. Title was mistakenly 
written as DW1. We have corrected the figure to show DW1 phase sampling distribution in 
the revised manuscript.  
 
We show here the phase sampling distribution of all the three tides. 
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On inspection it can be seen that, phase on any given day, i.e., a vertical slice of any panel in 
these plots, is reasonably uniform, as mentioned in line 126. 
 
5) Fig. 2: Why there is no amplitude signal for the DW1 tide visible between 15 and 45_ 
N/S? From the theoretical point of view, one would assume that there is a strong signal at the 
equator which slowly decreases towards the pole. Are the values really zero here or are they 
not determined? This is not clear from the colormap of the colorbar.  
Ans: The amplitudes of DW1 between 15 and 45°N/S are indeed negligible and below 0.5 K, 
as determined from COSMIC temperature data. It may be noted that these results are for 30 
km.  
 
This is also verified with published literature. Figure 1 of Sakazaki et al., 2018 (ACP) shows 
that DW1 has amplitude of 1 K over equator at 30 km and is below 0.6K at other latitudes as 
seen in satellite and reanalysis datasets (SABER,JRA-55, JRA-55C, JRA-55AMIP, MERRA-
2, MERRA, ERA-Interim, and CFSR). DW1 amplitudes of 3 to 3.5 K are observed between 
15 and 45 N/S at higher altitudes of 50 km. Figure 3 (First Row, Second Column) of Hagan 
and Forbes 2003, shows that GSWM amplitude of DW1 is 1 K over equator at 50 km. Hence 
comparisons with published literature proves the current results.  
 
6) Page 7, line 190/191: “with no phase change”. This reviewer is not convinced about this 
statement. From Fig. 5 it is clearly visible that the phase is changing between maxima of 
amplitudes. 
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Ans: The phase of SPW1 is varying between 100 and 200 degree longitude between maxima, 
as seen on the above figure. Thus the phrase is modified as ‘with small phase change’. 
 
7) The nonlinear interaction of the SPW1 and the migrating diurnal tide as a potential 
generation mechanism of the DW2 and DS0 tidal component was also investigated by 
Lieberman et al., 2015. Although this study is focused in the MLT region, it is worth to 
discuss the results here (page 9, line 241/242) because the authors also used SABER data and 
derived a day-to-day variability of the tidal components. They also made a numerical 
investigation of their correlation and found that the interaction is a potential source of the 
non-migrating tidal components. Their findings contradict an aliasing effect as origin for the 
non-migrating tidal components. Please enhance the discussion according to this. 
Ans: Authors thank the Reviewer for suggesting this reference. It is discussed in the revised 
manuscript.  
“Lieberman et al (2015) discuss DW2 variation over equatorial mesopause region and the 
mechanism of generation is proposed that stratospheric SPWs over mid and high latitudes are 
ducted upward and equatorward that interact with equatorial DW1 and thereby generate DW2 
over the mesoapuse region. DS0 is not quite discussed by Lieberman et al (2015).” 
 
8) COSMIC data show significant tidal variabilities over times less than a month. 
Unfortunately, the data is limited to stratospheric altitudes, and therefore a comparison to 
other data sets can hardly be made as they are often done for the MLT region due to larger 
tidal amplitudes at these altitudes. However, there are a few studies which investigate the 
tidal variability also in the stratosphere, which should also be mentioned in the discussion 
(e.g., Baumgarten et al., 2018, Baumgarten and Stober et al., 2019). Both studies show a huge 
variability of the diurnal tide which origin was not finally determined, but nevertheless, they 
used also global tidal fields to distinguish between migrating and non-migrating tides. Their 
results also show a negligible non-migrating tidal contribution if an intermittency is allowed 
in the analysis which supports a potential aliasing effect as origin for the non-migrating tidal 
components. 
Ans: Authors thank the Reviewer for suggesting this reference. These are discussed in the 
revised manuscript.  
 
“Baumgarten and Stober (2019) derived short term tidal variability in the altitude range from 
30 to 70 km using temperature derived from lidar observations at Kühlungsborn (54°N, 
12°E), a mid latitude station. The diurnal tide (consisting of all wavenumbers) in temperature 
and winds was extracted from lidar data and compared with DW1 component of temperature 
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and winds from Modern-Era Retrospective analysis for Research and Applications, Version 2 
(MERRA-2). It was shown that the local tidal fields are dominated by the migrating diurnal 
and migrating semidiurnal tides and that other components are negligible. This indicates that 
the non-migrating components may have very little contribution and thus supports the current 
study that the observed non migrating tides could be possibly due to aliasing.” 
 
Minor/Technical comments: 
 
- Page 1, line 10: sun ! Sun 
Ans: Corrected 
 
- Citations should follow the Ann. Geophysicae standard, so please use the command ncitet 
or ncitep if latex is used or “()” instead of “[]” for references. 
Ans: Corrected 
 
- Please add a short summary of the structure of the manuscript at the end of the introduction. 
For a reader it is much better if a statements about what follows is given there. 
Ans: Summary added as follows. 
“The paper is organised as follows. Section 2 describes the FORMOST-3/COSMIC data 
used, satellite sampling and phase space of the various wave components. Data analysis 
method of least square fitting is described briefly in Section 3. Tidal characteristics and 
associated aliasing are described in Sections 4 & 5, respectively, and the results are discussed 
and summarised in Section 6.” 
 
 
- This reviewer suggests to integrate Section 2.1 into Section 2 or Section 2.1 should get an 
own Section number. In general, it is not likely to write a subsection if just one subsection is 
existing. 
Ans: Both sections are combined and renamed as ‘Data and Sampling’. 
 
- Page 4, line 109: in to ! into 
Ans: Corrected 
 
- Page 4, line 123: What is meant by “viz.”? Please clarify. 
Ans: ‘viz’means ‘namely’. It is replaced in the revised manuscript. 
 
- Page 4, line 124: “the total phase of the important wave component DW1 are investigated” 
must be “is investigated” 
Ans: Corrected 
 
- Page 4, line 126: “data points reduced” should probably be “data points are reduced” 
Ans: Corrected 
 
- Page 5, line 1: “the period investigated” please clarify which period this is (Nov. 2009-Sept. 
2010) as this should be stated somewhere here in the data section. 
Ans: The period of study is October 2009 to December 2010. It is specified in the revised 
manuscript. 
 
- Page 5, section 3: To be complete here an explanation for the different variables is needed 
for the reader. 
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Ans: Added 
 
- Page 5, line 144: How is “with minute differences” determined? The results show small 
differences between the three groups, but they are not in the range of minutes. If it is meant 
that the flightpath of the six micro satellites have a temporal difference of a few minutes, then 
it becomes not clear from the statement written in the manuscript. 
Ans: ‘minute’ here means extremely small. To avoid confusion, it is replaced. 
 
- Page 5, line 145: “strong semi-annual variation is observed” The statement should be 
weakened. The semi-annual variation is visible, but the annual variation is much stronger (the 
difference here is larger than 30 K, while the difference for the semiannual variation is less 
than 10 K). 
Ans: Modified as suggested. 
 
- Page 5, line 149: Just a thought (there is probably no action required): Is it possible that the 
band like structure around the equator has something to do with the geomagnetic equator 
because there is a more or less anti-correlation between both? 
Ans: There is no relation with the geomagnetic equator.  
 
- Page 6, line 161: The strongest differences occur not only during winter, also during 
autumn. 
Ans: It is actually during winter and spring. It is corrected in the revised manuscript. 
 
- Page 6, line 172: “are overestimated by C004, particularly in the high latitudes”. This 
statement is not quite correct, the overestimation occurs only in high latitudes, not above the 
equator. Please modify the sentence. 
Ans: Modified as suggested 
 
- Page 6, line 173: “due to the effect of smoothening as more data was used” It is not clear 
why this is the explanation. Does C004 contain more data than the other satellites? 
Ans: Yes, C004 has more data (±30 days), while G0,G1,G2 consider ±10 days data. This is 
mentioned in Section 3, Analysis. 
 
- Page 6, line 184: Could the authors estimate also the vertical wavelength of the other two 
tidal components? Probably this is not easy, but at least some sentence about the relation to 
other tidal components would be helpful. 
Ans: From Figure 4, it is difficult it conclusively comment upon the vertical wavelength of 
the other tidal components, and so we have not added anything in this regard. 
 
- Page 7, line 200: The amplitude of the SSW is not seen in the figure, therefore the 
formulation should be changed. 
Ans: It is a typographical error. It has to be SPW and corrected in the revised version.  
 
- Page 10, line 257 and 258: “Showed” is the past tense of “show”, but here the authors have 
to write the past participle which is “shown”. 
Ans: Corrected as suggested. 
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Ans: Authors thank the Reviewer for providing the above references. They are all now 
discussed in the revised manuscript.  
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Reply to Anonymous Referee #2 
 
(https://doi.org/10.5194/angeo-2019-140-RC2, 2019) 
 
Authors thank the Reviewer for her/his positive comments and suggestions. Please note that 
point by point replies are given below in blue. We sincerely hope that the revised manuscript 
is now clear and concise. 

General comments 
 
Temperature data from the FORMOSA Satellite Series No. 3/Constellation ObservingSystem 
for Meteorology, Ionosphere and Climate (FORMOSAT-3/COSMIC) observationsobtained 
during 2009 to 2010 have been used to analyze migrating (DW1) andnon-migrating (DS0 and 
DW2) diurnal tides in the middle atmosphere from 10 to 50 kmover equator and 65_N. For 
this, the authors have separated two overlapping groupswith data from 4 satellites each 
besides to consider data from 6 satellites group. Theanalysis of each group was performed 
considering 21 days data centred over each 11days. The topic of the manuscript is interesting 
for understand the source of generationof non-migrating tides in the high latitude during 
winter, as well as to identify aliasingeffects in satellite data analysis. The manuscript 
presentation is clear and the scientificcontribution is appropriate for this journal. However, 
there are some moderated issuesthat need to be addressed. 
 
Specific comments 
 
Some important works that deal with short-term variability of the tides were not 
contemplated.For example: using NAVGEM-HA reanalysis and meteor radars McCormack 
etal. (2017) have observed day-to-day variability of the winds and tides. Recently, 
Baumgartenand Stober (2019) have estimated the tidal variability from 10-day 
continuouslidar observation. 
Ans: Authors thank the Reviewer for providing these important references. They are now 
discussed in the revised manuscript in Section 6. 
 
“Baumgarten and Stober (2019) derived short term tidal variability in the altitude range from 
30 to 70 km using temperature derived from lidar observations at Kühlungsborn (54°N, 
12°E), a mid latitude station. The diurnal tide (consisting of all wavenumbers) in temperature 
and winds was extracted from lidar data and compared with DW1 component of temperature 
and winds from Modern-Era Retrospective analysis for Research and Applications, Version 2 
(MERRA-2). It was shown that the local tidal fields are dominated by the migrating diurnal 
and migrating semidiurnal tides and that other components are negligible. This indicates that 
the non-migrating components may have very little contribution and thus supports the current 
study that the observed non migrating tides could be possibly due to aliasing.” 
 
“McCormack et al (2017) investigted the short term tidal variability during the SSWs of 
January 2010 and January 2013 using high latitude Navy Global Environmental Model 
(NAVGEM) data in the mesosphere and lower thermosphere region. NAVGEM is a result of 
assimilation of middle atmospheric data from nine meteor radar stations and other satellite 
measurements, including those from SABER on board TIMED satellite. Their results show a 
reduction in semi-diurnal amplitude before the onset of SSW and increases after the event, 
peaking 10-14 days later.” 
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Information about the COSMIC mission and its temperature profiles was not 
sufficientlyaddressed. Could the authors include a brief summary containing minimal 
informationabout the COSMIC mission as well as the temperature derivation process? 
Ans: The phase delay of L1 and L2 in signals received is due to change in refractivity which 
is converted to electron density in the ionosphere and temperature and other parameters in the 
lower atmosphere and are described in detail in literature (Kuo et al., 2004; Kursinski et al., 
1997). Briefly, the Earth’s refractive index at microwave wavelengths is affected by the dry 
neutral atmosphere, water vapour and free electrons in the ionosphere and thus by deriving 
refractivity of the atmosphere, the above mentioned parameters can be retrieved. This is now 
included in the revised manuscript. 
 
What is the COSMIC post-processed level of data used in the study? The authorscould also 
add information about the spatial distribution of the COSMIC observations(vertical and 
horizontal resolutions) of the data used in the study. 
Ans: COSMIC level2 dry temperature ‘atmPrf’ profiles for lower atmosphere are used in the 
present study. Data is considered at 1 km intervals from 15 to 50 km. It is known that the 
vertical resolution of RO derived temperature profiles is 0.5 km in the troposphere and 2 km 
in the stratosphere (Kursinski et al., 1997, Scherllin‐Pirscher et al., 2017). This is now added 
in the revised manuscript. 
 
Based on correlation analysis between tides and SPW1 amplitudes, the authors claimthat the 
contribution of nonlinear interaction to non-migrating tides generation is not important.To 
provide convincing support for this finding, an effort should be undertakento include 
additional analysis (for example, cross-correlation and phase coherence). 
Ans: Figure 7 shows that there is no significant correlation between non migrating tides and 
SPW1 and thus, no reasonable statistical relation can be established between occurrence of 
these waves. To investigate this further, the numerical experiments have been performed as 
described in Table 1 and shown in Figure 9. These numerical experiments show significant 
aliasing between SPW1 and DS0 & DW2. Based in this latter figure, we are concluding that 
non-linear interactions may not be as important a source as is believed. 
In continuation, and as suggested by the Reviewer we performed a cross correlation study 
between SPW1 and DS0 & DW2 as a function of lag of ±30 days and is shown below. 

 
This Figure does not add any new information to existing understanding and hence is not 
included in the revised manuscript. 
 
The discussion needs to be improved considering some studies on tidal variability inboth 
stratosphere and mesosphere. For example: nonmigrating diurnal tides generatedby tide-
planetary wave interactions have been studied by Lieberman et al. (2015), andNiu et al. 
(2018) have discussed this issue and their relationship to SSW. 
Ans: Authors thank the Reviewer for providing these important references. They are now 
discussed in the revised manuscript in Section 6. 
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“There are also studies that have shown that time evoltion of DW2 over equatorial mesopause 
region follows SPW1 variation over high latitude stratosphere (Lieberman et al., 2015; Niu et 
al., 2018). It is proposed that mid to high latitude stratospheric SPWs are ducted upward and 
equatorward that interact with equatorial DW1 over mesopause and thereby generate DW2 
over the equatorial mesoapuse region. DS0 is not quite discussed by Lieberman et al (2015). 
Niu et al (2018) invetigated this SPW1-DW1 interaction during SSWs using extended 
Canadian Middle Atmosphere Model (eCMAM) data and found good but varying 
correlations during 20 out of 31 SSW events with both DW2 nd DS0 which indicated that the 
strength of non-linear interactions also varied from year to year. As the correlations are not 
observed during all SSW events the proposed mechanism of non-linear interactions is still 
questionable.” 
 
Minor/Technical comments: 
Throughout the manuscript, many acronyms were used without proper designation. 

Please provide compound term on first appearance. 
Ans: Abbreviations are provided for all acronyms. 
 
Lines 28-29: “TIMED satellite” Line 45: “satellite observations of TIDI and 
SABERinstruments onboard TIMED” Line 46: “UARS” 
Ans: Abbreviations are provided for all acronyms. 
 
Line 105: change “As mentioned earlier 10 days data from all six COSMIC” to 
“Asmentioned earlier +-10 days data from all six COSMIC” 
Ans: It is correctly stated in this line that 10 days of data are in principle sufficient when data 
from all six COSMIC satellites is considered. If three satellites are considered, 20 days data is 
required and if only one satellite is considered then 60 days of data is required. In the analysis 
of the paper ±10 days data is considered for groups G0 (six satellites), G1 (C001, C002, 
C003, and C004) and G2 (C004, C005, C006 and C001)to maintain uniformity and to avoid 
data gaps. The text in this paragraph is modified appropriately to clarify this aspect. 
 
References: 
 

1. McCormack et al. Comparison of mesospheric winds from a high-altitude 
meteorologicalanalysis system and meteor radar observations during the boreal 
winters of2009-2010 and 2012-2013, J. Atmos. Solar-Terr. Phys., 154, 132-166. 
2017. 

2. Baumgarten, K. and Stober, G. On the evaluation of the phase relation between 
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planetarywave interactions. J. Geophys. Res. Atmos., 120, 11419–11437. 2015. 

4. Niu, X. Du, J., Zhu, X. Statistics on Nonmigrating Diurnal Tides Generated by Tide-
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Warming.Atmosphere, 9, 416. 2018. 

 
Authors thank the Reviewer for providing the above references. They are all now discussed 
in the revised manuscript.  
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Migrating and Non-Migrating Nonmigrating Tides Observed in the 
Stratosphere from FORMOSAT-3/COSMIC Temperature Retrievals 
Uma Das1*, William E. Ward2, Chen Jeih Pan3, Sanat Kumar Das4 
1Indian Institute of Information Technology Kalyani, Kalyani, West Bengal, India 
2Department of Physics, University of New Brunswick, Fredericton, Canada 5 
3Institute of Space Science, National Central University, Zhongli, Taiwan 
4Environmental Sciences Section, Bose Institute, Kolkata, India 

Correspondence to: Uma Das (uma@iiitkalyani.ac.in) 

Abstract. Formosa Satellite-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FORMOSAT-

3/COSMIC) temperature data during October 2009 to December 2010 are analysed for tides in the middle atmosphere from 10 

~10 to 50 km. COSMIC is a set of six micro satellites in near sun Sun synchronous orbits with 30° orbital separations and 

provides good phase space sampling of tides. Short term tidal variability is deduced by considering ±10 days’ data together. 

The migrating diurnal (DW1) tide is found to peak over the equator at 30 km. It maximises and slightly shifts poleward during 

winters and thus is attributed to ozone absorption. Over mid and high latitudes, DW1 and the non-migratingnonmigrating 

diurnal tides with wavenumber 0 (DS0) and wavenumber 2 (DW2) are intermittent in nature. Numerical experiments in the 15 

current study show that these could be a result of aliasing as they are found to occur at times of steep rise or fall in the mean 

temperature, particularly during the sudden stratospheric warming (SSW) of 2010. Further, stationary planetary wave 

component of wavenumber 1s (SPW1) are is found to be of very large amplitudes in the northern hemispheres reaching 18 K 

at 30 km over 65°N. By using data from COSMIC over shorter durations, it is shown that aliasing between stationary planetary 

waveSPW and non-migratingnonmigrating tides is reduced and thus results in the large amplitudes of the former. This study 20 

clearly indicates that non-linear interactions are not a very important source of generation of the nonmigratingnonmigrating 

tides in the mid and high latitude winter hemisphere stratosphere. There is also a modulation of SPW1 by a ~60 days oscillation 

in the high latitudes, which was not seen earlier. 

1 Introduction 

Tidal variability in temperature and winds of the atmosphere is a very important parameter to understand the long term as well 25 

as day to day variations in the atmosphere. Till To date, the nature of short term global tidal variabilities in the middle 

atmosphere have not been identified understood due to lack of sufficient data. Using only ground based data the dominant tidal 

periods can be identified (She et al 2004, Baumgarten et al, 2018; Baumgarten and Stober, 2019, etc.) but it is difficult to 

obtain the longitudinal variability (i.e., wavenumber of the tides) unless there are simultaneous measurements at different 

longitudes along the same latitude circle (Wu et al., 2008). Even if such measurements are possible over a given latitude, all 30 
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2 
 

latitudes of the globe cannot be covered due to various reasons including land-sea differencesdistribution. On the other hand, 

while satellites have the ability to take global measurements; however, their local time coverage is differentlimited. For 

example, the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite, which is in a near-Sun 

synchronous orbit, takes ~60 days to cover all local times at a given location (Mertens et al., 2004; Remsberg et al., 2003; 

Remsberg et al., 2008). This implies that to derive tidal characteristics, data has to be accumulated for ~60 days (Remsberg et 35 

al., 2008; Sakazaki et al., 2012; Xu et al., 2014; Zhang et al., 2006). Even then, due to the satellite’s orbit, noon time 

observations are not available. Thus all phases of the tides, specifically migrating tides, are not sampled. This poses a problem 

for accurate determination of tidal variabilities. Accumulating data over 60 days also means that the short term variabilities 

are lost. Further, any changes in the mean variation of the temperature aliases into the energy of migrating tides  (Forbes et al., 

1997; Sakazaki et al., 2012). A few studies, however, extracted short term tidal varibility using a deconvolution method 40 

(Oberheide et al., 2002; Lieberman et al 2015), by combining ground based measurements and reanalysis data with satellite 

measurements (Pedatella et al., 2016) and using data assimilation models (McCormak et al 2017). 

Tides are produced in temperature and winds due to absorption of solar radiation by water vapour in the troposphere and ozone 

in the stratosphere and also due to latent heat release in the troposphere. There are also tides produced in situ in the 

thermosphere due to extreme ultraviolet lightEUV absorption. The tides that move westward with apparent motion of the Sun 45 

are called the migrating tides. The migrating diurnal tidal characteristics in the stratosphere hadve been retrieved using 

temperature retrievals from Challenging Minisatellite Payload (CHAMP) observations during May 2001 to August 2005 (Zeng 

et al., 2008) and FORMOSAT-3/COSMIC mission (Anthes et al., 2008) using monthly data for the period 2007-2008 (Pirscher 

et al., 2010). Maximum amplitudes of 0.8 to 1.0 K were found over the tropics at 30 km altitude and are attributed to ozone 

absorption in both studies. There are several papers in literature that describe the theory (Chapman and Lindzen, 1970; Forbes 50 

and Garrett, 1979)  and observed characteristics of tides at various altitudes in the stratosphere, mesosphere and thermosphere 

from ground based measurements of radars and, lidars, etc., (Liu et al., 2007; Pancheva and Mukhtarov, 2000; She et al., 2004; 

Xue et al., 2007; Baumgarten and Stober, 2019), satellite observations of TIMED Doppler Interferometer (TIDI) and Sounding 

of the Atmosphere using Broadband Emission Radiometry (SABER) instruments onboard TIMED (Mukhtarov et al., 2009; 

Wu et al., 2006), from Upper Atmosphere Research Satellite (UARS) (Shepherd et al., 2012; Wu et al., 1998), MLS (Wu and 55 

Jiang, 2005), reanalysis (Gan et al., 2014) and model datasets (Sakazaki et al., 2018; McCormack et al 2017). Based on results 

obtained from TIMED tidal diagnostics, the Climatological Tidal Model of the Thermosphere (CTMT) constituting the most 

important diurnal and semidiurnal tides have been proposed (Oberheide et al., 2011a). Using global cloud imagery, the Global 

Scale Wave Model (GSWM) was developed for tides arising due to latent heat releases (Hagan, 2002; 2003). Such models are 

further used as parameterizations for other global circulation models in the lower and upper atmosphere.  60 

There are also the non migrating tides in the atmosphere whose apparent motion is either slow or faster than the Sun.  Some 

of these tides are thought to be produced due to non linear interactions between stationary planetary waves (SPW) and 

migrating tides. However, significant debate exists if the non migrating tides are truly a geophysical phenomenon or are an 

artefact of the method of analysis. It was proposed that SPW of wavenumber 1 (SPW1) interacts non-linearly with diurnal 
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migrating tide (DW1) and results in the non migrating tides DS0 and DW2 [(The notation of the tides is as follows: First letter 65 

indicates the period of the tide - D for diurnal, S for semi-diurnal, T for terdiurnal; second letter indicates if the tide is westward 

(W) or eastward (E) propagating or stationary (S), and finally the last character is a digit which gives the wavenumber of the 

tide. The same notation will be followed for the rest of the paper]). Similarly, SPW of wavenumber 1(SPW1) interacts with 

semi-diurnal migrating tide (SW2) and produces SW1 and SW3. Many studies support this school of thought based on 

correlation studies (Xu et al., 2014). However, it is also a possibility that the a high correlation is observed because of aliasing 70 

between these different components.  

Among the non migrating tides, a reasonably well understood tide is DE3 (eastward propagating diurnal tide of wavenumber 

3). The observation of the wave-4 structure in the equatorial ionisation anomaly of the ionosphere due to DE3 tide is one of 

the most important discoveries of the last decade (Immel et al., 2006). The DE3 tide is very unique to the Earth and is produced 

in the troposphere due to the specific distribution of the landmasses and oceans and associated heating (Oberheide et al., 75 

2011b). As the tide propagates upwards it modifies the various atmospheric parameters and this emphasizes the importance of 

troposphere-ionosphere coupling and also the need for obtaining the short term tidal variabilities. 

The various tides generated in the lower atmosphere propagate upward, grow in amplitude and affect the large scale dynamics, 

chemistry and energetics of the thermosphere and ionosphere. and tThus accurate determination of the variability of these 

various tides and other waves at the point of generation is extremely important to understand the atmospherice coupling 80 

processes. In the current study, temperature data from FORMOSAT-3/COSMIC during 2009 to 2010 is analysed to extract 

migrating and non migrating tides and stationary planetary waves globally over shorter time periods of ±10 days. Along with 

obtaining diagnosing the short term variability in the said tides, the paper also addresses the aliasing involved between (1) 

mean temperature and migrating tides and (2) stationary planetary waves and non migrating tides, particularly in the high 

latitudes. The paper is organised as follows. Section 2 describes the FORMOST-3/COSMIC data used, satellite sampling and 85 

phase space of the various wave components. The dataData analysis method of least square fitting is described briefly in 

Section 3. Tidal characteristics and associated aliasing are described in Sections 4 & 5, respectively, and the results are 

discussed and summarised in Section 6. 

2 Data and Sampling 

COSMIC is a constellation of six micro satellites working on the principle of GPSGlobal Positioning System Radio Occultation 90 

(GPS RO) (Anthes et al., 2008). It involves active Earth limb sounding by radio transmissions by GPS satellites at 20,200 km 

and are observed by the COSMIC satellites in low Earth orbits (Anthes et al., 2008). The phase delay of L1 and L2 in signals 

received is due to change in refractivity which is converted to electron density in the ionosphere and temperature and other 

parameters in the lower atmosphere and are described in detail in literature (Kuo et al., 2004; Kursinski et al., 1997). Briefly, 

the Earth’s refractive index at microwave wavelengths is affected by the dry neutral atmosphere, water vapour and free 95 

electrons in the ionosphere and thus by deriving the refractivity of the atmosphere, the above mentioned parameters can be 
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retrieved. This technique provides a near-vertical scan of the atmosphere with good vertical resolution, global coverage, and 

insensitivity to atmospheric particulate matter (Kuo et al., 2004; Kursinski et al., 1997). The six satellites are have been placed 

in ~800 km orbits with 30° separations. This enables the local time coverage of all satellites, taken together, theoretically, over 

any given location to be possible in approximately 10 days. In this way, COSMIC satellites have a huge advantage over 100 

SABER in terms of global coverage. However, the altitude coverage of COSMIC is from surface to 60 km (‘atmPrf’, - dry 

temperature data product) with temperatures data reliable up to 50 km over the equator and further lower over mid and high 

latitudes (Das and Pan, 2014)., while In Contrast, SABER has coverage from 20 to 120 km, and thereby the latter which 

enables studies of stratosphere, mesosphere and lower thermosphere. Thus the data from COSMIC can only be used for 

tropospheric and stratospheric studies (and the ionospheric data products can be used for ionospheric studies). In the current 105 

study, level 2 dry temperature ‘atmPrf’ profiles from the lower atmospheric data from FORMOSAT-3/COSMIC mission are 

analysed for the period from October 2009 to December 2010. Data is considered at 1 km intervals from 15 to 50 km. It is 

known that the vertical resolution of RO derived temperature profiles is 0.5 km in the troposphere and 2 km in the stratosphere 

(Kursinski et al., 1997; Scherllin‐Pirscher et al., 2017). COSMIC temperatures are smaller by 2 to 3 K than SABER 

temperatures across all latitudes below 0.3 hPa and larger above this altitude. The agreement of COSMIC temperatures with 110 

those from Aura-MLSMicrowave Limb Sounding instrument onboard the Aura satellite observations is much better and in the 

range of ±1 K upto 2 hPa (Das and Pan, 2014).  

2.1 Satellite Sampling and Phase Space: 

The data obtained from COSMIC using the technique of GPS RO are not regular, i.e., the retrieved data are not uniformly 

spaced in space and time. This non-uniform and pattern-less spatial and temporal sampling is in a way supportiveadvantageous 115 

to the current study to characterise the variability of tides in the middle atmosphere as the method of least squares fitting would 

beis used. SABER onboard TIMED satellite is in a near Sun synchronous orbit and its observations are regular and in a 

clustered mode. Over a given location, the satellite observes the atmosphere at gradually reducing local times, and takes sixty 

days to cover the entire 24 hour diurnal duration. Due to this, to obtain sampling at all local times using SABER, analysis has 

to be done over data accumulated for 60 days. Thus, the tidal parameters obtained are a temporal average representation over 120 

the sixty days considered. On the other hand, accumulating data for 60 days induces serious aliasing problems as the variation 

in average or mean temperature aliases into the diurnal tides’ amplitudes and the energy of SPWs alias into that of the non 

migrating tides. These problems are addressed here using COSMIC data. 

As mentioned earlier 10 days data from all six COSMIC satellites is required in principle sufficient to cover appropriately 

sample the 24 local hour diurnal duration over any given location and thusallowing short term tidal variability can be obtainedto 125 

be diagnosed. If data from only one satellite is considered, one would require sixty days of data for tidal analysis, similar to 

SABER.  
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To establish this aspect and to ascertain the necessary and sufficient conditions for the amount of data required for accurate 

tidal characteristic extraction, COSMIC data is considered as follows for the analysis. Data is divided into two overlapping 

groups, consisting of four satellites each. First group, named group ‘G1', takes data from satellites C001, C002, C003, and 130 

C004 and the second group, named group ‘G2', takes data from C004, C005, C006 and C001. (Data availability is shown in 

Figure S1, in supplementary section, as number of profiles available over equator, 30°N, 45°N and 65°N during the study 

period, from each of the COSMIC satellites C001 to C006. The last panel shows data available from all satellites taken together. 

) In principle, we could have divided the satellites into groups of three satellites and considered data over ~20 days, however, 

due to technical problems, sometimes data from one or another of the satellites is not available entirely, or less data is available. 135 

To overcome this, we made groups of four, with two satellites in common and considered data over ±10 days centred over a 

given day. A third group consisting of all six satellites is also investigated; this is named group ‘G0'. Further, data of each 

groupG0 is also analysed by considering ±10 days’ data centred over each day, to maintain uniformity and avoid data gaps. 

Differences observed in results obtained from G0, G1 and G2 allow the effect of aliasing to be examined and their role in 

causing errors in diagnosed results evaluated.would throw light upon the possible aliasing effects involved in arriving at 140 

erroneous results if data considered is more or less. Data from the C004 satellite is also analysed separately using the same 

method by considering data over ± 30 days. 

When satellite data are considered for tidal analysis, to be able to analyse the data withfor minimal aliasing related problems, 

it is expected important that the two dimensional space of universal time and longitude (over a certaineach latitude) is uniformly 

sampled by the satellite. The same can be verified from a different perspective of total phase. The Given the universal time (𝑡𝑡) 145 

and longitude (𝜆𝜆) of each observation, give the total phase is (2𝜋𝜋𝜋𝜋𝑡𝑡 + 2𝜋𝜋𝜋𝜋𝜆𝜆) of for each wave of frequency (𝜋𝜋) and wave 

number (𝜋𝜋) ranging can rangefrom between 0 to 2𝜋𝜋. If all phases of a given wave are sampled, i.e., if phase sampling is 

sufficiently uniform, then the characteristics of the wave, viznamely., amplitude, and phase, can be extracted with little 

uncertaintyreasonably accurately. To understand this, the total phase of the important wave component DW1, are  is 

investigated over the equator and 65°N and shown in Figure 1 for the different groups G0, G1 and G2 (by considering ±10 150 

days’ data) as well as for the C004 satellite (by considering ±30 days’ data). It can be seen that for both latitudes shown, the 

phase sampling is reasonably uniform on any given day for all the waves. The number of data points are reduced in general 

over the period investigated from October 2009 to December 2010, due to reduction in overall number of observations. It can 

also be seen that the sampling is also uniform when data from one satellite (C004) was considered over ±3061 days. This The 

completeness and uniformity of the phase space sampling is was also verified for all other waves of interest to the current 155 

study, and there is no change in the inference. 

3 Analysis 

Data in each group (G0/G1/G2/C004) are investigated using the least squares fitting technique. The following function is fit 

to the two dimensional temperature data, T, at each altitude in at universal time, t, and longitude, λ,  space, to include (a) mean 
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temperature variation (T0), (b) diurnal (frequency, f1 = 1), semi-diurnal (f2 = 2) and ter-diurnal (f3 = 3)) tides with wave numbers 160 

sj ranging from -4 to 4, where negative wave numbers denote eastward propagating tides and positive wave numbers denote 

westward propagating tides and (c) SPWs with wave numbers sk ranging from 1 to 3.  

𝑇𝑇(𝑡𝑡, 𝜆𝜆) = 𝑇𝑇0 + � � 𝑇𝑇𝑖𝑖𝑖𝑖cos (2𝜋𝜋𝜋𝜋𝑖𝑖𝑡𝑡 + 2𝜋𝜋𝜋𝜋𝑖𝑖𝜆𝜆 − 𝜙𝜙𝑖𝑖𝑖𝑖)
4

𝑖𝑖=−4

3

𝑖𝑖=1

+ �𝑇𝑇𝑘𝑘cos (2𝜋𝜋𝜋𝜋𝑘𝑘𝜆𝜆 − 𝜙𝜙𝑘𝑘)
3

𝑘𝑘=1

 

wWhere, Tijand φij are the amplitudes and phases of the tides, and Tk and φk are the amplitudes and phases of the SPWs.  

It may be noted that data from G0, G1, G2 are analysed using ±10 days’ data and data from C004 is analysed using ±30 days’ 165 

data. This equation results in 61 fitted parameters that are carefully investigated in the ensuing sections. 

4 Tidal Characteristics 

The mean temperature and amplitudes of DW1 and SPW1 at 30 km obtained from the analysis of temperature data during 

November 2009 – September 2010 are shown in the three rows of Figure 2, respectively. Each column indicates the results 

obtained from the three groups G0, G1, and G2 using ±10 days data and from satellite C004 using ±30 days data. The last 170 

column shows the numerical difference between results obtained from group G0 and C004. It can be seen that the results 

obtained from the three groups are very similar, with minute extremely small differences over very fine scales. The variation 

in the mean temperature is similar in all groups. Over the equator a strong semi-annual variation is observed (with maximum 

maxima during November and May) along with an annual variation with a maximum during April-May and a minimum during 

November-December. and oOver mid and high latitudes a strong annual variation is observed with a maximum during summer 175 

and a minimum during winter. The sudden stratospheric warming (SSW) of 2010 is also observed in the northern hemisphere 

during January - February.  The migrating diurnal tide, DW1, is very prominent at 30 km over the equatorial region with 

amplitudes in the range 1-1.5K and showing as a band like structure around the equator. The band is slightly shifted towards 

winter poles, i.e., northward during northern hemisphere winter and southward during southern hemisphere winter. It may be 

noted Note that amplitudes below 0.5 K are not shown in the figure. Over At latitudes greater than 45° in the winter hemisphere, 180 

intermittent patches of DW1 are observed.  

The amplitudes during January 2010 are particularly largerenhanced relative to other times and in the range of 2-3 K. This 

coincides which coincide with the occurrence of the SSW of 2010. The SPW1 shows very large amplitudes are also large, 

reaching 18 K, over mid-latitudes beyond above 45° in the winter hemisphere. Specifically, the The amplitude of this wave is 

stronger in the northern hemisphere than in the southern hemisphere. Furthermore, there is an apparent 60-day modulation in 185 

the amplitude of this wave by, what seems to be, a planetary wave of period ~60 days. These plots show that similar results 

are obtained with all groups.that all groups give similar results and thereby, Hence for the rest of the paper only analysis from 

group G0 (that considers data from all six satellites) is only discussed.  

Results obtained using data over ±30 days from onethe single satellite, C004, are very different from the group results, 

particularly in the mid and high latitudes. The mean temperature is smoothened smoother over the 60 day period and the 190 
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difference between mean temperature of group G0 and C004 in the last column(presented in the last column of Figure 2) shows 

periodic variations of ~60 days over the entire global region. The differences are maximummaximise during winters and spring 

in the high latitudes and are beyond ± 3Kwith magnitudes greater than 3K. The amplitude of DW1 over the equator and low 

latitudes upto less than 30° are similar to those obtained from the analysis of the groups., hHowever, the values are unusually 

large over mid and high latitudes, particularly over the regions poleward of 45°. The differences show that DW1 amplitudes 195 

from C004 using ±30 days data are overestimated by more than 6K, which is significant, given that the maximum amplitudes 

of DW1 (from the groups analysesis) in high latitudes is less than 3 K. The amplitude of SPW1 is, on the other hand, similar 

to the variation observed in the analysis of the data in groups., hHowever, the former is smoothened out over the time duration 

considered. Here also, the difference panel in the last column shows that the SPW1 amplitude observed by data from C004 

alone is also modulated by periodic variations of ~60 days, particularly in the high latitude winter atmosphere. These 200 

differences are also of the order of ±3 K, which are small compared to the maximum SPW amplitudes. 

Figure 3 shows the annual mean of the various wave parameters of interest in the current study using group G0 and satellite 

C004. The annual mean of mean temperature is similar in both columns. However, the migrating diurnal tide as well as non-

migratingnonmigrating tides are overestimated by C004, particularly in the high latitudes. Over equator and low latitudes, the 

tidal amplitudes are similar. Further, SPW1 amplitudes are marginally underestimated by C004 over high latitudes. This could 205 

be due to the effect of smoothening as more data was used in the analysis of the latter. 

Figure 4 shows the variation of amplitudes and phases of DS0 (left column), DW1 (middle column) and DW2 (right column) 

during the winter of 2009/10, i.e., from December 2009 to February 2010, over 65°N in the first and second rowstop two and 

over equator in the third and fourthbottom two rows, respectively. These results are obtained from group G0. Over In the high 

latitudes in the winter hemisphere, DW1 shows large amplitudes of 2K, but only intermittently and. DS0 and DW2 also show 210 

similar intermittent behaviour over winter hemisphere in the high latitudes with amplitudes varying in the range 1-2 K. The 

phase plots of these tides do not show any specific pattern as the waves themselves are intermittent. Over the equator, the 

amplitude of DW1 is maximummaximises at 30 km and is in the range of 1-1.5 K. Its phase variation with altitude indicates 

that its wavelength is ~25 km as is known from previous studies. Small amplitudes of 0.5 to 1 K are observed for DS0 and 

DW2 on either side of this equatorial band at 35 km., hHowever, at all other altitudes over the equator and low latitudes their 215 

amplitudes are zero (not shown here). The DW1 maximum at 30 km over equator peaks at noon indicating that the observed 

tidal variation is due to ozone absorption and is in phase with the sun. The altitude variation shows that the vertical wavelength 

of DW1 is ~25 km as known from previous studies.  

Figure 5 shows the variation of the amplitude and phase of SPW1 at various altitudes from 20 to 50 km (along the different 

rows) during the period of study. Large amplitudes of SPW1 are seen in the high latitude winter atmosphere. andThe amplitudes 220 

of SPW1 over northern hemisphere are largest during winter, with values reaching 18 K at 30 km altitude. It is also seen that 

in January 2010, as the SSW started, the amplitude of SPW1 reduced to almostdecreased to ~6K. In the southern hemisphere 

the amplitudes are smaller and showwith a maximum of ~10 K at 30 km. Importantly, there is significant variability over at a  

periodicityies of ~60 days at all altitudes, the modulation remaining coherent between both hemisphereswith no phase change, 
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in both hemispheres. Investigation of the phase plots show that the phase lines are nearly constant as a function of latitude at 225 

each height when large amplitudes of the SPWs are observed. The phase variation with , and phase lines at each altitude show 

indicates that the vertical wavelength of SPW1 is in the range from of 50 to 60 km at ~60°N, as well as at ~60°S. 

Comparison of Figures 4 and 5 shows that significant amplitudes of DS0 and DW2 occur at the same time of occurrence of as 

when SPW1 is strong., hHowever, there does not seem to be any significant correlation between the non migrating tides and 

the stationary planetary wave. To investigate this aspect further, Figure 6 shows the mean temperature in black, amplitudes of 230 

the DS0 in blue, DW1 in red, DW2 in magentacyan, and SPW1 in green at 30 km at 65°N, equator, and 65°S, in the three 

panels, respectively. The amplitudes of the waves are indicated by the axis on the right of the figure and with that of SPW1 is 

scaled down by a factor of 10 for convenience. The most striking feature of the figure is the occurrence of the SSW in January 

2010 at 65°N. Exactly during the time when the mean temperatures are were increasing at a high rate, the amplitude of SSW 

SPW reduced drastically from 17 to 10 K and the amplitudes of the three tides increased. The Aamplitude of DS0 is almost 2 235 

K, that ifof DW1 is 1.5 K and that of DW2 is 1 K. Similar peaks are also observed after the event when the mean temperature 

is reducingdecreasing. At this point, the amplitude of DW1 shows maximum amplitude of maximises at 2 K, that of DS0 

shows amplitude ofis 1 K and the amplitude of DW2 shows amplitudes smaller is less than 1K. During summer there is no 

wave activity in both either hemispheres. In the southern hemisphere at 65°S, tidal activity is observed as the temperatures 

start to rise in the winter. In pParticularly, as the mean temperature increases at a fast raterapidly during July 2010, amplitude 240 

of DW1 is highest and aboutmaximises at ~2K. and the amplitudes of DS0 and DW2 are of the order of 1 K. During the next 

3-4 months, intermittent patches are observed when the amplitudes of DW1 and DW2 of amplitudesare ~1.5 K are observed. 

Over the equator, on the other hand, the picture is very simple as there are no occurrences of significant amplitudes is no 

occurrence of DS0 and DW2. Interestingly, DW1 shows significant short term variability of at periodicities of the order of 30 

days. If the data were analysed over 60 day intervals, this variability would not have been observed. Further, theThe amplitudes 245 

of DW1 are marginally higher (~ 1.5 K) during northern hemisphere winter and are smaller (~1K) during summer.  

To understand the simultaneous occurrence of non migrating tides and stationary planetary waves, a simple correlation study 

is performed and is shown in Figure 7. The first panel shows the correlation of DS0 and SPW1 at 65°N at 30 km for winter 

from December 2009 to February 2010.  The correlation is negligible.It may be noted that there is no correlation at all. The 

second panel shows the correlation between DW2 and SPW1 over for the same latitude and altitude during June to August 250 

2010. Here also the correlation is not significant. The bottom panels show similar correlations for the southern hemisphere 

during June to August 2010 and there is good correlation between DS0 and SPW1 and a reasonable correlation between DW2 

and SPW1. However, the amplitudes of the tides are all almost smaller than ~1 K or smaller. Thus no reasonable statistical 

relation can be established between occurrence of non migrating tides and stationary planetary waves. 

Figure 8 shows another correlation study between mean temperature and DW1 tide. It may be observedIn the left panels that 255 

there is no significant correlation between the two parameters in either in the northern or the southern hemisphere is present. 

The panels on the right show the variation of DW1 as a function of gradient in the mean temperature. It is clearly noted that 

wWhen the latter are larger than ±0.25 K day-1, the amplitudes of DW1 are also very large and increaseing with increasing 
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gradient. The situation is same in the southern hemisphere too. This effect is not observed when the gradients are smaller and 

then at these times the amplitudes of DW1 are smaller than 0.5 K, and are negligible. This clearly indicates that there is an 260 

aliasing of energy into the DW1 tidal amplitude when the mean temperatures vary significantly.an aliasing of energy due to 

varying mean temperature into the DW1 tide amplitude.  

5 Aliasing 

It was very clearly established that varying mean temperatures alias into the DW1 tide using SABER data (Sakazaki et al., 

2012). However, in the case of COSMIC data, as the data sampling is irregular, it is difficult to establish such aliasing 265 

phenomena in the same way. To circumvent this problem, numerical experiments weare performed to understand the extent to 

which aliasing occurs as a result of amount of aliasing occurring with respect to COSMIC data sampling. For the times and 

locations of COSMIC measurements over the equator and at 65°N, a fake numerical atmosphere is created that consists of 

known variabilities. Table 1 describes the 10 such cases considered for this study. The results from these numerical experiments 

are shown in Figures 9 and 10 and are explained in detail in the table. 270 

 

 

Table 1: Numerical Experiments to investigate the aliasing of energy from one component into another over equator and 65°N 

as seen in Figures 9 and 10. T is temperature, λ is longitude, t is day number and time, and h is hour of day. 

S. No Atmosphere Equation RemarksResults 

1 Constant SPW1 

Amplitude 
𝑇𝑇 = 10 ∗ cos (2𝜋𝜋𝜆𝜆/360) SPW1 amplitude extracted with no errors over both 

latitudes 

2 Slowly varying 

SPW1 amplitude 

(Period = 50 days) 

𝑇𝑇

= 10 + [10

∗ cos (2𝜋𝜋𝑡𝑡/50)]

∗ cos (2𝜋𝜋𝜆𝜆/360) 

Maximum amplitude is underestimated and minimum 

amplitude is overestimated. 

No Aliasing is observed over equator, however, over 65°N, 

DS0 and DW2 components show equal and uniform 

aliasing of 1 K amplitudes. This happens at times of 

maximum gradient in SPW1 amplitude. 

3 Fast Varying 

SPW1 amplitude 

(Period = 10 days) 

𝑇𝑇

= 10 + [10

∗ cos (2𝜋𝜋𝑡𝑡/10)]

∗ cos (2𝜋𝜋𝜆𝜆/360) 

Average SPW1 amplitude is extracted. The periodic 

variation of 10 days is lost in the analysis. However, no 

DS0 and DW2 components are observed over both 

latitudes. 
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4 Constant DS0 

Amplitude 
𝑇𝑇 = 10 ∗ cos (2𝜋𝜋ℎ/24. ) Constant DS0 component extracted successfully. No 

aliasing into any other component is observed over both 

latitudes. 

5 Varying and large 

DS0 Amplitude 

(Period = 10 days) 

𝑇𝑇

= 10 + [10

∗ cos (2𝜋𝜋𝑡𝑡/10)]

∗ cos (2𝜋𝜋ℎ/24. ) 

Average DS0 component is extracted. And no aliasing into 

other components is seen over both latitudes. 

6 Varying and Small 

DS0 Amplitude 

(Period = 5 days) 

𝑇𝑇

= 1 + [1 ∗ cos (2𝜋𝜋𝑡𝑡/5)]

∗ cos (2𝜋𝜋ℎ/24. ) 

Average DS0 component is extracted. And no aliasing into 

other components is seen over both latitudes. 

7 Varying and Small 

DW2 Amplitude 

(Period = 5 days) 

𝑇𝑇

= 1 + [1 ∗ cos (2𝜋𝜋𝑡𝑡/5)]

∗ cos (
2𝜋𝜋ℎ
24

. +
2𝜋𝜋𝜆𝜆
360

2) 

Average DW2 component is extracted. And no aliasing 

into other components is seen over both latitudes. 

8 Fast Varying Mean 

Temperature 

(Period = 10 days) 

𝑇𝑇 = 280 + 10 ∗ cos (2𝜋𝜋𝑡𝑡

/10. ) 

Average mean variation is extracted. Aliasing is observed 

in DW1, SPW1 and DS0 and DW2, all showing amplitudes 

up to 1 K over equator and larger over at 65°N. The large 

peaks observed in DW1 and SPW1 over at 65°N indicate 

significant aliasing. 

9 Slowly Varying 

Mean Temperature 

(Period = 50 days) 

𝑇𝑇 = 280 + 10 ∗ cos (2𝜋𝜋𝑡𝑡

/50. ) 

 

(Similar to variation 

during  SSW 2010) 

Mean variation is extracted reasonably (in the range 273 to 

287 K), with maximum amplitudes underestimated by 3 K 

and minimum values overestimated by 3 K. Aliasing is 

observed in DW1, SPW1 and DS0 and DW2, all showing 

amplitudes up to 1 K over equator and much larger over at 

65°N. Large peaks of 5 K are observed in DW1 and that of 

3 K are observed in SPW1 over at 65°N. Interestingly, the 

peaks in DW1 occur at times of maximum gradient in mean 

temperature  

10 Constant  Mean 

Temperature 
𝑇𝑇 = 280 Mean temperature is extracted and absolutely no aliasing is 

observed over both latitudes. 

 275 
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6 Discussion and Concluding Remarks 

Extraction of tidal variability from satellite measurements with good accuracy and with no aliasing is a challenge. Using 

SABER temperature data, wave characteristics can be extracted over 60 days in the middle atmosphere. The amplitude of 

SPWs using SABER data are much smaller [(Xu et al., 2014]) than that those obtained in the current study. During northern 

hemisphere winter, the maximum average amplitudes from SABER were 7.2±1.02 K at 45°N and 45 km. There was strong 280 

temporal correlation between the occurrence of SPWs and the non migrating tides, which led to the conclusion that the latter 

were produced due to non linear interactions of SPWs and migrating diurnal tides [(Xu et al., 2014]). Theiris study concentrated 

explicitly upon the generation of these non-migratingnonmigrating tides and hence their conclusions. However, the current 

study shows that the amplitudes of SPW1 is very large, of the order of 18K, and the strong temporal correlation with DS0 and 

DW2 could also be caused due to aliasing of  the SPW1 wave into the non migrating tides. Through In Case 2 of the numerical 285 

experiments, it is observed that the aliasing of SPW1 into DS0 and DW2 is equal and uniform and thus in the actual analysis 

if DS0 and DW2 are found to be equal and uniform, it is possible that the diagnosed variation in these tidal components can 

be concluded that they might be due to aliasing. Thus the question of whether non-linear interactions between SPW1 and DW1 

produceing DS0 and DW2 is still debatable. Although non linear interactions cannot be entirely ruled out, the current study 

shows that the contribution of this mechanism in producing non-migratingnonmigrating tides overin the mid and high latitude 290 

stratosphere is not as important as indicated by earlier studies earlier, that are particularly dependent on analysis of SABER 

data [(Xu et al., 2014]). In tThe current study it is seen very clearly indicates that the DS0 and DW2 components are much 

smaller than those observed earlier using SABER data.  

Baumgarten and Stober (2019) derived short term tidal variability in the altitude range from 30 to 70 km using temperature 

derived from lidar observations at Kühlungsborn (54°N, 12°E), a mid latitude station. The diurnal tide (including all 295 

wavenumbers) in temperature and winds was extracted from lidar data and compared with the DW1 component of temperature 

and winds from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2). It was shown that 

the local tidal fields are dominated by the migrating diurnal and migrating semidiurnal tides and that other components are 

negligible. This indicates that the non-migratingnonmigrating components make a small contribution to net tidal fields and 

thus supports the conclusions of the current study that diagnosed non migrating tidal signatures could be possibly due to 300 

aliasing.  

Aliasing problems involved in SABER data are difficult to verify due to lack of similar global observations but comparisons 

are have been made with models and reanalysis and it was observed noted that there are significant inconsistencies in the tidal 

signatures determined from the various sources in the comparisons between them [(Sakazaki et al., 2018]). It was found that 

the amplitude of the trapped diurnal migrating tide in the upper stratosphere is significantly smaller in reanalyses than that in 305 

SABER. The current study also indicates that SABER tidal amplitudes are overestimated, particularly in the mid and high 

latitudes. Results from space time spectral analysis of gridded monthly COSMIC data for the period from 2007 to 2008 also 

had showed shown that the DW1 peaks at 30 km over the equatorial latitudes [(Pirscher et al., 2010]). It was showed shown 
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in theiris paper that sampling was insufficient northward of 50° and the spectral amplitude of associated with the sampling 

error was large. However, in the current study (where a different time interval and hence different distribution of satellite 310 

observations was selected) the wave phase space we see that the universal time-longitude space is sufficiently well sampled 

(Figure 1). and byBy using the least squares method over shorter lengths of data, it wasis possible to extract the different wave 

components. The numerical experiments show that with the given sampling and the technique used, it can be verified if whether 

the extracted spectral components SPW1, DS0, DW1, DW2 are geophysical or are a result of aliasing.  

There are also studies that have shown that the time evolution of DW2 over the equatorial mesopause region follows SPW1 315 

variations overin the high latitude stratosphere (Lieberman et al., 2015; Niu et al., 2018). It is proposed that mid to high latitude 

stratospheric SPWs are ducted upward and equatorward, interact with equatorial DW1 over mesopause and thereby generate 

DW2 over the equatorial mesoapuse region. DS0 is not quite discussed by Lieberman et al (2015). Niu et al (2018) investigated 

the SPW1-DW1 interaction during SSWs using the extended Canadian Middle Atmosphere Model (eCMAM) data and found 

good but varying degrees of correlations with DS0 and DW2 during 20 out of 31 SSW events indicating that the strength of 320 

non-linear interactions also varied from year to year. As the correlations are not observed during all SSW events the proposed 

mechanism of non-linear interactions is still unproven.  

In the current study, Dduring the SSW of 2010, the peaks observed in DW1 and DS0 & DW2 seem to be arising out ofare 

most likely due to aliasing. At 65°N, as the temperature increases (decreases) steeply during the onset (decay) of the warming 

episode, the DW1 component is observed to be large (1.5 to 2 K). The entire SSW event lasted over ~60 days approximately 325 

and the temporal evolution of its fields is very similar to the numerical experiment in Case 9, where significant aliasing into 

DW1 is observed. This experiment clearly showsindicates that over high latitudes, when there is a large gradient in the mean 

temperature, peaks of large amplitude of DW1 are observed, which are not geophysical in nature. At the same time, the SPW1 

component steeply reduced decreased during the onset of the episode, due tofrom which the DS0 and DW2 components might 

may have arisen due to aliasing. Here alsoIn addition, there is a contribution of aliasing in to SPW1 of the order of 2-3 K, but 330 

in realitysince the observed SPW1 amplitudes are much larger (18 K), this is of less geophysical significance. Further, tThe 

amplitude of 2K of DS0 during the onset of the event might have some geophysical meaning associated with itmay have some 

geophysical significance, but needs further investigation is needed before this is clear. 

McCormack et al (2017) investigated the short term tidal variability during the SSWs of January 2010 and January 2013 using 

high altitude Navy Global Environmental Model (NAVGEM) data in the mesosphere and lower thermosphere region. 335 

NAVGEM is the result of assimilation of middle atmospheric data from nine meteor radar stations and other satellite 

instruments, including SABER on board TIMED satellite. Their results show a reduction in the semi-diurnal amplitude before 

the onset of the SSW and an increase after the event, peaking 10-14 days later.  

Short term tidal variability was has also been deduced by using data from a Sodium Lidar and simultaneous SABER retrievals 

and TIME-GCM results in the mesosphere and lower thermosphere [(Liu et al., 2007]). They found large tidal variability 340 

which could be the result of interactions with the planetary waves. The migrating diurnal tidal amplitude was modulated by 

the planetary wave of 5-7 day period. Such interactions are worth studying in the future using COSMIC data by considering 
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travelling planetary waves to obtain more insights into the tidal variability. Unfortunately, the altitude coverage of COSMIC 

is only up to the stratopause and thus tidal characteristics cannot be extracted for altitudes above 45 to 50 km. However, the 

current study clearly establishes the fact that with COSMIC data short term tidal variability can be obtained in combination 345 

with significant understandingconsideration of the aliasing involved. The following may thus be concluded from the current 

study. 

1. COSMIC data is better suited for tidal studies than along track observations from a single satellite due to better phase 

sampling of tides and waves; however, due to the lack of altitude coverage the studies are confined only to the lower 

stratosphere. 350 

2. The migrating diurnal tide (DW1) is found to be maximummaximise at 30 km over the equator its seasonal variation in 

latitude is attributed to the excitation of more than one tidal mode in the troposphere. and is attributed to ozone absorption. 

The vertical wavelength is of the order of 25 km. 

3. A Sstationary planetary wave of wave number one (SPW1) peaks in the winter hemisphere over high latitudes with a 

vertical wavelength of 50-60 km at 65°N. It exhibits a strong ~60 day variability with a vertical wavelength of 50 to 60 355 

km at 65°N. This variability could not bewhich was not observed earlier in SABER studies. 

4. DS0 and DW2 components are relatively small and only observed present intermittently in the high latitude middle 

atmosphere COSMIC analysis. Most of the peaks seem to be appearing due to aliasing. 

5. Aliasing is significantly reduced when data is analysed over ±10 days using COSMIC data. However, it still exists and 

the numerical experiments performed in the current study show that DS0 and DW2 components arise when there is a rapid 360 

changesteep gradient in the SPW1 amplitude over time. Similar aliasing into DW1 component is prominently observed 

when there is a steep gradientrapid change in the mean temperature, particularly in the high latitudes. 

6. These exercises indicate that at the time of the SSW in January 2010, the peaks observed in DW1, as well as DS0 and 

DW2, could beare likely a manifestation of the aliasing effects involved in satellite data analysis, and that they may not 

be geophysical. Thus analysis Analyses of satellite data needs to be done extremely carefully in when identifying the 365 

various tidal components and their characteristics.  

It is thus concluded that non linear interactions are not a very important source of generation of non-migratingnonmigrating 

tides in the winter high latitude stratosphere. 
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Figures 

 

 
Fig 1. Distribution of Pphase space for the tide DW1 from groups G0, G1, G2  (±10 days’ data) and for the satellite C004 395 

(±30 days’ data) during the study period (2009-2010) over the equator and 65°N. 

 

 
Fig 2. Rows show the variation in mean temperature, amplitudes of the DW1 tide and SPW1 wave, respectively. Columns 

are results from groups G0, G1, and G2, and from satellite C004, respectively, for 30 km altitude. The last column is 400 

the numerical difference in results obtained from group G0 (±10 days’ data) and C004 (±30 days’ data). 
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Fig 3. Annual means of mean temperature (To) and amplitudes of diurnal tides (DS0, DW1, DW2) and stationary planetary 

wave (SPW1) for group G0 and satellite C004 during 2010 (Jan to Dec). Note the overestimation of amplitudes of 

the migrating tide, particularly in mid and high latitudes in the analysis of data over ±30 days using a single satellite 405 

(C004). 
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Fig 4. Variation of amplitudes and phases of DS0 (left column), DW1 (middle column) and DW2 (right column) during the 

winter of 2009/10, i.e., from December 2009 to February 2010 over 65°N in the first and the second rows and equator 410 

in the third and fourth rowstop two and the bottom two rows, respectively. 
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Fig 5. Variation of amplitude and phase of SPW1 at various altitudes from 20 to 50 km, as a function of latitude and day of 

the year. 
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 415 

 
 

Fig 6. Mean temperature (black), amplitudes of the DS0 (blue), DW1 (red), DW2 (cyan), and SPW1 (green) at 30 km at 

65°N, equator, and 65°S during the study period. The amplitude of SPW1 is scaled down by a factor of 10 for 

convenience. 420 
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Fig 7. Correlation between DS0 & SPW1 and DW2 & SPW1 during winters at 65° latitudes in the northern and southern 

hemispheres. 

 
Fig 8. Correlation between DW1 & mean temperature and DW1 & gradient in mean temperature during winters at 65° 425 

latitudes in the northern and southern hemispheres. 
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Fig 9. Results of numerical experiments from cases 1 to 7 (Table 1) for atmospheres considered to have only  one variability 

among SPW1, DS0 and DW2. 430 
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Fig 10. Results of numerical experiments from cases 8 to 10 (Table 1) for atmospheres considered to have only a mean 

temperature variation. 
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