Characteristics of layered <u>polar mesosphere summer</u> <u>echoes</u> occurrence ratio of polar mesosphere summer echoes observed by EISCAT VHF 224MHz Radar

5 Shucan Ge¹, Hailong Li¹, Tong Xu², Mengyan Zhu², Maoyan Wang¹, Lin Meng¹, Safi Ullah¹, Abdur Rauf¹

¹School of Electronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China

²National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave
 Propagation, 266107, Qingdao, China

Correspondence to: Hailong Li (hailong703@163.com)

30

Abstract. Polar Mesosphere Summer Echoes (PMSE) are strong radar echoes observed in polar mesopause during local summer. <u>ObservationsMeasurements</u> of layered PMSE <u>observed-carried out</u> by
 the European Incoherent Scatter Scientific Association Very high frequency (EISCAT VHF) radar_____from 2004 to 2015during 2004-2015 in the latest solar cycle; <u>ean beis</u> used to study the variations of PMSE occurrence ratio (OR). <u>Different seasonal behavior of PMSE is found by analyzing the seasonal variation of PMSE mono-, double- and tri-layer OR. The seasonal variation of PMSE mono -, double- and tri-layer OR. The seasonal behavior. A method was given-used to
</u>

- 20 calculate the PMSE mono-, double- and tri-layer occurrence ratioOR under different electron density threshold-conditions. In addition, a method to analyze the correlation between-of layered PMSE layered occurrence ratiosOR and with solar 10.7 cm flux index (F_{10.7}), and the correlation between PMSE layered occurrence ratios and geomagnetic K index were-is proposed analyzed respectively in this study. And base on it, the correlation of layered PMSE OR with solar and geomagnetic activities is not expected to
- 25 <u>affect by discontinuous PMSE.</u> It <u>can be obtained is found</u> that PMSE mono-, double- and tri-layer OR are positively correlated with the K index. The correlation <u>coefficient_ofbetween</u> PMSE mono- and double-layer OR <u>and-with</u> F_{10.7} is weak, <u>and-whereas</u> the PMSE tri-layer OR <u>has-shows</u> a negative correlation with F_{10.7}.

Keywords: Polar Mesosphere Summer Echoes; European Incoherent Scatter Scientific Association Very high frequency RadarEISCAT VHF radar; solar 10.7 cm flux index (F_{10.7}); geomagnetic K index

1 Introduction

5

The ionosphere is an important part of near the <u>earth-Earth</u> space environment and the mesosphere is the coldest region in the <u>earth's-Earth's</u> atmosphere. Polar Mesosphere Summer Echoes (PMSE) are strong echoes detected by radars from medium frequency (MF) to ultra-high frequency (UHF) bands in polar summer mesopause, and PMSE has been considered to be possible indicators of global <u>climate</u> change (Thomas and Olivero, 2001). On average, the strongest echo occurs at the altitude of about 86 km, and

- the-The observation range is from 75-to 100 km where on average, the strongest echo occurs at the altitude of about 86 km (Czechowsky et al., 1979). Radar waves in the very high frequency (VHF) band are backscattered by-due to irregularities of the electron density with spatial scales of about half the radar
- 10 wavelength: This was confirmed by Blix et al. (2003) from simultaneous rocket and radar observations. (Blix et al., 2003). These polar mesospheric summer echoes (PMSE) are fundamentally related to the ice particles in mesospheric ice clouds (Rapp and Lübken, 2004). Even though this theory has been presented incompletely, it still provides a great impetus for the research of PMSE generation mechanism. The most extensively accepted theory is that the irregularities of electron density is sustained due to the reduction
- 15 in electron diffusion characterized by the slowest ambipolar diffusion mode associated with the charged ice grains (Cho et al., 1992). The most extensively accepted theory is that the electron diffusion was characterized by the slowest ambipolar diffusion mode associated with the charged ice grains (Cho et al., 1992). Varney et al. (2011) scrutinized one particular aspect of the turbulent theory of PMSE: the electron density dependence of the echo strength. One remarkable feature of all PMSE is the fact that the radar
- 20 echoes often occur in the form of two or more distinct layers that can persist for periods of up to several hours. Until now, the layering mechanism leading to these multiple structures is only poorly understood in spite of some previous attempts involving gravity waves, the general thermal structure, and Kelvin-Helmholtz-instabilities (Röttger, 1994; Klostermeyer, 1997; Hill et al., 1999, Hoffmann et al., 2005).

Palmer et al. (1996) statistically analyzed the PMSE in northern hemisphere observed by the EISCAT

25 <u>VHF radar during 1988-1993.</u> Palmer et al. (1996) presented a statistical study of PMSE, after analyzed the observations of the EISCAT VHF radar during 1988-1993. They suggested that confirmed that: (1) PMSE are summer phenomena, lasting from June to August; these echoes are a summer phenomenon in the Northern hemisphere, lasting from June to August; (2) PMSE occur mostly around noon and midnight, following a semidiurnal pattern; (3) the echoing structures move bodily, perhaps in response to gravity

waves. based on measurements at 53.5 MHz in at Andenes, Norway, observed by the with the 53.5 MHz ALOMAR SOUSY radar during 1994-1997 and with the ALWIN radar during 1999-2001. Bremer et al. (2003) derived found that the variation of PMSE is markedly controlled by solar cycle variations and precipitating high energetic particle fluxes. Bremer et al. (2006) discussed that the strength of PMSE depends on the level of ionization because of the long-term changes of mesospheric summer echoes caused by the incident solar wave radiation and precipitating high energetic particle fluxes from about 20 May to the end of August during 1998-2006. Smirnova et al. (2010) used the ESRAD MST radar's measurements; Yi et al.(2017)and found that the inter-annual variations of PMSE OR (occurrence ratio) and length of the season anticorrelated with solar activity represented by the $(F_{10.7} \text{ index}, \text{ the daily solar})$ activity proxysolar 10.7 cm radio flux) but not significant, and correlate with geomagnetic activity represented by (AP index) based on ESRAD MST radar measurements in Kiruna, Sweden. NeverthelessHowever, no statistically significant trends in PMSE yearly strengthsoccurrence ratio or in the length of the PMSE season were found in their paperwork. Smirnova et al. (2011) concentrated on the accurate calculation of PMSE absolute strength as expressed by radar volume reflectivity and found that the inter-annual variations of PMSE volume reflectivity strongly correlate with the local geomagnetic K-index and anticorrelate with solar 10.7 cm flux. but-However, they did not find any statistically significant trend in PMSE volume reflectivity during 1997-2009. Li and Rapp (2011)

5

10

- reported that the correlations of the occurrence ratio of PMSE OR_at 224 MHz shows a positive correlation with the both the solar and geomagnetic activities both show positive correlations. PMSE have been detected and widely studied based on long-term observations of many different MST radars (Reid et al., 20131989; Thomas et al., 1992; Smirnova et al., 2011) (Reid et al. 1989; Thomas et al. 1992; and Smirnova et al. 2011), since Since from the first observation of PMSE in 1979, it is well-known that the PMSE observations results are different when PMSE are observed by different frequency radar even at the same sites, and PMSEs often show obvious layered events.
- 25 Many studies have widely reported that there is significant correlation between the ionization level and PMSE observed by 53.5 MHz radar (Inhester et al., 1990; Belova et al., 2007; Latteck et al., 2008). Previous study by 53.5MHz radar has provided the basic characteristics, the short term statistical variations of PMSE and the relation among the PMSE, solar activity and geomagnetic activity detected. The The correlation of the ionization level with PMSE at 224 MHz to the ionization level, however, is

as significant as that the correlation of the ionization level with PMSE at 53.5 MHz to the ionization level, then previous studies it provides the research basis and ideas for the research PMSE study detected by of 224 MHz radar. There are still a few significant problems that must be solved with the characteristics of layered PMSE OR. Hence, it is necessary to analyze the layered PMSE layered OR and study layered PMSE characteristics deeply with data measured by 224 MHz EISCAT VHF radar under different observation conditions. The statistical results of layered PMSE layered-OR with the same radar at the same site over the period 2004-2015 are given in this paper, which was based on the experiment data detected by 224 MHz EISCAT VHF radar. In addition, the correlation relationships of PMSE OR with $r_{10.7}$ are is analyzed and discussed. The PMSE OR calculation method of the correlation analysis between layered PMSE OR and solar activity and between layered PMSE OR and geomagnetic activity given in this paper without being affected by solves the defect of discontinuous PMSE measurements that the measurements of EISCAT radar is discontinuous, which It makes a significant breakthrough in the calculation and characterization of the layered PMSE layered-OR.

15 definitive data foundation for further analysis and the investigation of the physical mechanism of PMSE.

2 radar and experiment data description

5

10

The experiment data of PMSE observations used here werewas—obtained by-with 224MHz EISCAT VHF radar from 2004 to 2015. EISCAT VHFThe radar is located at Tromsø, Norway (69.35°N, 19.14°E), used_and-a_parabolic_cylindrical 120m××46m-40m_antenna, with beam widths of 1.8° north south and
0.6° cast-west. It is powerful tool for studying the lower ionosphere. Detailed descriptions of the radar can be found in Baron (1986). The measurements by EISCAT radar are very well suited for investigating the characteristics of PMSE. (for previous work, see e.g. Li et al., 2010 and references therein). It has frequency and phase modulation capability with pulse length of 1 μs to 2 ms. Furthermore, reliable information of the raw electron density about PMSE, which is not derived by analysis of the incoherent scatter spectrum, but power profiles or near zero lag data can be obtained by EISCAT radar. The level of electron density represents the intensity of echoes. The parameters described are shown in Table 1for accuracy control of EISCAT VHF radar.

EISCAT VHF radar ran several standard experiment modes: "manda, beata, bella, tau7, arcd (arc_dlayer) and tau1". The main differences between_<u>the arcd and manda these experiment modes are</u> illustrated in Table 2. The manda and arcd modes mainly used for low altitude detection₇ and provide spectral measurements at mesospheric altitude. Therefore, the <u>accurate data used in this study is mainly givenprovided</u> by manda and arcd modes. The Grand Unified Incoherent Scatter Design and Analysis Program (GUISDAP) software package have been used for analyzing the EISCAT VHF radar data. The electron density N_e analyzed by GUISDAP software was obtained between 10⁶ and 10¹⁴ m⁻³.

Radar	EISCAT VHF		
Location	69.59° N 19.23° E		
Operating frequency	224 MHz		
Transmitter peak power	1.5 MW		
Antenna 3-dB beam width	1.7° NS <u>×</u> × 1.2° EW		
Antenna effective area	5690 m ²		
Pulse length (altitude	300 m		
resolution)			
Pulse repetition frequency	741 Hz		
No. of bits in code	64		
No. of code permutations	128		
No. of coherent integrations	1		
Lag resolution	1.35 ms		
Maximum lag	0.17 s		

. Table 1 Parameters of the radars.

10

5

Table 2 EISCAT VHF radar standard experiments.

	=		
manda 61 2.4 1.2 19–209	4.8	-	Yes
arc_dlayer 64 2 2 60–139	5.0	-	-
beata 32 20 20 52–663	5.0	Yes	-
bella 30 45 45 63–1344	3.6	Yes	-
tau7 16 96 12 50–2001	5.0	-	-
tau1 16 72 24 104–2061	5.0	-	-

3 Data analysis

In this study we have used the EISCAT VHF radar data from 2004 to 2015. The software package GUISDAP (Grand Unified Incoherent Scatter Design and Analysis Program) (see Lehtinen and Huuskonen, 1996 and www.eiscat.se for details) was used for analyzing radar data. The electron density

5 N_{e} analyzed by GUISDAP software was obtained between 10⁶ and 10¹⁴ m⁻³. The level of electron density represents the intensity of echoes.

First of all, the heating parts were removed from the data set to avoid the heating effect. After that, the presence of PMSE was defined as the threshold of electron density ($N_e > 2.6 \times 10^{11}$ m⁻³). We used the PMSE threshold given by Hocking and Röttger (1997) and Qiang Li (2011b) (see Appendix A Table

10 A.2). Besides, some abnormal echoes are related to the meteor are not considered to be PMSE and is neglected in later discussion. PMSE is not continuous in time, so if the electron density satisfies the threshold ($N_e > 2.6 \times 10^{11}$ m⁻³), we considered it as a PMSE event. We have considered only those events for which PMSE echoes are continuous for time (t ≥ 1 min).

<u>4 Results</u>

15 **<u>34.1</u>** Layered PMSE Occurrence ratiosevents

PMSE occur in thin layers having thickness up to 3-4 km, and the mean altitude distribution of PMSE events is 80-90km. It is considered to be the area of independent <u>abnormal anomalous</u> echoes. Fig. 1 (a), (b) and(c) show the typical events of PMSE monolayer, double-layer and tri-layer, respectively. <u>As</u> mentioned in the introduction, a notable feature of PMSE observed by radar is that radar echoes typically

20 occur in the form of two or more layers. However, the system theories of the layering mechanism led to these multiple structures didn't come into being. One remarkable feature of all PMSE is the fact that the radar echoes often occur in the form of two or more distinct layers that can persist for periods of up to several hours. Until now, the layering mechanism leading to these multiple structures is not well understood. Here we are-will studying the occurrence of these layered PMSE multiple layer events and its relationship with solar and geomagnetic activity. This content will be discussed in detail later in the articlepaper.

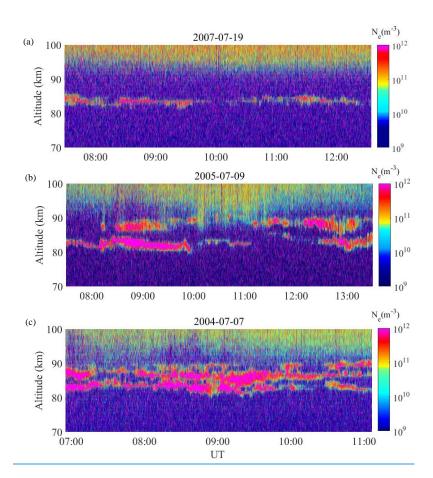


 Fig. 1 The typical layered PMSE events observed by EISCAT 224MHz VHF radar. a) The observation on 19 July, 2007 (Upper panel)Monolayer PMSE; b) The observation on 9 July, 2005 (Middle panel)Double layer PMSE; c) The observation on 7 July, 2004 (lower panel)Tri-layer PMSE. The red circle marks the obvious layered phenomenon of PMSE events.

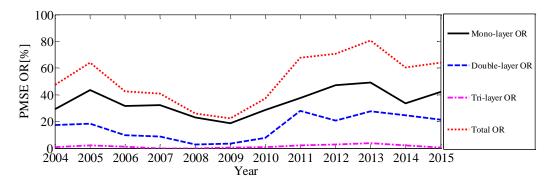
10 34.1-2 Layered PMSE OR Calculation calculation method

15

The calculation method is based on individual horizontal profiles. When the electron density satisfies the PMSE threshold ($N_e > 2.6 \times 10^{11} \text{ m}^{-3}$), then that time was taken as the starting time of the PMSE occurrence and until the time when the electron density fails to satisfy the threshold was taken as the end time of PMSE occurrence. The time of PMSE duration is the time difference between the end and the starting time of the PMSE occurrence. The time interval not be regarded as PMSE occurrence time, if the time interval between them is shorter than 1 minute (t<1 min). Taking the calculation method of monolayer PMSE OR as an example: We defined that the ratio between the sustained time of monolayer PMSE and the total observation time as the monolayer PMSE OR. The applied procedure for the detection of multiple PMSE layers is based on individual vertical profiles with a high temporal resolution (Hoffmann, 2004). The layer ranges are identified by an electron density threshold of 2.6×10^{11} m⁻³ (N_e>

- 5 <u>2.6×10¹¹m⁻³</u>). Once a vertical profile of the electron density has two peaks and these two peaks are higher than the threshold ($N_e \ge 2.6 \times 10^{11}$ m⁻³), we select it as a double layer. The PMSE double-layer OR is the ratio between the sustained time of PMSE double layer and the total observation time. The tri-layer OR is also calculated by using the same way.
- 10 To find the characteristic of PMSE occurrence ratio (OR), a computing method and threshold must be defined. First of all, the data during radar heating experiments has been eliminated. After that, the number of data points satisfying the threshold of electron density (N_e>2.6×10^H·m⁻³) was calculated (Hocking and Röttger ,1997). PMSE is not continuous in time, so if the number of data points satisfying the electron density threshold of PMSE were less than 8 data points in any time interval, these data points were
 15 replaced with the average of electron density (N_e) of 80 90 km regardless of the threshold (Rauf et al., 2018). It maintained the original electron density values at the corresponding time, so that the correlation is not influenced. The correlation coefficients have been calculated between PMSE OR and the 10.7cm of the solar flux index (F10.7), PMSE OR and geomagnetic events K-indices, respectively. Because we chose the integration time of manda and ared models are 4.8s and 2s respectively, on the basis of the
 20 condition (t≥1 min), the PMSE is needed to be simultaneous for≥12 and 30 data points, respectively. What's more, some abnormal echoes are related to the precipitation particle areas are not considered to

be PMSE and is neglected in later discussion.


The emphasis of this paper is to present a hybrid algorithm based on grid partitioning. The calculation method is based on time. Taking the calculation method of PMSE monolayer occurrence ratio as an example, the all electron density detected by the EISCAT VHF radar are counted, and the electron density with the value larger than the threshold in this time period are taken out. The ratio between the sustained time of monolayer PMSE and the total observation time is obtained. At different heights, when an electron density value greater than the threshold and less than the threshold is continuously alternate observed in an observation region with altitude range from 3–4km, we consider that double layer or multilayer PMSE events occur. The PMSE double layer OR is the ratio between the sustained time of PMSE double layer and the total observation time. The tri-layer OR is also calculated in this way.

34.2-3 The variations of layered PMSE layered occurrence ratios

For studying the <u>The layered PMSE layered OR</u>, <u>layered PMSE layered occurrence time</u> (OT) and total observing time detected by EISCAT VHF radar from 2004 to 2015 <u>were are</u> illustrated in Table 3. PMSE mono-<u>a</u> double-<u>a</u> tri-layer and total OR <u>were are also</u> presented in Table 3-<u>as well</u>.

Year	Total Observing Time_(+min)	Monolayer PMSE OT_ (min)/min	Double Layer PMSE OT_ (min)/min	Tri_ ple layer PMSE OT_ (<u>min)</u> / min	Monolayer OR [%]	Double_layer OR_[%]	Triple- <u>Tri-</u> layer OR <u>[%]</u>	Total OR _.
2004	16054	4701	2774	151	29.28 %	17.28 %	0.94 %	47.50 %
2005	8165	3564	1491	182	43.65 %	18.26 %	2.23 <mark>%</mark>	64.14 %
2006	9248	2950	910	93	31.78 %	9.84 %	1.01 %	42.63 %
2007	9341	3027	804	0	32.41 %	8.61 %	0.00%	41.02 %
2008	3310	763	97	0	23.06%	2.92 <mark>%</mark>	0.00%	25.98 %
2009	2264	424	76	8	18.72 %	3.34 %	0.35 %	22.41 %
2010	6303	1799	498	53	28.54 %	7.90 <mark>%</mark>	0.84 %	37.28 %
2011	9638	3624	2692	202	37.60 %	27.93 %	2.10%	67.63 %
2012	7497	3550	1554	207	47.35 %	20.73 %	2.76 %	70.84 %
2013	14037	6906	3873	532	49.20 %	27.59 %	3.79 %	80.59 %
2014	2971	998	731	64	33.60 %	24.6 %	2.15 %	60.35 %
2015	4776	2019	1022	22	42.28 %	21.40 %	0.46 %	64.14 %

Table 3 Statistical data from 2004 to 2015.

10

Fig. 2 <u>Layered</u> PMSE layered occurrence ratio. The OR of total (red dot line). The OR of monolayer (black solid line). The OR of double-layer (blue dashed line). The OR of triple-layer (pink dot-dashed line).

Fig. 2 shows that the mono- double- and triple-layer OR agrees with the total PMSE OR. We calculated the <u>correlation of mono-layer with double-layer OR</u>, tri-layer OR and total OR using the Spearman rank correlation coefficients (It will be particular described in section 4.3.2). between mono layer OR and double layer OR, mono layer OR and tri layer OR, mono layer OR and Total OR, respectively. The correlation coefficients (r_s) of mono-layer with double-layer OR, tri-layer OR and total OR are 0.7922, 0.7718 and 1_x respectively. All the correlation coefficients are statistically significant with reached very significant level(P<0.05), respectively. These high values of correlation coefficients show that the correlation of mono-layer with double-layer OR, and total OR is very high. –In addition, the layered_PMSE layered_OR from 2008 to 2010 is relatively low, and the solar activity was-is

10 relative 'quiet' in these years.

5

<u>Fig. 2 shows</u> <u>Two-two</u> significant phenomena-<u>can be discovered from Fig. 2</u>: <u>One was-(1)</u> <u>the The</u> <u>variation trends of layered mono-, double- and tri-layer PMSE</u> OR of <u>PMSE is is rules to follow</u> different <u>but regular.</u>, <u>That is i.e.</u>, the OR of monolayer is the highest, double-layer lies in the middle and the triplelayer is the lowest; <u>The other(2)</u> was <u>The layered</u> PMSE <u>layered</u> and total OR values show similar shape

of sinusoidal, which has obvious wave peak and wave valley. One wave peak lies in the year about 2005 and; the other lies in the year 2013. The values of two wave peaks are different; and the values in 2005 are smaller than that in 2013. The values of wave valley lie in 2008-2009. Meanwhile, the gap between two peaks of PMSE OR is about 7 or 8 years. Here we only give the results of the data analysis, no longer do the cause analysis, because the stratification of PMSE is affected by many factors and has yet to be decided. The analyzing method and the results drawn during the process of given in this paper have a

34.3-4 Seasonal behaviour

25

The mean seasonal variations of the <u>layered</u> PMSE <u>layered</u> OR and PMSE total OR observed by EISCAT VHF radar during 2004-2015 <u>were is</u> shown in Fig. 3 and Fig. 4, respectively. Fig. 3 illustrates the mean seasonal variation of the mono- (blue bars) double- (yellow bars) and tri-layer (red bars) PMSE OR and <u>quartic second order</u> polynomial fitting for the monolayer PMSE OR (black dot-curve) during 2004-2015. Fig. 4 shows the mean seasonal variation of PMSE total OR (blue bars) and <u> $3/\pi$ harmonic fitting</u> second order polynomial fit for total PMSE OR (black dot-curve) during 2004-2015. It <u>can be is derived clear</u>

significanteertain reference value for right and in depth researching studying the PMSE phenomenon.

from Fig. 3 and Fig. 4 that the monolayer PMSE events in the Tromsø, Norway, often begins in late May, reaches its maximum in early June or mid-June, keeps this level until the end of July or beginning of August, and gradually decreases or vanishes when it is close to the end of August or the beginning of September in general, which wais in agreement with references(-Smirnova et al., (2011). The double-

- 5 layer PMSE also begins in late May, but its maximum appears in mid-July. In addition, it keeps the larger value in June and July, and simply fade away in early August. The triple-layer PMSE appears a lot less in comparison to mono-<u>and</u>, double- layer PMSE. In terms of time, it appears later and disappears earlier. What's-<u>Further</u>more, the triple-tri-layer PMSE OR is large in end of June and early July, which is different than monolayer and double layer PMSE OR.
- 10 According to the statistical results, PMSE-monolayer, double-layer and multilayer-tri-layer PMSE_OR have seasonal variation. Moreover, there is fluctuation in the trends of $F_{10.7}$ and geomagnetic K-indices. In addition, the trends of F10.7 and geomagnetic K index also fluctuates. Therefore, it is necessary to investigate the correlation of solar and geomagnetic activity on-with different layered PMSE OR during 2004-2015, and better-try to explain the occurrence mechanism of PMSE. It is well known that other
- 15 missions apart from PMSE regular observations are performed by EISCAT VHF radar, so EISCAT radar does not provide continuous PMSE observations. Just by noting that there have a few deviations by methods of calculating layered PMSE OR, we-We raise an important question: Table 3 indicates a difference in total observation time for the individual years. How has this been taken into account for the determination of occurrence ratios? To solve this problem Therefore, we use another method to recalculate the layered PMSE layered-OR. Then the correlation between the layered PMSE layered-OR and the F_{10.7} and between the layered PMSE layered-OR and K index were-are studied. As mentioned in the calculation method section, we only select the days when where PMSE is existed present and calculate the layered occurrence ratioOR of PMSE.

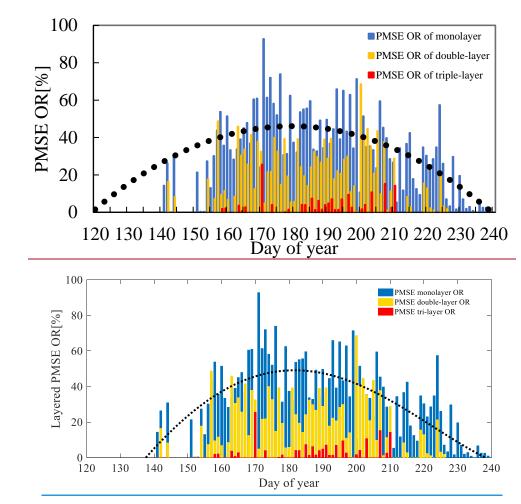


Fig. 3 Mean seasonal variation of the PMSE-mono-(in blue), double-(in yellow), triple-layer (in red) <u>PMSE</u> occurrence ratio at Tromsø using observations from 2004 to 2015.

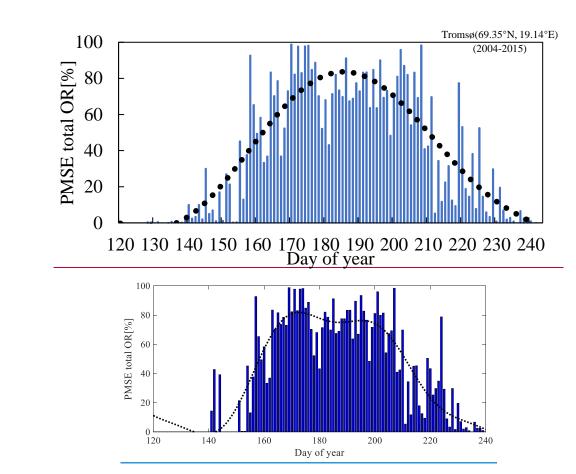
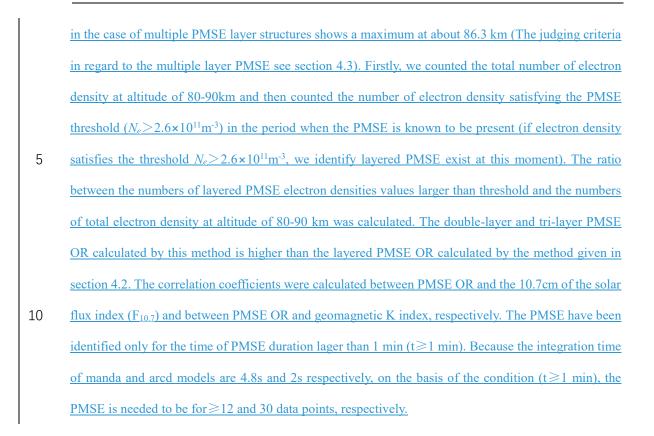


Fig. 4 Mean seasonal variation of the PMSE total PMSE occurrence ratio.

4-5_Discussion

- 5 We have calculated the The layered PMSE layered OR was calculated and the relations among PMSE mono-, double- and triple- layer OR were was analyzed statistically. At the same time, the mean seasonal variations of the layered PMSE OR and PMSE total OR have been presented were given. Hoffmann (2004) shows that the layering occurs because of subsequent nucleation cycles of ice particles in the uppermost (and coldest) gravity wave induced temperature minimum (see Hoffmann, 2004, Figure 3a).
- Subsequently, these newly created ice particles grow and sediment down and lead to the distinct layering. Besides, It is now generally accepted that both Rapp and Lübken (2004) found that charged ice particles and atmospheric turbulence play major roles in the change of the electron number density that leads to PMSE in the mesopause region (Rapp and Lübken, 2004). We know that solar and geomagnetic activities have a certain degree of influence on the occurrence of PMSE, but-however, the effects of solar and geomagnetic activities on layered PMSE are not elearunderstood well. Therefore, it is necessary to study


the effects of solar and geomagnetic activities on layered PMSE. The occurrence ratio obtained by the ratio of the occurrence time of PMSE to the total observation time is the calculation method in the traditional sense. It is easy to understand and accurately analyze the short-term variations, such as diurnal variation and seasonal variation of PMSE. However, the long-term trend is <u>subject to error and</u>

- <u>disputcinaccurate</u> by <u>using</u> this calculation method, because the radar measurement data is not continuous.
 <u>And-Furthermore</u>, it is difficult to discuss and analyze the <u>correlation of layered PMSE OR with</u> <u>solar</u> relations between PMSE and solar activities and between PMSE and geomagnetic activities. Therefore, we have <u>designed_presented</u> a new calculation method for calculating the <u>layered</u> PMSE <u>layered</u> occurrence ratio, which is <u>based on the heightdifferent from the method given in section 4.2</u>. Sso
 that the <u>layered occurrence of PMSE becomes continuous</u>, and the long term variations of PMSE <u>OR</u>
- <u>isbecomes</u> <u>easy and</u> relatively accurate. <u>The correlation of PMSE with solar and geomagnetic activities</u> <u>is not expected to affect by discontinuous PMSE</u>. The <u>study of</u> relations between PMSE and solar activities and between PMSE and geomagnetic activities <u>can be studied</u> are significative.

45.1 Another method for layered PMSE OR Calculation <u>method</u>

15 The calculation method is based on altitude. A large number of literatures and experimental observations have shown that the altitude range of PMSE is 80 90km (Li and Rapp, 2011;Smirnova et al., 2010;Latteck and Bremer, 2013). Among all the altitude and electron density observed by EISCAT VHF radar, we only take the apparent electron density in the altitude range of 80-90km, and then take out the electron density greater than the threshold in the period when the PMSE is known to be present. The ratio between the numbers of layered PMSE electron densities values greater than the threshold and the numbers of total electron density in the range of 80-90 km was calculated respectively. The doublelayer and tri layer PMSE OR obtained by this method have a higher occurrence ratio than the first method.-

The emphasis of this section is to present a hybrid algorithm based on grid partitioning. The calculation method is based on altitude. A large number of literatures and experimental observations have shown that the altitude range of PMSE is 80-90km (Li and Rapp, 2011; Smirnova et al., 2010; Latteck and Bremer, 2013). Hoffmann (2004) shows a mean height of 84.8 km for monolayer PMSE, whereas in the case of multiple layers PMSE, the lower layer occurs at a mean height of ~83.4 km. For the second layer

15 45.2 Layered PMSE-layered OR under different electron density threshold

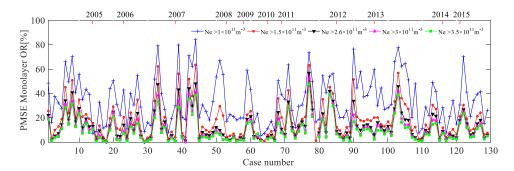


Fig. 5 PMSE monolayer occurrence ratio under different electron density threshold conditions<u>with</u> axis at <u>top showing the time in years</u>. Vertical lines are the end of 2006 and 2011, respectively (black dashed line). The legends on the figure is the average of PMSE occurrence rate in three time periods separated by the <u>black dashed line</u>.

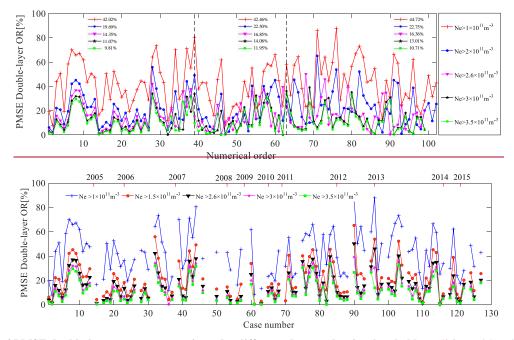


Fig. 6 PMSE double-layer occurrence ratio under different electron density threshold conditions<u>with axis at</u> top showing the time in years. Vertical lines are the end of 2006 and 2011(black dashed line). The legends on the figure is the average of PMSE occurrence rate in three time periods separated by the black dashed line.

5

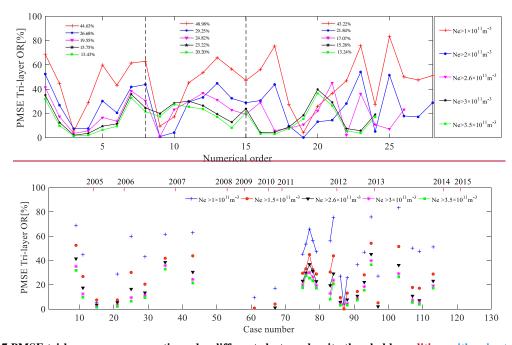


Fig.7 PMSE tri-layer occurrence ratio under different electron density threshold conditions<u>with axis at top</u> <u>showing the time in years</u>. Vertical lines are the end of 2006 and 2011(black dashed line). The legends on the figure is the average of PMSE occurrence rate in three time periods separated by the black dashed line.

In this section, the day when the first occurrence of PMSE in 2004 (regardless of duration) was recorded as 1, and the day with the later occurrence of PMSE increased by sequence. Using this sequence as the horizontal axis and the layered PMSE layered OR with different electron density threshold as the vertical axis, the results are shown in Fig. 5, 6, and 7. That is, Fig. 5, Fig. 6 and Fig. 7 show PMSE mono- double-5 and tri-layer OR under different electron density threshold-conditions, respectively. In the calculation method section we said that we have defined the electron density threshold $(N_e \ge 2.6 \le 10^{11} \text{m}^{-3})$. Here, we give the <u>layered PMSE</u> layered OR with threshold conditions of $N_e \ge 1 \times \times 10^{11} \text{m}^{-3}$, $N_e \ge 1.5 \times \times \times 10^{11} \text{m}^{-3}$ 10^{11} m⁻³, $N_e \ge 2.6 \times \times 10^{11}$ m⁻³, $N_e \ge 3 \times \times 10^{11}$ m⁻³ and $N_e \ge 3.5 \times \times 10^{11}$ m⁻³, respectively. We can get their found the variation trends of layered PMSE OR with different threshold to be are largely consistent, 10 in In addition, the larger the threshold, the smaller the ratio. Smirnova et al. (2010) analyzed day-to-day and year-to-year variations of PMSE OR for different thresholds. They found that the choice of the threshold does not influence the shape of the variation curves for PMSE OR. Zeller and Bremer (2009) indicated that different threshold values are for the investigations of the influence of geomagnetic activity on PMSE, however, of less importance. They both think that the variation trends of PMSE OR with 15 different threshold are consistent. The aim of choosing 5 different thresholds is also to increase the number of samples for calculating the correlation coefficients between layered PMSE OR and F10.7 and between layered PMSE OR and K index. Since these occurrence ratios are calculated in the case where the occurrence of PMSE is determined, there is no case of missing dataso, and it can beis recognized that these occurrence rates are reliable. The legends on the figure is the average of PMSE mono, double and 20 triple layer OR with threshold conditions of $N_e \rightarrow 1 \times 10^{11} \text{m}^3$, $N_e \rightarrow 1.5 \times 10^{11} \text{m}^3$, $N_e \rightarrow 2.6 \times 10^{11} \text{m}^3$, N_e >3×10^Hm⁻³ and N_e >3.5×10^Hm⁻³ during the periods of 2004-2006, 2007-2011 and 2012-2015. It is well known that the period of 2006-2009 is solar minimum and 2012 is solar maximum, but the PMSE monoand double-layer average OR in 2007 is not consistent with solar activity. In other words, there has is no obvious correlation between PMSE mono- and double-layer PMSE OR and solar activity. What's more, 25 we found that PMSE triple- layer OR and solar activity in opposite directions. To prove the conclusion, we will calculate the correlation coefficient between layered PMSE layered OR and solar activity and between layered_PMSE-layered OR and geomagnetic activity in next section. Therefore, the correlation relation between them can be judged directly.

45.3 Effect of solar and geomagnetic activity on PMSE OR

45.3.1 F_{10.7} index and K_-index

5

The $F_{10.7}$ index is a measure of the solar radio flux per unit frequency at a wavelength of 10.7 cm, near the peak of the observed solar radio emission. $F_{10.7}$ is often expressed in SFU or solar flux units (1 SFU = 10^{-22} W·m⁻²·Hz⁻¹). It represents a measure of diffuse, nonradiative coronal plasma heating. It is an excellent indicator of overall solar activity levels and correlates well with solar UV emissions. The Kindex quantifies disturbances in the horizontal component of earth's Earth's magnetic field with an integer in the range 0-9 with 1 being calm and 5 or more indicating a geomagnetic storm. It is derived from the maximum fluctuations of horizontal components observed on a magnetometer during a three-hour 10 interval. The K-index was introduced by Julius Bartels in 1938/1939(Bartels et al., 1939). The K index values used in the paper is the median of the K index observed on a magnetometer during a day, which where has removed the effects of the heating experiments were removed.

45.3.2 Correlation coefficients

A correlation coefficient is a numerical measure of some type of correlation, meaning a statistical 15 relationship between two variables (Boddy and Smith, 2009). The Pearson correlation coefficient known as Pearson's r, is a measure of the strength and direction of the linear relationship between two variables that is defined as the covariance of the variables divided by the product of their standard deviations. This is the best known and most commonly used type of correlation coefficient. Pearson's correlation coefficient Given a pair of random variables (X, Y), the formula for r is (Wilks, 1995):

$$20 r_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$$

Where:

Cov is the covariance.

 σ_X is the standard deviation of X

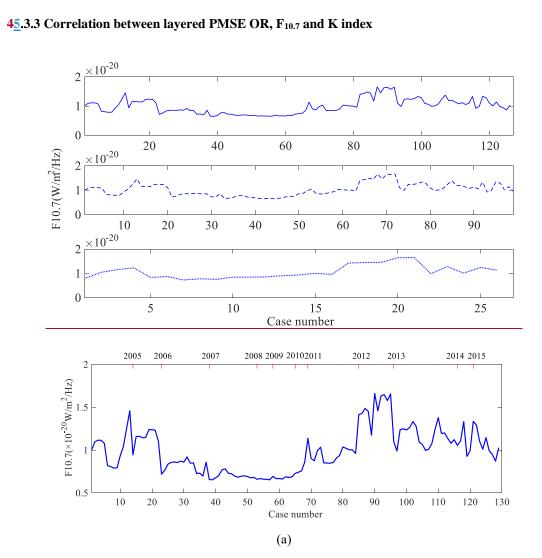
 σ_Y is the standard deviation of Y.

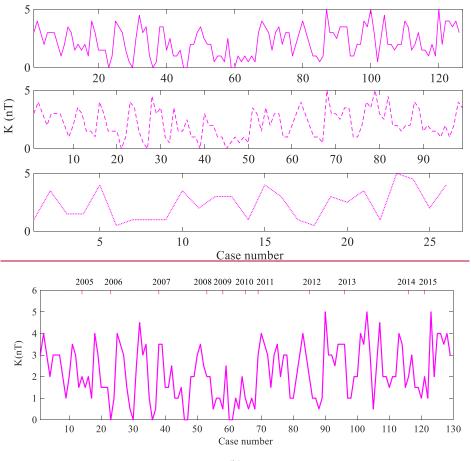
25 Spearman's rank correlation coefficient is a measure of how well the relationship between two variables can be described by a monotonic function. The Spearman correlation between two variables is equal to the Pearson correlation between the rank values of those two variables. While Pearson's correlation assesses linear relationships, Spearman's correlation assesses monotonic relationships (whether linear or not) (Well and Myers, 2003). For a sample of size *n*, the *n* raw scores X_{ib} Y_i are converted to ranks rgX_{ib} rgY_i , and r_s is computed from:

$$r_{S} = \frac{\operatorname{cov}(rg_{X}, rg_{Y})}{\sigma_{rg_{X}}\sigma_{rg_{y}}}$$

Where:

5 $\operatorname{cov}(rg_x, rg_y)$ is the covariance of the rank variables.


 $\sigma_{rg_{\chi}}$ and $\sigma_{rg_{\chi}}$ are the standard deviations of the rank variables.


A high value (approaching +1.00) is a strong direct relationship, values near 0.50 are considered moderate and values below 0.30 are considered to show weak relationship. A low negative value (approaching -1.00) is similarly a strong inverse relationship, and values near 0.00 indicate little, if any

10 relationship.

To determine whether a result is statistically significant, a P -value is calculated, which is the probability of observing an effect of the same magnitude or more extreme given that the null hypothesis is true (Devore, 2011). The null hypothesis is rejected if the P-value is less than a predetermined level (usually α =0.05). Where α is called the significance level, and is the probability of rejecting the null

15 <u>hypothesis given that it is true (a type I error).</u>

(b)

- Fig. 8 (a) The variations of F10.7 values corresponding to the occurrence of PMSE with axis at top showing
 the time in years. Upper panel: F10.7 values corresponding to the occurrence of double layer PMSE; lower panel: F10.7 values corresponding to the occurrence of double layer PMSE; lower panel: F10.7 values corresponding to the occurrence of triple-layer PMSE. (b) The variations of geomagnetic K index values corresponding to the occurrence of PMWEPMSE with axis at top showing the time in years. Upper panel: K index values corresponding to the occurrence of mono-layer PMSE; Middle panel: K index values K index values corresponding to the occurrence of mono-layer PMSE; Middle panel: K index values K index values corresponding to the occurrence of mono-layer PMSE; Middle panel: K index values K i
- 10 corresponding to the occurrence of double-layer PMSE; lower panel:-K index values corresponding to theoccurrence of triple layer PMSE.

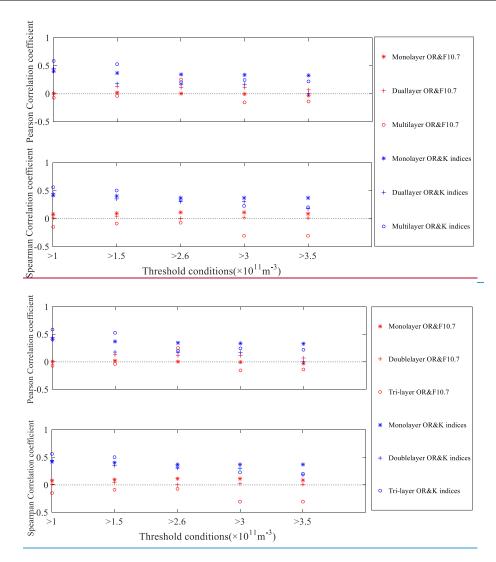


Fig. 9 Pearson linear and Spearman rank correlation computed between layered PMSE OR (with thresholds conditions of $N_e \ge 1 \times 10^{11} \text{m}^{-3}$, $N_e \ge 1.5 \times 10^{11} \text{m}^{-3}$, $N_e \ge 2.6 \times 10^{11} \text{m}^{-3}$, $N_e \ge 3.5 \times 10^{11} \text{m}^{-3}$, $N_e \ge 2.6 \times 10^{11} \text{m}^{-3}$, $N_e \ge 2.5 \times 10^{$

5

Fig.8 shows that the variations of F_{10.7} and geomagnetic K index values corresponding to the occurrence of PMSE. The correlation of PMSE with solar and geomagnetic activities is not expected to affect by
discontinuous PMSE, Since the F_{10.7} and K values corresponding to the occurrence of PMSE with threshold of N_e>2.6×10¹¹m⁻³. The F_{10.7} and K values corresponding to the occurrence of PMSE with threshold conditions of N_e>2.6×10¹⁴m⁻³. So, the study of relations between PMSE and solar activities and between PMSE and geomagnetic activities make sense. Combined-The relation between layered PMSE OR and F_{10.7} and between layered PMSE OR and K values can be analyzed for the results shown in conjunction with Figures 5 through 8. with Fig. 5, 6, and 7, we can roughly analyze the relationship

between the layered PMSE OR and the F10.7 and between the layered PMSE OR and K values, but the results may be relatively inaccurate. In order to examinestudy the correlation between layered PMSE OR and F_{10.7} and between layered PMSE OR and K index, all the data points of PMSE OR, F_{10.7} and K index with simultaneous occurrence were combined. Fig.9 shows the correlation coefficients computed by combing all the points of PMSE OR (with thresholds conditions of $N_e \ge 1 \times 10^{11} \text{m}^{-3}$, $N_e \ge 1.5 \times 10^{10} \text{m}^{-3}$ 10^{11}m^{-3} , $N_e \ge 2.6 \times 10^{11}\text{m}^{-3}$, $N_e \ge 3 \times 10^{11}\text{m}^{-3}$ and $N_e \ge 3.5 \times 10^{11}\text{m}^{-3}$), F_{10.7} and K index with simultaneous occurrence and apply significant test. It can be seen from Fig.9 that layered PMSE OR is positively correlated with the K index and the coefficients indicate moderate correlation between the variables,... but Whereas the correlation coefficient between PMSE mono- and F10.7, double-layer OR and F_{10.7} both are very low, indicating that their correlation is weak or even not relevant. Interestingly, we found that the PMSE tri-layer OR has a negative correlation with F10.7, although the correlation was lower than what we have supposed, this finding has never published in previous any existing literature. Hence, it is indicated that the cases with positive values play a decisive role when calculating the correlation coefficient between the data points of PMSE and K index occur simultaneously, and events with negative values dominate in the calculation of the correlation coefficient between PMSE tri-layer PMSE_OR and F_{10.7}. But-PMSE mono-, double- layer PMSE_OR has hardly relevance with F_{10.7}.

5

10

15

20

25

The correlation between <u>layered</u> PMSE <u>layered</u> OR and F_{10.7} and between <u>layered</u> PMSE <u>layered</u> OR and K index <u>were-have been</u> obtained. It indicates that there are many complicated factors for the formation and development of PMSE besides the solar and geomagnetic activities. There are explanations for these results: on one hand, the enhanced solar activity increases the electron density due to the increase of ionization, and with the increase of solar radiation, the photodissociation enhance and the water vapor content is reduced. On the other hand, the positive correlation between PMSE OR and K index may be apprehensible as because of the enhanced magnetic activity caused precipitating particles increase in the mesosphere, and lead to increase in electron densities. Latteck and Bremer (2013) shows that PMSE are caused by inhomogeneities in the electron density of the radar Bragg scale within the plasma of the cold summer mesopause region in the presence of negatively charged ice particles. Thus, the occurrence of PMSE contains information about mesospheric temperature and water vapor content but also depends on

the ionization due to solar electromagnetic radiation and precipitating high energetic particles. But

However, Istill we still can't can not explain why there is a negative correlation between tri-layer PMSE OR and F_{10.7}. This should be focused in future or this may be our future research focus.

5-6 Summary and Conclusions

In the paper, we presented the PMSE occurrence ratios with monolayer, double- and triple-layers that were detected by EISCAT VHF radar during a solar cycle have been presented. It was obtained that the The daily variation and seasonal variation of the layered PMSE was analysed. We implemented a new method to provide more accurate conclusions on the study of the long-term variation of PMSE with different thresholds. Then the The correlationship between layered PMSE and solar radiation flux (F_{10.7}) and between layered PMSE and geomagnetic activity (K index) were was given. The following conclusions were reached:

10

5

(1) _Mono-, double- and tri-layer PMSE have different seasonal behavior. Monolayer PMSE events often begins in late May, reaches its maximum in early June or mid-June, keeps this level until the end of July or beginning of August, and gradually decreases or vanishes when it is close to the end of August or the beginning of September in general, which was is in agreement with earlier reportreferences

15 (Smirnova et al., 2011). The double-layer PMSE OR reaches maximum in mid-Julyits maximum appears in mid July and simply fade away in early August. The triple layer PMSE appears later and disappears

(2) The variation trends of **PMSE**-mono- double- and tri-layer **PMSE** OR under different electron density thresholds conditions are largely greatly consistent. It is found was got that the larger the threshold, the smaller the ratio. Beyond that, PMSE mono- and double-layer OR were are not associated with solar activity. and PMSE triple-layer OR is inversely proportional to solar activity.

(3) Layered PMSE-layered OR is positively correlated with the K index. The correlation between PMSE mono- and double--layer OR and $F_{10.7}$ is relatively weak, and PMSE tri-layer OR has a negative correlation with F_{10.7}.

25

20

Data availability.

EISCAT data used in this work have been downloaded A11 at https://www.eiscat.se/schedule/schedule.cgi.

Competing interests. The authors declare that they have no conflict of interest.

Authors' contributions

Shucan Ge designed this study, carried out statistics, analyzed the results and wrote the manuscript.

5 Hailong Li participated in the design of the study and the analysis of the results. Tong Xu and Mengyan Zhu helped with the conceptual ideas for the paper. Maoyan Wang and Lin Meng managed this study and participated in language grammar modification. Safi Ullah and Abdur Rauf participated in modifying language issues and provided a lot of suggestions about revised manuscript. All authors read and approved the final manuscript.

10 Acknowledgments

This study is supported by the National Natural Science Foundation of China [No. 41104097 and No.41304119]. This study is also supported by the National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation (CRIRP). We also acknowledge EISCAT, which is an international association supported by China, Finland, Japan, Norway, Sweden, and

15 the UK. I would like to thank Wen Yi who has contributed to this revised manuscript.

References

- Bartels, J., Heck, N. A. H., and Johnston, H. F.: The Three-Hour-Range Index Measuring Magnetic Activity, Journal of Geophysical Research, 44, 411-454, doi.org/10.1029/TE044i004p00411, 1939.
 Baron, M.: EISCAT progress 1983–1985. Journal of Atmospheric and Terrestrial Physics, 48, 767–772, doi: 10.1016/0021-9169(86)90050-4, 1986.
- Belova, E., P. Dalin, and Kirkwood, S.: Polar mesosphere summer echoes: A comparison of simultaneous observations at three wavelengths, Annales Geophysicae, 25, 2487–2496, doi: 10.5194/angeo-25-2487-2007, 2007
- Blix, T. A., Rapp, M., and Lübken, F. J.: Relations between small scale electron number density fluctuations, radar backscatter, and charged aerosol particles, Journal of Geophysical Research Atmospheres, 108, 1-10, doi:org/10.1029/2002JD002430, 2003.
 - Boddy, R., and Smith, G.: Statistical Methods in Practice: for Scientists and Technologists, John Wiley & Sons Ltd Chichester, 2009.
- Bremer, J., Hoffmann, P., Latteck, R., and Singer, W.: Seasonal and long-term variations of PMSE from VHF radar observations at Andenes, Norway, Journal of Geophysical Research Atmospheres, 108, doi:org/10.1029/2002JD002369, 2003.

20

25

- Bremer, J., Hoffmann, P., Höffner, J., Latteck, R., Singer, W., Zecha, M., and Zeller, O.: Long-term changes of mesospheric summer echoes at polar and middle latitudes, Journal of Atmospheric and Solar-Terrestrial Physics, 68, 1940-1951, doi:org/10.1016/j.jastp.2006.02.012, 2006.
- Cho, J. Y. N., Hall, T. M., and Kelley, M. C.: On the Role of Charged Aerosols in Polar Mesosphere Summer Echoes, Journal of Geophysical Research Atmospheres, 97, 875-886, doi:org/10.1029/91JD02836, 1992.
- Czechowsky, P., Ruester, R., and Schmidt, G.: Variations of mesospheric structures in different seasons, Geophysical Research Letters, 6, 459-462, doi:org/10.1029/GL006i006p00459, 1979.
- Devore, J. L.: Probability and Statistics for Engineering and the Sciences (8th ed.). Boston, MA: Cengage Learning, 300–344. ISBN 978-0-538-73352-6, 2011.
- Hill, R. J., D. E. Gibson-Wilde, J. A. Werne and D. C. Fritts: Turbulence-induced fluctuations in ionization and application to PMSE, Earth Planets Space, 51, 499–513, doi: 10.1186/BF03353211, 1999.
- Hocking, W. K., and Röttger, J.: Studies of polar mesosphere summer echoes over EISCAT using calibrated signal strengths and statistical parameters, Radio Science, 32, 1425-1444, doi:org/10.1029/97RS00716, 1997.
 - Hoffmann, P.: On the occurrence and formation of multiple layers of polar mesosphere summer echoes. Geophysical Research Letters, 32 (5), L05812, doi: 10.1029/2004gl021409, 2005.
- Inhester, B., Ulwick, J., Cho, J., Kelley, M. and Schmidt, G.: Consistency of rocket and radar electron density observations: implications about the anisotropy of turbulence, Journal of Atmospheric and Solar-Terrestrial Physics, 52, 855–873, doi: 10.1016/0021-9169(90)90021-e, 1990.
 - Klostermeyer, J.: A height- and time-dependent model of polar mesosphere summer echoes. Journal of Geophysical Research: Atmospheres, 102(D6), doi: 10.1029/96JD03652, 1997.
- Latteck, R., Singer, W., Morris, R. J., Hocking, W. K., Murphy, D. J., Holdsworth, D. A. and
 Swarnalingam, N.: Similarities and differences in polar mesosphere summer echoes observed in the Arctic and Antarctica, Annales Geophysicae, 26, 2795–2806, doi: 10.5194/angeo-26-2795-2008, 2008
 - Latteck, R., and Bremer, J.: Long-term changes of polar mesosphere summer echoes at 69°N, Journal of Geophysical Research Atmospheres, 118, 10441-10448, doi:10.1002/jgrd.50787, 2013.
- 30 Lehtinen, M.S., Huuskonen, A.: General incoherent scatter analysis and GUISDAP, Journal of Atmospheric and Solar-Terrestrial Physics, 58, 435–452, doi: 10.1016/0021-9169(95)00047-x, 1996.
 - Li, Q., Rapp, M., Röttger, J., Latteck, R., et al.: Microphysical parameters of mesospheric ice clouds derived from calibrated observations of polar mesosphere summer echoes at Bragg wavelengths of 2.8 m and 30 cm, Journal of Geophysical Research, 115, D00I13, doi:10.1029/2009JD012271, 2010.
 - Li, Q., and Rapp, M.: PMSE-observations with the EISCAT VHF and UHF-radars: Statistical properties, Journal of Atmospheric and Solar-Terrestrial Physics, 73, 944-956, doi:org/10.1016/j.jastp.2010.05.015, 2011.
 - Palmer, J. R., Rishbeth, H., Jones, G. O. L., and Williams, P. J. S.: A statistical study of polar mesosphere summer echoes observed by EISCAT, Journal of Atmospheric and Solar-Terrestrial Physics, 58, 307-315, doi:org/10.1016/0021-9169(95)00038-0, 1996.
 - Rapp, M., and Lübken, F. J.: Polar mesosphere summer echoes (PMSE): review of observations and current understanding, Atmospheric Chemistry and Physics, 4, 2601–2633, doi:org/10.5194/acp-4-2601–2004, 2004.

5

10

20

35

40

- <u>Rapp, M. and Lübken, F.-J.: Polar mesosphere summer echoes (PMSE): Review of observations and current understanding. Atmospheric Chemistry and Physics, 4(11/12), 2601-2633, doi:10.5194/acp-4-2601-2004, 2004.</u>
- Rauf, A., Li, H., Ullah, S., Meng, L., Wang, B., and Wang, M.: Statistical study about the influence of particle precipitation on mesosphere summer echoes in polar latitudes during July 2013, Earth Planets and Space, 108(70), doi:org/10.1186/s40623-018-0885-6, 2018.
- Reid, I. M., Czechowsky, P., Ruster, R., and Schmidt, G.: First VHF radar measurements of mesopause summer echoes at mid-latitudes, Geophysical Research Letters, 16, 135-138, doi:org/10.1029/GL016i002p00135, 1989.
- 10 <u>Röttger, J.: Middle atmosphere and lower thermosphere processes at high latitudes studied with the EISCAT radars. Journal of Atmospheric and Solar-Terrestrial Physics, 56(9):1173-1195, doi: 10.1016/0021-9169(94)90056-6, 1994.</u>
 - Smirnova, M., Belova, E., Kirkwood, S., and Mitchell, N.: Polar mesosphere summer echoes with ESRAD, Kiruna, Sweden: Variations and trends over 1997–2008, Journal of Atmospheric and Solar-Terrestrial Physics, 72, 435-447, doi:10.1016/j.jastp.2009.12.014, 2010.
 - Smirnova, M., Belova, E., and Kirkwood, S.: Polar mesosphere summer echo strength in relation to solar variability and geomagnetic activity during 1997–2009, Annales Geophysicae, 29, 563-572, doi:10.5194/angeo-29-563-2011, 2011.
 - Thomas, L., Astin, I., Prichard, I. T.:The characteristics of VHF echoes from the summer mesopause region at mid-latitudes. Journal of Atmospheric and Terrestrial Physics, 54(7-8), 969-977, doi: 10.1016/0021-9169(92)90063-g, 1992.
 - Thomas, G. E., and Olivero, J.: Noctilucent clouds as possible indicators of global change in the mesosphere, Advances in Space Research, 28, 937-946, 2001.
 - Varney, R. H., Kelley, M. C., Nicolls, M. J., Heinselman, C. J., and Collins, R. L.: The electron density dependence of polar mesospheric summer echoes, Journal of Atmospheric and Solar-Terrestrial Physics, 73, 2153-2165, doi:org/10.1016/j.jastp.2010.07.020, 2011.

Well, A. D., and Myers, J. L.: Research design and statistical analysis, New York, 1-736, 2003.

Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Burlington, MA: Academic Press, 1995.

Yi, W., Reid, I. M., Xue, X., Younger, J. P., Murphy, D. J., Chen, T., and Dou, X.: Response of neutral

- mesospheric density to geomagnetic forcing, Geophysical Research Letters, 44, 8647-8655, doi:org/10.1002/2017GL074813, 2017.
 - Zeller O. and Bremer J., The influence of geomagnetic activity on mesospheric summer echoes in middle and polar latitudes, Annales Geophysicae, 27(2): 831-8372, DOI: 10.5194/angeo-27-831-2009, 2009.

35

5

15

20

25