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Abstract. Polar holes were observed in the high-latitude ionosphere during a series of multi-instrument case studies 

close to the northern hemisphere winter solstice in 2014 and 2015.  These holes were observed during geomagnetically 

quiet conditions and under a range of solar activities using the European Incoherent Scatter Scientific Association 

(EISCAT) Svalbard Radar (ESR) and measurements from Global Navigational Satellite System (GNSS) satellites.  

Steep electron density gradients have been associated with phase scintillation in previous studies, however, no enhanced 15 

scintillation was detected within the electron density gradients at these boundaries. It is suggested that the lack of phase 

scintillation may be due to low plasma density levels and a lack of intense particle precipitation. It may be that both 

significant electron density gradients and that plasma density levels above a certain threshold are required for 

scintillation to occur.  

1    Introduction 20 

The F-region ionosphere is a weakly ionised plasma in the Earth’s atmosphere extending from an altitude of ~150 

to ~500 km, above which it merges with Earth's plasmasphere. Large-scale plasma structures with a horizontal extent 

of tens to hundreds of km are routinely observed in the F-region high-latitude ionosphere (Tsunoda, 1988). One type 

of structure commonly observed are polar cap patches, also referred to as patches, which are enhancements of plasma 

density with at least twice the background value and have a horizontal spatial extent of 100 km or greater (Crowley, 25 

1996). Buchau et al. (1983) observed such patches of enhanced ionisation drifting antisunward with the background 

plasma flow in the central region of the polar cap at Thule, Greenland (77.5° N, 69.2° W; 85.4° MLAT, 32.4° MLON). 

The patch densities were larger than could be produced due to the observed flux of precipitating particles, and it was 

concluded that the patches were not produced locally by precipitation. Weber et al. (1984) suggested that the patches 
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were produced on the dayside at auroral or subauroral latitudes and then convected antisunward to higher, polar 30 

latitudes. A comparison of average maps of the electron density and high-latitude convection pattern suggested that 

solar-produced plasma was drawn into the polar cap as a continuous density enhancement known as the Tongue-of-

Ionisation (TOI) (Foster et al., 1984). Several mechanisms have been proposed to break a TOI into a series of patches, 

including variations in the high-latitude convection pattern moving flux tubes in and out of sunlight (Anderson et al., 

1988), expansion and contraction of the high-latitude convection pattern in response to transient bursts of reconnection 35 

drawing in plasma from different latitudes (Cowley and Lockwood, 1992; Lockwood and Carlson, 1992; Carlson et al., 

2002, 2004, 2006), variations in the y-component of the Interplanetary Magnetic Field (IMF) drawing in plasma from 

different magnetic local times (MLT) (Sojka et al., 1993), variation of the z-component of the IMF altering whether 

plasma could be drawn in to the polar cap (Valladares et al., 1998), erosion of plasma densities due to enhanced 

recombination during a flow channel event (Rodger et al., 1994; Valladares et al., 1994), and modification of the density 40 

of the photoionised plasma transported into the polar cap by particle precipitation (Walker et al., 1999; Millward et al., 

1999). Patches have been observed travelling thousands of kilometres across the polar regions (Weber, 1986; Oksavik 

et al., 2010; Nishimura et al., 2014), and are primarily associated with times when the z-component of the IMF is 

negative (Buchau and Reinisch, 1991).  

Blobs are also plasma density enhancements, however, unlike patches, they occur outside the polar cap. They are 45 

further categorised into boundary blobs, subauroral blobs, and auroral blobs (Rino, 1983; Jin et al., 2016). Boundary 

blobs are found near the equatorward auroral boundary, neighbouring the ionospheric trough’s poleward wall. 

Parkinson et al. (2002) observed patches leaving the polar cap, slowing in the antisunward direction and then beginning 

to move zonally. It was suggested that these patches would form boundary blobs, and this was later confirmed by Pryse 

et al. (2006) who compared the plasma density in a polar cap patch to that within a boundary blob which the patch 50 

subsequently formed. Subauroral blobs have a similar appearance to boundary blobs, however, they are found in the 

ionospheric trough. Auroral blobs are found within the auroral oval and seem to be longitudinally restricted. The most 

likely mechanism for their creation is particle precipitation (Jones et al., 1997).  

Not all ionospheric structures are enhancements of the background plasma; polar ionospheric holes are regions of 

low plasma density. Brinton et al. (1978) observed a depletion of this kind under conditions of low solar activity 55 

(F10.7=71 sfu) and low magnetic activity (Kp = 2). This depletion was also associated with a minimum of electron 

temperatures, indicating the absence of local particle precipitation. Polar holes are generally located between 21 and 06 

MLT and 70°-80° magnetic latitude and typically have steep plasma density gradients at their boundaries. They are 

believed to be produced when plasma in the high-latitude convection pattern circulates in perpetual darkness. Plasma 

loss by recombination in the absence of a plasma source causes density levels to drop. This idea is supported by the 60 

conditions under which polar holes have generally been observed, namely quiet geomagnetic activity (Kp 2 or less) 

when the contribution to the plasma densities from particle precipitation will be low (Brinton et al., 1978). The electron 

densities inside of the polar holes are seen to reach a minimum in the range of 108-1011 electrons·m-3 (Obara and Oya, 
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1989, Benson and Grebowsky, 2001) and, while there is variation between holes, inside of a singular polar hole the 

density level is very consistent.  65 

Smaller scale structures can arise at steep plasma density gradients due to instability processes such as the gradient-

drift instability (GDI) (Keskinen and Ossakow, 1983) and the velocity shear driven instability (Kelvin-Helmholtz 

instability, KHI). Carlson et al. (2008) proposed and that the real process involves both mechanisms acting on different 

time scales. The smaller scale (tens of meters to tens of kilometers) structures that arise can cause rapid phase and 

amplitude fluctuations in radio signals, in a phenomenon known as ionospheric scintillation. Since the second world 70 

war, large numbers of studies have shown the effect of ionospheric irregularities on radio signals, as reviewed by Aarons 

(1982). The morphology of these irregularities has been extensively studied at high-latitudes (e.g. Kersley, 1972), 

together with the effects upon the propagation of radio signals in this region (e.g. Kersley et al., 1995). 

More recently studies have focussed on Global Navigation Satellite System (GNSS) frequencies, where scintillation 

poses a substantial threat to the integrity, availability and accuracy of GNSS positioning, leading to positioning errors 75 

and service outages due to signal tracking problems at the GNSS receiver. A direct connection between gradients in the 

Total Electron Content (TEC) at the edge of a plasma stream with both phase and amplitude scintillation has been 

observed (Mitchell et al., 2005) and plasma structuring caused by auroral precipitation has been linked to the loss of 

signal lock by a GNSS receiver (Elmas et al., 2011; Smith et al., 2008; Oksavik et al., 2015). A statistical study has 

shown an agreement between both phase and amplitude scintillation with the asymmetric distribution of polar cap 80 

patches around magnetic midnight (Spogli et al., 2009) and that auroral emissions correlate with GNSS signal phase 

scintillation (Kinrade et al., 2013; van der Meeren et al., 2015). Phase and amplitude scintillation can be associated with 

the larger spatial structures associated with polar cap patches (Alfonsi et al., 2011). Phase scintillation is usually the 

dominant process at high latitudes (Spogli et al., 2009; Prikryl et al., 2015) and this is the focus of the present study. 

The presence or absence of scintillation effects on trans-ionospheric radio signals have been extensively studied for 85 

electron density enhancements in the high-latitude ionosphere, but the effect of the steep plasma density gradients at 

the edge of depletions, such as polar holes are not as extensively studied.  The purpose of this paper is to report on the 

effects of such steep density gradients on GNSS signals, observed in three multi-instrument case studies close to winter 

solstice. 

2    Instrumentation 90 

The European Incoherent Scatter Scientific Association (EISCAT) operates the EISCAT Svalbard Radar (ESR) at 

Longyearbyen (78.2° N, 16.0° E; 15.2o MLAT, 112.9o MLON) on Svalbard (Wannberg et al., 1997). The site consists 

of two antennas, a 32-meter parabolic dish and a 42-meter parabolic dish. The 42 m dish is fixed along the direction of 

the local geomagnetic field lines (azimuth -179°; elevation 81.6°), while the 32 m dish is steerable in both azimuth and 
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elevation. Observations of the electron density, electron temperature, ion temperature, and ion drift line of sight velocity 95 

in the ionosphere from this incoherent scatter radar (ISR) are used in this study. 

The Super Dual Auroral Radar Network (SuperDARN) is a network of high latitude coherent scatter radars 

(Greenwald et al., 1995; Chisham et al., 2007; Nishitani et al,. 2019) that observe line-of-sight plasma velocities in the 

F-region. These measurements are assimilated using the map potential technique (Ruohoniemi and Baker, 1998), which 

uses an ionospheric convection model to map the electrostatic potential pattern. Electrostatic equipotential lines are 100 

streamlines of ionospheric convection flows. As the plasma drift velocity is perpendicular to both the electric and 

magnetic fields in the F-region (E×B drift) the plasma convection pattern can be directly inferred from the electric 

potential maps. 

GNSS signals detected by NovAtel GPStation-6 receivers at the Kjell Henriksen Observatory (KHO) (78.2° N, 

16.0° E; 15.2o MLAT, 112.9o MLON ) can be used to infer the effects of the ionosphere on radio waves traveling though 105 

this medium.  Amplitude scintillation is measured using the S4 index, which is the square root of the variance of received 

power divided by the mean value of the received power (Briggs and Parkin, 1963). Phase scintillation is measured using 

the σϕ index, which is the standard deviation of the detrended carrier phase ϕ in radians (Fremouw et al., 1978) over 60 

seconds. 

The IMF was observed by the Advanced Composition Explorer (ACE), which is a NASA Spacecraft orbiting the 110 

L1 Lagrangian point of the Earth Sun system, roughly 1.54 million km from the Earth (Zwickl et al., 1998). In addition 

to the x-, y- and z- components of the IMF the clock angle, given by 𝑎𝑟𝑐𝑡𝑎𝑛
|𝐵𝑦|

|𝐵𝑧|
, is also considered. When the clock 

angle is greater than 45 degrees either |By|>|Bz| or Bz<0, in either case a two cell convection pattern is expected with 

antisunward flow drawing plasma from day to night across the polar cap (Thomas and Shepherd, 2018). 

Total Electron Content (TEC) maps are used to put these measurements into context.  These were obtained from the 115 

Madrigal Database at the MIT Haystack Observatory (Ridout and Coster, 2006; Vierinen et al., 2015). Two other 

indices are used within this study. The Kp index is used as a proxy for disturbances to the geomagnetic field. The F10.7 

cm solar flux is used as a proxy for solar activity.  These indices were both obtained from the UK Solar System Data 

Centre (UKSSDC) at Rutherford Appleton Laboratory, UK. 

3    Results  120 

3.1    Case study: 17th December 2014  

The 3-hourly Kp values observed on 17th December 2014 between 12:00 and 23:59 UT ranged between 1- and 1+, 

indicating quiet conditions. The F10.7 cm solar flux was relatively high, the value of 198.5 sfu is typical of solar 

maximum.  The IMF observed by the ACE spacecraft between 12:00 and 23:59 UT (Fig. 1) was characterised by a 

positive value for the IMF By (mean value 4.1 nT). IMF Bz was more variable, but generally took smaller values (mean 125 
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value of 1.8 nT). The clock angle was generally greater than 45o until 19 UT, and the corresponding SuperDARN plots, 

a subset of which are shown in Fig. 5, show that a two cell convection pattern dominated until at least 20 UT. 

Total Electron Content (TEC) maps (Fig. 2) show the overall plasma density throughout the high-latitude regions. 

The TEC maps at 12 UT and 15 UT show values of ~2 TECu (dark blue colour) in the polar cap. At 18 UT at 21 UT 

larger electron densities can be observed crossing the polar cap in a two cell convection pattern, with values of ~15 130 

TECu (yellow colour), indicating that plasma produced by photoionisation on the dayside is being drawn into the polar 

cap. This plasma is being drawn into the polar cap during relatively quiet conditions (Kp~1) and is consistent with a 

two cell convection pattern. 

The electron densities and temperatures observed by the field-aligned 42 m dish of the EISCAT Svalbard Radar 

(ESR) between 12:00 UT and 23:59 UT are shown in Fig. 3. A clear depletion in the electron densities is observed 135 

between approximately 16 and 18 UT at all altitudes.  The electron and ion temperatures are not elevated at this time 

with values of approximately 1000 K, suggesting that this depletion is void of particle precipitation and did not arise 

from enhanced recombination due to Joule heating. In order to further investigate this depletion, a line plot of the 

maximum detected electron density from 90-400 km is shown (Fig. 4). In addition to the maximum density two other 

values are present on the plot, the average value for the whole day, and 35% of the average value. The depletion was 140 

defined as when the electron density dropped below the 35% line and, in this case, the depletion was defined as starting 

at 16:29 UT and ending at 18:00 UT. 

Fig. 5 shows the high-latitude convection pattern inferred from the SuperDARN radars for three representative times 

during the time that the electron density depletion was observed by the ESR.  These clearly show a two cell convection 

pattern, with plasma drawn antisunward across the polar cap.  The ESR observes at a given location, which rotates 145 

under the convection pattern. The depletion identified in Fig. 4 is indicated by a black line.  At midwinter Svalbard is 

in perpetual darkness. On 14th December the ground level terminator is at a maximum latitude of 68o N, which 

corresponds to a maximum magnetic latitude of 76o MLAT at 21 UT. This depletion is nightward of the terminator and 

the SuperDARN convection patterns suggest that this plasma is circulating in perpetual darkness. It is interpreted as a 

polar hole.  150 

The data collected by the GNSS receiver was from the GPS, Galileo and GLONASS systems and the receiver 

provides the azimuth and elevation of the satellite with respect to the receiver. This was converted into a latitude and 

longitude using the radio wave path and assuming that the data corresponds to 350 km in altitude, in line with previous 

studies (e.g. Cervera and Thomas, 2006; Forte and Radicella, 2002). At low elevation angles the GNSS TEC and 

scintillation data can become unreliable due to multi-path issues, so observations at an elevation of less than 30° were 155 

discarded. This cut of has been used in previous studies, for example Mitchell et al. (2005). Signal lock times below 

240 seconds were also discarded, in line with previous studies (e.g. van der Meeren et al., 2015). The satellite tracks 

were overlaid onto SuperDARN plots. (Fig. 5)  
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TEC and phase scintillation data from GNSS satellites were taken during times when the polar hole was observed. 

This hole is observed for 1.5 hours and several satellite paths are present during this time window. The GNSS TEC data 160 

clearly show lower TEC levels at and around the area marked by the ESR as a hole and, on some of the satellite 

trajectories, sharp changes can be seen with the edge of the hole. A one-to-one correspondence between the GNSS TEC 

data and the EISCAT data is neither expected or observed. It is highly likely that the polar hole will evolve during the 

time for which it is observed, and therefore the plots in figure 5 include both spatial and temporal variation. The ESR 

observes the polar hole for 91 minutes and the plasma velocity inferred from figure 5 at this location is of the order 165 

of150 m s-1, indicating that the polar hole has a horizontal extent of some 800 km in a direction parallel to the plasma 

flow. In summary the combination of the EISCAT and GNSS TEC measurements indicate that the polar hole is present 

for an extended period of time (of the order of hours) over a large  (hundreds of km) spatial scale. 

Panels showing the location of phase scintillation on the satellite tracks are also shown in figure 5. A low threshold 

of 0.2 rad was used to identify phase scintillation. The purpose of this low threshold was to ensure that any possible 170 

indication of phase scintillation was included. Since TEC and scintillation are collected simultaneously, comparing the 

two might be expected to show increased scintillation where there are changes in TEC.  No scintillation was been seen 

on the edges of the holes. 

3.2    Case study 2: 10th December 2015  

The F10.7cm solar flux for this case was lower than in the first study, with a value of 108.5 sfu. The Kp index was 175 

higher, with values of 3 from 12 to 18 UT and values of 4 at 21 and 24 UT, indicating an active state, but not storm 

levels. Once again the IMF was variable, with Bz taking positive and negative values. By was consistently larger than 

Bz and dominated. As in the previous case study a two cell convection pattern was observed. 

The TEC maps at 18 and 21 UT are shown in Fig. 7. As in the previous case study these indicate higher density 

plasma produced at lower latitudes being drawn across the polar cap within the high latitude convection pattern, with 180 

this effect maximising at 21 UT.  

The 42 m ESR observations (Fig. 8) for this day show an electron density depletion that contains all the previously 

discussed markers. Using the same method as previously the hole was identified with the start and end position given 

as 15:15 and 16:43 UT. The 32 m ESR observations (Fig. 15) show a depletion at around 15 UT.  

The high-latitude convection pattern was inferred from the SuperDARN radars (Fig. 11), with the location of the 185 

polar hole observed in the 42 m ESR observations, and GNSS TEC and phase scintillation measurements overlaid as 

in the previous case study. The 32 m ESR observations (Fig. 9) were directed poleward; indicating that this a polar hole 

rather than the ionospheric trough, which would be located equatorward of the radar. This second case study shows a 

more asymmetric convection pattern with a clear dominant dusk cell, drawing plasma across the polar cap from the pre-

noon sector. The polar hole observed with the 42 m dish of the ESR was in the sunward return flow in the dusk 190 

convection cell. 
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The phase scintillation plot for 15:16 to 16:14 UT (upper right panel of Fig. 11) has some satellite trajectories 

passing through the hole boundary, but displays no significant scintillation on any of the paths. The later plot (second 

panel from the bottom on the right panel of Fig. 11) does contain phase scintillation seen however none of the elevated 

scintillation matches up to hole boundaries, instead, the scintillation is seen in regions of high and elevated electron 195 

density.  

4    Discussion  

A series of polar ionospheric holes have been detected in the high latitude nightside ionosphere in case studies close 

to winter solstice, under varying solar intensities and geomagnetic disturbance levels. The first study on 17th December 

2014 saw high levels of solar activity (198.5 sfu) and quiet geomagnetic conditions. The second case study, on 10th 200 

December 2015 also had lower levels of solar activity of (108.5 sfu), but had more active geomagnetic conditions 

(Kp=3) than in the previous study. A third case study, under quiet geophysical conditions (Kp≤2) and moderate solar 

activity (F10.7 cm solar flux = 116.7 sfu) on 12th December 2015 showed similar results  (not shown).  

Ionospheric polar holes contain much lower electron densities than those detected through the rest of the day, this 

study used the maximum density at a given time dropping 35% below the daily average maximum density to identify 205 

these holes. The changes in electron density are associated with large electron density gradients. Table 1 shows the 

electron density gradients and average hole electron density, based on observations from the ESR 42 m. The average 

polar hole density observed in this study is comparable to those previously reported of 108-1011 electrons·m-3 (Obara 

and Oya, 1989, Benson and Grebowsky, 2001). Steep electron density gradients are observed at the edges of the holes, 

these are expressed in units of ΔNe·m-3·h-1. Although these gradients are expressed in units of h-1 they were calculated 210 

from successive observations by the ESR 42 m (these measurements are typically one minute apart). The spatial extent 

of these holes was at least several hundred kilometres, as inferred from the GNSS TEC measurements (all studies) and 

the ESR 32 m observations (case study from 17th December 2014). Polar holes are usually associated with quiet 

geomagnetic conditions (Kp<2). It is notable that, on 10th December 2015, a polar hole was observed under more active 

geomagnetic conditions (Kp=3). 215 

The IMF conditions during the time when the polar holes were observed, and for several hours beforehand, were 

appropriate for antisunward cross-polar convection. The ground level solar terminator for winter is only above 70° 

MLAT between 15 UT and slightly after 21 UT, reaching a maximum latitude of just under 76° MLAT on the dayside 

at around 21 UT, creating the possibility that plasma within the high-latitude convection pattern could circulate in 

perpetual darkness, thus undergoing recombination whilst simultaneously being insulated from photoionisation, or 220 

precipitation, creating a polar hole. 

Phase scintillation has previously been observed to coincide with large plasma gradients such as on the edge of 

ionospheric enhancements such as polar cap patches (Jin et al., 2017), the tongue of ionisation (van der Meeren et al., 
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2014), plasma structures associated with the aurora (Kinrade et al., 2013; Oksavik et al., 2015; van der Meeren et al., 

2015) and the mid-latitude trough (Pryse et al., 1991). The structures that cause scintillation arise due to the Gradient 225 

Drift Instability and/or the Kelvin Helmholtz Instability (Keskinen and Ossakow, 1983; Carlson et al., 2008). In the 

present study, once the boundaries and the large electron density gradients associated with them were identified these 

boundaries were investigated for elevated levels of phase scintillation. A threshold of 0.2 rad was used, the purpose of 

this low value was to ensure that any possible indication of phase scintillation was included. Across all of the observed 

GNSS points coinciding with the polar hole boundaries no such levels of phase scintillation were detected. Phase 230 

scintillation usually dominates at high latitude (e.g., Prikryl et al., 2015), although amplitude scintillation has also been 

observed (e.g. Mitchell et al., 2005). The present study focuses upon phase scintillation as no amplitude scintillation, 

defined as when the S4 index was greater than 0.2, was observed on any of the TEC gradients at the boundaries of the 

polar holes. 

This is not the first time a plasma density enhancement has been observed without corresponding phase scintillation. 235 

Van der Meeren et al. (2016) observed a Sun-aligned polar cap arc under quiet geomagnetic conditions without 

corresponding scintillation.  In the present study some phase scintillation was observed, however, these points coincide 

with increases in TEC and the edges of spikes in electron densities at other locations. In the second case study (10th 

December 2015) phase scintillation was observed at a point associated with elevated TEC (lower right panels of Fig. 

11), but this was not associated with the assumed boundary of the polar hole. 240 

When phase scintillation was observed it was always associated with electron density gradients, but converse is not 

always true. Therefore it appears that some minimum level of overall electron density is needed for phase scintillation 

to occur. Given that it is the presence of small scale structures that cause scintillation, this suggests that these small 

scale structures have not arisen. 

Figure 12 shows phase scintillation as a function of TEC and TEC rate of change. This figure also includes data 245 

from a third study, using data from 12th December 2015, which was consistent with the interpretation presented here, 

but which has been omitted in the interest of concision. Low scintillation can be seen at all TEC levels and for a majority 

of the range of TEC rates of change. On the other hand, elevated scintillation levels are only seen above approximately 

6 TECU suggesting that a minimum electron density is required.  This is not a new idea, in his review paper Aarons 

(1982) commented ‘if the ionosphere is perturbed on a percentage basis, change in N in the trough will be small since 250 

N is low; scintillations will then be low.’ The current paper provides observational evidence to support this suggestion 

that a minimum electron density is required. The current paper is also consistent with suggestions made by Prikryl et 

al. (2015), where the strongest phase scintillations were found to be highly collocated with regions that are ionospheric 

signatures of the coupling between the solar wind and magnetosphere. Polar holes appear to be areas of weak coupling, 

hence less scintillation. 255 

Further developments upon this work would expand the GNSS coverage of the polar holes discussed to a larger 

number of examples under a wider range of geophysical conditions. A further development would be to track the 
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evolution of polar ionospheric holes by making observations with a higher temporal resolution at a large number of 

regularly spaced locations. The advent of EISCAT-3D (McCrea et al., 2015), which will give unprecedented temporal 

and spatial coverage, will enable such studies in the European sector of the high-latitude ionosphere. The ability to 260 

observe the evolution of polar holes over time will give a new, deeper, understanding of these features and how they 

influence practical radio systems such as GNSS. 

5    Conclusions  

Polar ionospheric holes are regions of electron density depletions containing large electron density gradients at their 

boundaries. These holes were observed during geomagnetically quiet and moderately disturbed conditions and under a 265 

range of solar activities using the EISCAT Svalbard Radar (ESR) and measurements from GNSS satellites.  Steep 

electron density gradients have been associated with phase scintillation at GNSS frequencies in previous studies, 

however no enhanced scintillation was detected upon the electron density gradients at these boundaries. Phase 

scintillation was only observed when electron density levels were elevated above 6 TECU and a gradient was present 

implying that both a minimum electron density level and a sharp gradient in the election density must be present for 270 

instability mechanisms to produce scintillation structures.     
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Centre at Rutherford Appleton Laboratory. These can be accessed at https://www.ukssdc.ac.uk/. The IMF data were 

provided by N. Ness and obtained from the CDAWeb at https://cdaweb.gsfc.nasa.gov/. 
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Fig. 1. The x-, y- and z-components of the IMF, and the clock angle observed by the ACE spacecraft between 12:00 UT and 23:59 UT on 

17th December 2014. The data has not been time shifted to allow for the transit time from ACE to the Earth, which was approximately 73 

minutes. 465 

 

Fig. 2. TEC maps for the 17th December 2014 extrapolated from TEC collected by a network of GNSS receivers at three hourly intervals 

between 12 UT and 21 UT. 
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Fig. 3. Electron densities, electron temperatures, ion temperatures, and ion drift line of sight velocity measured by the 42 m dish of the ESR 470 

observing at an azimuth of 184.5◦ and an elevation of 81.6◦ between 12:00 UT and 23:59 UT on 17th December 2014. 
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Fig. 4. Maximum electron density between 90 and 400 km for ESR 42 m observation on the 17th December 2014 at one minute resolution. 

A five point running mean was applied to these data. The upper horizontal line is the average value and the lower horizontal line is 35% of 

the average. A hole can be seen between 16:29 and 18:00 UT. 475 
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Fig. 5. Electric potential patterns inferred from the SuperDARN radars for 16:28 UT, 17:14 UT, and 17:48 UT on 17th December 2014 as a 

function of geomagnetic latitude and magnetic local time. Magnetic noon is at the top of each plot with dusk and dawn on the left- and right- 480 

hand sides respectively. Magnetic latitude is indicated by the grey dashed circular lines in 10.0◦ increments. The grey lines show the location 

of satellite passes from GNSS satellites, assuming an ionospheric intersection of 350 km. The SuperDARN plot from 16:28 UT includes 

satellite passes from 16:00-16:58 UT, the 17:14 UT plot includes satellite passes from 16:58-17:28 UT, and the 17:48 UT plot includes 

satellite passes from 17:28-18:02 UT. These time intervals were chosen as inspection of the whole SuperDARN data set at two minute 

resolution indicated that the convection patterns were relatively stable during these intervals. The right hand side of the panels show the area 485 

around the satellite passes in more detail. The multi-coloured colours represent phase scintillation (upper panel in each pair) and TEC (lower 

panel in each pair). The thick black line indicates the position of the polar hole observed with the 42 m dish of the EISCAT Svalbard Radar. 
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Fig. 6. The x-, y- and z-components of the IMF, and the clock angle observed by the ACE spacecraft between 12:00 and 23:59 UT on 10th 

December 2015, in the same format as Fig. 1. The data has not been time shifted to allow for the transit time from ACE to the Earth, which 490 

was approximately 45 minutes. 

 

Fig. 7. TEC maps for the 10th December 2015 extrapolated from TEC collected by a network of GNSS receivers at three hourly intervals 

between 12 and 21 UT. 
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 495 

Fig. 8. Electron densities, electron temperatures, ion temperatures, and ion drift line of sight velocity measured by the 42 m dish of the ESR 

observing at an azimuth of 184.5◦ and an elevation of 81.6◦ between 12:00 and 23:59 UT on 10th December 2015. 
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Fig. 9. As Fig. 4 but for 10th December 2015. A polar hole can be seen between 15:24 and 16:25 UT. 

 500 

Fig. 10. Electron densities and ion drift line of sight velocities observed by the 32 m dish of the ESR at -43◦ azimuth and 30◦ elevation (left 

hand side) and at -14◦ azimuth and 30◦ elevation (right hand side) between 12:00 and 23:59 UT on 10th December 2015. 
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Fig. 11. Electric potential patterns inferred from the SuperDARN radars for 15:42 UT and 16:38 UT on 10th December 2015, with data from 505 

GNSS satellites overlaid in the same format as Fig. 5. The intervals for which the satellite passes were plotted are from 15:16-16:14 UT 

(15:42 UT plot) and from 16:14-17:04 UT (16:38 UT plot).  
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Date 
1st Edge  

ΔNe·m
-3·h-1 

2nd Edge 

ΔNe·m
-3·h-1 

Average Hole 

Ne·m
-3 

17/12/2014 1.0E+11 9.1E+10 4.0E+10 

10/12/2015 3.5E+11 1.6E+11 2.2E+10 

12/12/2015 7.9E+10 1.0E+11 1.8E+10 
Table 1 – The electron density gradient at each edge of the polar hole and the average electron density inside 

the hole at 350 km observed by ESR 42 m. 
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