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Abstract. The objects of research in this work are evanescent wave modes in a gravitationally 10 

stratified atmosphere and their associated pseudo-modes. Whereas the former, according to the 11 

dispersion relation, rapidly decrease with distance from a certain surface, the latter, having the same 12 

dispersion law, differ from the first by the form of polarization and the nature of decreasing from the 13 

surface. Within a linear hydrodynamic model, the propagation features of evanescent wave modes in 14 

an isothermal atmosphere are studied. Research carried out for different assumptions about the 15 

properties of the disturbances. On this way, a new wave mode - anelastic evanescent wave mode - 16 

was discovered that satisfies the dispersion relation  12   gk x . Also, the possibility of the 17 

existence of a pseudo-mode related to it is indicated. The case of two isothermal media differing in 18 

temperature at the interface is studied in detail.  It is shown that a non-divergent pseudo-mode with a 19 

horizontal scale 121 H/~k x  can be realized on the interface with dispersion gk x2 . Dispersion 20 

relation  12   gk x  at the interface of two media is satisfied by the wave mode, which has 21 

different types of amplitude versus height dependencies at different horizontal scales xk . The 22 

applicability of the obtained results to clarify the properties of f-mode observed on the Sun is 23 

analyzed.  24 

 25 
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Acoustic - gravity  waves (AGWs)  in  the  Earth's  atmosphere  are  studied  theoretically  and  31 

experimentally  for  more than 60 years.  The linear theory of AGW (Hines, 1960; Yeh  and  Liu, 32 

1974;  Francis, 1975)  admits the existence in the atmosphere of a continuous spectrum of freely 33 

propagating waves, consisting of acoustic and gravity regions on the dispersion plane, as well as of 34 

evanescent modes, which can only propagate horizontally.  35 

The freely propagating AGWs effectively transfer the energy and momentum between various 36 

atmospheric layers and thus play an important role in the dynamics and energy balance of the 37 

atmosphere.  These waves are generated by various sources (both natural and technogenic ones), 38 

which are accompanied by a significant energy output into the atmosphere.  Further, when the 39 

AGWs propagate upward the energy conservation compensates for the decrease of the atmospheric 40 

density with the height by exponentially increasing amplitude.  Therefore at a certain height the 41 

waves become nonlinear. Significant progress in the development of the nonlinear theory of AGW 42 

was achieved by a number of authors, in particular, Belashov (1990), Nekrasov et al. (1995), 43 

Kaladze et al. (2008), Stenflo and Shukla (2009), Huang et al. (2014).  Numerical  modeling  of the 44 

freely  propagating  AGWs  in the realistic  viscous and heat-conducting atmosphere is an important 45 

area of modern studies of these waves (i.e. Vadas, 2012; Cheremnykh et al., 2010).  46 

Satellite observations of AGWs in the Earth’s polar thermosphere indicate a prevailing presence 47 

of waves with oscillation periods concentrated around the Brunt–Väisälä  period and of horizontal 48 

scale of about 500 - 700 km (Johnson  et  al., 1995;  Innis  and  Conde, 2002;  Fedorenko et al., 49 

2015). Azimuths of the propagation of these AGW demonstrate the close connection with the 50 

directions of background winds in the thermosphere.  Moreover, the amplitudes of the waves depend 51 

on the speed of headwind but do not depend on height (Fedorenko  and  Kryuchkov, 2013;  52 

Fedorenko et al., 2018). These experimental results cannot be sufficiently explained by the theory of 53 

freely propagating AGWs. They may indicate waveguide or evanescent (along a horizontal surface) 54 

propagation of at least part of the observed waves. 55 

As well as freely  propagating  AGWs, evanescent wave modes also play an important role in 56 

atmospheric dynamics of the Sun and planets.  Evanescent waves propagate horizontally in an 57 

atmosphere, vertically stratified by gravity, subject to the presence of vertical gradients of 58 

parameters. The energy of these waves should decrease both up and down from the level at which 59 

they are generated. Therefore, evanescent waves are most effectively generated in areas of presence 60 

of significant vertical gradients of temperature and density or strong local currents.  For example, in 61 

the solar atmosphere suitable conditions for realization evanescent modes occur at the boundary 62 
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between the chromosphere and corona (Jones, 1969).  In the Earth's atmosphere, such waves can be 63 

efficiently generated at sharp vertical temperature gradients, for example, at the base of the 64 

thermosphere or at the heights of the tropo- and mesopause.  Also, evanescent wave modes can 65 

emerge in the presence of strong inhomogeneous winds, for example, in the region of the polar 66 

circulation of the thermosphere.  67 

The study of evanescent waves traditionally gets less attention than the study of freely 68 

propagating AGWs. The most known of them are the horizontal Lamb wave and vertical oscillations 69 

with Brunt–Väisälä (BV) frequency (Beer, 1974; Waltercheid and Hecht, 2003).  In hydrodynamics, 70 

physics of terrestrial and solar atmosphere, the surface gravity mode with dispersion gkx2  is 71 

also well studied (Tolstoy, 1963; Jones, 1969). In particular, it was shown that it is the fundamental 72 

mode (f - mode) of oscillations in the solar atmosphere (Jones, 1969).  Experimental f - mode 73 

observations are used to study flows, refinement of the solar radius and other parameters of the Sun 74 

(Ghosh et al., 1995; Antia, 1998).  In the earth's atmosphere, evanescent waves are often observed at 75 

altitudes near the mesopause using ground-based instrumentation (Shimkhada  et al., 2009).  76 

In this paper, different types of evanescent acoustic-gravity modes characteristic of an 77 

isothermal atmosphere are investigated using a set of linearized hydrodynamic equations.  In 78 

particular, the possibility of the existence of a new type of evanescent acoustic-gravity modes with 79 

the dispersion  12   gk x  is proved in the assumption of anelastisity of the disturbance. Also 80 

the possibility of realization the evanescent modes in the model of a thin temperature gap studied. 81 

  82 

2 Evanescent  modes in the isothermal atmosphere  83 

 84 

Consider an unbounded ideal isothermal atmosphere, stratified in a field of gravity.  Linear 85 

perturbations in such a medium satisfy a set of four first order hydrodynamic equations (Hines, 86 

1960). These equations are convenient  to bring to a set of two second order equations for the 87 

perturbations of the horizontal xV  and vertical zV  particle velocities (Tolstoy, 1963):  88 
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where 0 ,  , g  denote background atmosphere density, ratio of specific heats, acceleration of 91 

gravity, respectively; gHc   is the sound speed,   mg/kTdzdH  00   is the density 92 

scale height, T is the temperature , k  is the Boltzmann constant, m  is the molecular mass of the 93 

atmospheric gas.  94 

Solutions to the system (1), (2) are usually searched for in the form: 95 

    xktizaVV xzx expexp~,  ,               (3) 96 

where  , xk  are cyclic frequency and horizontal component of the wave vector, respectively; 97 

parameter a   sets the vertical scale of the change in the amplitude of velocities,  Vx and Vz, with the 98 

height, z. For brevity, we will refer to a  as the stratification of the corresponding mode. 99 

The system (1), (2) allows, on the plot “frequency-wave number”, for the existence of gravity 100 

and acoustic regions of freely propagating waves, for which zik
H

a 
2
1  (Hines, 1960), where zk  101 

is the vertical component of the wave vector. Also, from (1), (2) we get the solutions in the form of 102 

evanescent wave modes having real a  and propagating horizontally (Waltercheid  and  Hecht, 103 

2003).  Solutions in the form of evanescent modes are usually obtained by imposing additional 104 

conditions on the perturbation properties.  105 

               106 

2.1    Non - divergent  and  pseudo - non - divergent  modes  107 

 108 

Let us note the well known in hydrodynamics approximation of perturbations incompressibility (see, 109 

e.g., Ladikov-Roev et al., 2010), for which  110 
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 .                (4) 111 

In frames of this approximation, we obtain the following equations from (1), (2):  112 
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After substituting (3) into equations (5), (6) we find:  115 

zxx gVikV  2  ,  116 
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xxz gVikV  2  .   117 

This yields a dispersion equation for incompressible wave modes in the form  118 

gkx2 .                    (7) 119 

Given the dispersion found, we obtain an expression for the polarization of the incompressible 120 

modes:  121 

xz iVV   .                     (8) 122 

Further, from the condition (4) and polarization (8) we get xka  . Insofar as a  is real value then 123 

non - divergent  (ND)  wave mode has no periodic vertical solution and is horizontally propagating.  124 

Let us show that the dispersion relation (7) is also satisfied by another wave mode.  After using 125 

this relation in (1), (2) we get:  126 
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From the system (9), (10) follows:  129 

  012  Hk
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x  ,  130 

which implies that there are two solutions to this equation: 131 
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H
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1 .                 (11) 132 

The first solution in (11) corresponds to the non-divergent (ND) wave mode, and the second 133 

one we call pseudo-non-divergent mode (NDp).  The expression for polarization NDp is obtained 134 

from (9) and has the form:  135 
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Also for this mode holds the equation  137 
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which shows that for NDp mode 0Vdiv


 only when Hk x 2/1 .  139 

   140 
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2.2   Anelastic and pseudo-anelastic modes  141 

    142 

Let us show that equations (1), (2) indicate that another wave mode, not previously studied, may 143 

exist. To do this, we introduce, according to Bannon (1996), the anelastic linear perturbations, which 144 

satisfy the condition 145 

  00 Vdiv


  .                       (12)  146 

In the isothermal atmosphere with barometric density distribution we have 147 
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therefore, for such anelastic perturbations, the following equation holds: 149 

H
VVdiv z


 .                            (13) 150 

Substituting (13) into equations (1), (2) we get:  151 
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Thus, given (3), should:  154 

  zxx VgikV 12    ,                      (14) 155 

  xxz gVikV 12    .                        (15) 156 

Then the dispersion equation for anelastic (AE) modes takes the form:  157 

 12   gk x .                        (16)  158 

With the resulting dispersion, polarization follows from equations (14), (15):  159 

zx iVV   .                          (17) 160 

Further, taking into account (13), we obtain xk
H

a 
1 .  Consequently, the AE mode also does not 161 

have a solution periodic vertically and can only propagate horizontally. 162 

After substituting the dispersion (16) into equations (1), (2) we get:  163 

    011  )aHiVHkV zxx   ,                  (18) 164 
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whence we get a pair of values a , identical to (11). Consequently, there is another wave solution 166 

that satisfies the equation (16), we call it pseudo-anelastic (AEp) mode.  The first value in (11) 167 

corresponds to the AEp wave mode, and the second – to the AE one.  168 

Polarization of the AEp mode has the form:  169 
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that follows from (18) or (19).  171 

  172 

3     General properties of evanescent modes 173 

  174 

Let us prove that the different types of evanescent modes characteristic of an isothermal atmosphere 175 

are related.  We substitute (3) into system (1), (2) without additional conditions that were imposed in 176 

Section 2 when deriving ND and AE mode.  As a result, we get:  177 
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where  


 12 


H
gN  is the square of the Brunt-Väisälä frequency.  180 

From system (20), (21) we obtain the dispersion equation:  181 
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Expressions 22 N  and 222 ck x  are well-known dispersions of Brunt-Väisälä  183 

oscillations with H/a 1  and Lamb waves (L) with   H/a  1 . In addition to these known 184 

modes, dispersion (22) also admits the existence of additional solutions in the form of BV pseudo-185 

modes (BVp) with 22 N ,   H/a  1  and Lamb pseudo-modes (Lp) with 222 ck x , 186 

H/a 1  (Beer, 1974;  Waltercheid and  Hecht, 2003).  187 
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 Then represent (22) in the form of a quadratic equation with respect to a :  188 
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The solution to this equation is:  190 
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From which it follows that for modes with dispersions  12   gk x  and gk x2  there are two 192 

possible values: xka   and xk
H

a 
1 .  The first value corresponds to modes ND and AEp, and the 193 

second - NDp and AE.  194 

Thus, each evanescent mode can be associated with a pseudo-mode, which satisfies the same 195 

dispersion relation, but differs in polarization and dependence of the amplitude from the height, i.e., 196 

in its stratification. Table 1 presents the properties of different evanescent modes, characteristic of 197 

the isothermal atmosphere: BV oscillations, Lamb waves, non-divergent and anelastic modes, along 198 

with associated pseudo-modes: BVp, Lp, NDp, AEp. Table 1 shows that for all pseudo-modes, the 199 

polarization changes depending on the value of xk . Wave modes AE and ND at Hk x 2/1  200 

completely coincide with AEp  and NDp, respectively. 201 

The location of the dispersion curves for anelastic and non-divergent modes relative to gravity 202 

and acoustic regions in the (, kx) plane is shown in Fig. 1. The  12   gk x  mode touches the 203 

gravity region of freely propagating AGWs at the same value Hk x 2/1  at which the gk x2  204 

curve touches the acoustic region (see Figure 1).  In this case, the dispersion curves of AE and ND 205 

modes are symmetric relative to the “characteristic” curve (see Beer, 1974), which separates the 206 

AGW acoustic region from the AGW gravity region.  In fact, the characteristic curve is the 207 

geometric mean of the dispersion curves of AE and ND modes with   cNkgk xx  1222   .  208 

From Figure 1 we see that the dispersion curves of different evanescent modes have intersection 209 

at separate points.  Lamb dispersion curve with 222 ck x  intersects with BV curve with 210 

22 N  at the point cNk x / . However, these modes cannot interact with each other by reason 211 

of different polarizations and values of a . At the same time, the pairs Lp - BV and L - BVp 212 

completely coincide in these properties and are indistinguishable at the intersection points.  213 
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Dispersion curves gkx2  and  12   gkx  intersect with the Lamb curve and the BV 214 

curve at points Hkx /1  ,   Hkx  /1 . In addition, the ND mode curve  intersects with the 215 

Lamb curve at the same value xk , at which the AE mode curve intersects with the BV curve (see 216 

Fig. 1).  ND and AE modes cannot interact with the Lamb mode and BV oscillations due to different 217 

polarizations (Table 1).  Pseudo-modes  NDp  and  AЕp, at the points of intersection with the Lamb 218 

wave and the BV oscillations, have the same polarization and values of a .  Similarly, ND  and  AE 219 

are indistinguishable at the points of intersection with Lp and BVp. Table 2 shows all evanescent 220 

modes that coincide with each other at the points of intersection of the dispersion curves, and 221 

between which interaction is possible.  The cases of ND and AE mode curves intersection with 222 

curves ( H/a 21 ), which separate the area of freely  propagating  AGWs from the evanescent 223 

area, are not presented in Table 2.  224 

  225 

4      The energy of evanescent modes in an isothermal atmosphere  226 

  227 

In Sections 2 and 3, we considered a model of an unbounded isothermal stratified atmosphere to 228 

determine which types of evanescent  modes can satisfy the initial system of equations (1), (2).  229 

However, in an infinitely extended medium, the necessary condition for the existence of evanescent 230 

modes is the absence of unlimited growth of oscillation energy above and below the height level at 231 

which they are generated. It is easy to verify that in an isothermal infinite atmosphere, none of the 232 

modes listed in Table 1 satisfy this condition.  233 

Suppose further that an evanescent wave is generated at a certain altitude level 0z . The 234 

kinetic energy density   22~ zx VVzE   of waves should decrease both up and down from the level 235 

0z . When z  the energy density 012exp~ 





  z

H
aE , if Ha 2/1 , and E , if a 236 

Ha 2/1 .  When z  the energy density 0E  , if a Ha 2/1  and E  , if a 237 

Ha 2/1 .  Based on these considerations, it is not difficult to understand how the energy density 238 

varies with height for different types of evanescent modes in an infinite isothermal atmosphere (see 239 

Table 3). Therefore, for the realization of such modes, it is necessary to have boundaries in the 240 

medium at which the condition for reducing energy in both directions from this boundary can be 241 

satisfied.  242 
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The presence of boundaries is not the only condition that can limit the energy of the evanescent 243 

mode.  If the equality H/a 21 holds for these modes, then their energy is not varies with height in 244 

an isothermal atmosphere.  For an infinite atmosphere, this solution does not seem to be physical, 245 

but it can make sense for a real atmosphere of finite height.  As follows from (11), for the ND and 246 

AE modes, as well as their pseudo-modes, the condition H/a 21  performed at the point 247 

H/k x 21 .  Also, at this point, the ND mode is identical to the NDp mode, and the AE mode 248 

completely coincides with AЕp.  In addition, when H/k x 21  these  evanescent modes adjoin the 249 

border of regions of freely  propagating  AGW (see Fig.1).  250 

Consider some features of the energy balance for the evanescent modes.  It follows from 251 

equation (20) that: 252 
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Combining equations (22) and (24) gives the relation:  254 
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The average density of the kinetic energy of the perturbations is  22
04

1
zxk VVE    and of the 256 

potential energy is 



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
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2
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2
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04
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
 NV
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x
xp  (Yeh, Liu, 1974; Fedorenko, 2010).  Therefore, 257 

from equation (25) it follows that for the evanescent modes pk EE  . At the same time, for freely  258 

propagating  AGWs is always fulfilled the equality pk EE   (Yeh, Liu, 1974).  At the point 259 

H/a 21  where evanescent modes on the plane (, kx) in Fig. 1 are adjacent to areas of freely 260 

propagating AGWs, the equality a
c
g

g
Na  2

2

 holds.  Taking this circumstance into account, 261 

from (25) we obtain:  262 

  







 2

2
2

22

2
20220

44 
 NV

ck
VVV z

x
xzx  ,                  (26) 263 

that is, at this point pk EE  .  264 

 265 

 266 
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5      Evanescent modes at the interface of isothermal media  267 

 268 

Let us consider the possibility of realization of evanescent modes in the atmosphere at a thin 269 

interface between two isothermal half-spaces of infinite extent, which differ in temperature T. Let 270 

the boundary be localized at some altitude level 0z .  In the lower half-space ( 0z ) we have 271 

1TT  , while in the upper half-space ( 0z ) we have 2TT   and it is assumed that 12 TT  . Note 272 

that a similar model was considered by Rosental and Gough (1994). We will search for solutions to 273 

the system (1), (2) in the form of     xktizaVV xzx expexp~, 1  for the lower half-plane and in the 274 

form     xktizaVV xzx expexp~, 2  for the upper half-plane.  Substituting these dependencies 275 

into (1), (2) yields:  276 

21

2

2
122

2
1

2

2
11

1 4
1

2
1

/

xx
Nkk

cHH
a 











  ,                  (27) 277 

2/1

2

2
222

2
2

2

2
22

2 4
1

2
1












 Nkk
cHH

a xx  .                      (28) 278 

Here  indices 1 and 2 denote the values in the lower and upper half-spaces, respectively.  279 

The density of the kinetic energy of evanescent waves should decrease from the level 0z  280 

both up and down. This condition limits the possible values of 1a  and 2a . In the upper half-space     281 

( 0z ), when z  the energy density 012exp~
2

22 







 z

H
aE , if 22 2/1 Ha  .  In the 282 

lower half-space ( 0z ), when z  the energy density 012exp~
1

11 







 z

H
aE , if 283 

11 2/1 Ha  .  Therefore, it is necessary to take in the expression (27) for  1a   the solution with a “+” 284 

sign  and in expression (28) for 2a , with a “-” sign, so that the energy decreases on both sides of the 285 

interface.  286 

It is also necessary to consider that the possible values of 1a  and 2a  must satisfy the boundary 287 

condition (Tolstoy,1963; Rosental and Gough, 1994),  arising from (1), (2): 288 

  289 

0
22

2
2

2
22

2
22

0
22

1
2

1
22

2
11









zx

x

zx

x

kc
agk

c
kc
agk

c








  ,                (29) 290 
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where 1  and 2  are the densities on both sides of the boundary. The procedure for deriving 291 

equality (29) is exactly the same as in the papers by Cheremnykh et al. (2018a) and Cheremnykh et 292 

al. (2018b). When obtaining (29) we require continuity of the vertical velocity component  293 

(kinematic condition) and perturbed pressure (dynamic condition). In the barometric atmosphere we 294 

have 0
2 pc   , where 0p  is the equilibrium pressure, which must be continuous across the 295 

interface.  Therefore, when 21    equation (29) can be written as:  296 

22
2

2
2

22

22
1

2
1

22

x

x

x

x

kc
agk

kc
agk














 .                      (30) 297 

Dispersion dependencies of  xkf  calculated numerically by means of the expression (30) 298 

are shown in Fig. 2a for different values of the parameter 12 / HHd  .  On each of these curves, the 299 

condition for decreasing energy up and down from the interface is satisfied.  The long-wavelength 300 

part of the spectrum, where the most interesting features appear, is shown in more detail in Fig. 2b. 301 

Also shown in these figures are the dispersion curves gk x  and  1  gk x  for the ND 302 

and AE wave modes. The discontinuities of the  xkf  curves, as well as their cut-off for 303 

smaller xk  values, are  due to requirements 11 2/1 Ha   and 22 2/1 Ha  .  Some features of the 304 

behavior of  xkf  will be discussed below.  305 

As shown by Miles and Roberts (1992), the dispersion equation (30) can be rewrited to a 306 

polynomial form suitable for analysis:  307 

             0111212112 2624
1

2242
1

422424
1

622
1

8  gkdcgkdcgkkdckdc xxxxx 308 
. (31)  309 

 Non-physical solutions (Miles and  Roberts, 1992) arising from quadratic expressions under the 310 

radicals were excluded from consideration while obtaining equation (31) (see (27), (28)). 311 

Expressions (31) can be analyzed by examining their asymptotic behavior. 312 

If 22
1

2 ckx , then from (31) we get:  313 

 
 

0
1
1

1
2 22

2

2
2

2
14 







 gk
d
d

d
N

x  .   314 

It follows from this expression:  315 
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  



 


 2224

1
2

1
2 1

1
1 gkdNN

d x  .                   (32) 316 

The expression (32) contains an interesting dependence of the frequency on the parameter .d  In the 317 

limit d , the dispersion gkx2  of the ND (NDp) mode, independent of the properties of 318 

both environments, follows from (32).  With 1d  and using (32), we obtain the dispersion of the 319 

BV (BVp) mode with the parameters of the lower medium, that is, 2
1

2 N .  The indicated 320 

asymptotic features are visible on the curves shown in Fig. 2 below.   321 

In the long-wave limit, i.e., at 0xk , from (31) it follows:  322 

        0111212 424
1

222
1

4  xx kdckdc  .   323 

Hence we find:  324 

       124111
12

22
22

12 


 


 ddd
kc x  .                (33) 325 

 For the considered small xk , for different values of d, from (33) we obtain the family of Lamb-326 

type acoustic modes (see Fig. 2b).  For large values of d , using (33), we obtain the expression 327 
22

2
22

1
2

xx kcdkc  , i.e. the oscillation frequency is determined by the characteristics of the medium 328 

in the upper half-space.  329 

The evanescent modes frequencies lie on the  xk,  plane between the acoustic and gravity 330 

regions of freely propagating AGW determined for upper and lower media separately (see Fig. 1).  It 331 

is necessary to take into account when considering evanescent modes at the boundary of two 332 

isothermal media with different temperatures, that the evanescent regions are different in the upper 333 

and lower half-planes. On the  xk,  plane, these regions are shifted relative to each other the 334 

more, the more is the value of d . At the same time, the wave modes at the interface of the media 335 

should remain evanescent in both media, and their dispersions should be enclosed within the overlap 336 

region of two evanescent regions.  The cut-off curves for evanescent regions in the media under 337 

consideration are obtained in case of the null expressions under the radicals in (27) and (28). Gaps 338 

on the  xkf  dispersion curves are due to the evanescent areas of the two media do not match 339 

(see. Fig. 3).  340 
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Note that the dispersion curves  xkf  for values 4d  are mostly inside both evanescent 341 

regions (see Fig. 3a, 3b), except for the longest waves. When 4d , the dispersion curve  xkf  342 

breaks into two separate branches (see Fig. 3 c , 3 d).  The long-wave branch is acoustic, and another 343 

branch with 14.0 Hk x   is surface gravity by its physical nature.  344 

                345 

6     Characteristic scales of ND and AE evanescent modes on  the discontinuity  346 

 347 

In an unlimited isothermal medium, evanescent modes are separate “pure” solutions of 348 

hydrodynamic equations. At the interface between two isothermal media with different 349 

temperatures, dispersion of the evanescent modes have a combined character, composing different 350 

types of “pure” modes, depending on the value of the parameter d  and spectral properties  xk .  351 

For some values of d , the curves of the dispersion equation (30) approach fairly close to the 352 

curves gkx2  and  12   gk x , and also intersect them at different points. These intersection 353 

points correspond to the specific value of xk , at which the dispersions of the ND and AE modes are 354 

realized, in the model under consideration, in a “pure” form.  Let us now examine these cases in 355 

more detail.  For this purpose, we substitute the dispersion relations gk x2  and  12   gkx  356 

directly into (27), (28), and then into the boundary condition (30).  357 

As was shown in Section 2, for dispersion relations gkx2  and  12   gk x , values 1a  358 

and 2a  coincide and are determined by expressions (11). Consider the valid values of 1a  and 2a  for 359 

these dispersions with regard to the requirement of energy decay in both directions from the 360 

interface 11 2/1 Ha   and 22 2/1 Ha  .    361 

             362 

6.1     Dispersion of the form gkx2   363 

 364 

For a dispersion of the form gkx2 , we first analyze the stratification of the ND mode with 365 

xka 1 , xka 2 .  In order for the energy of this mode to decay in both directions from the 366 

discontinuity, the following inequalities 21 2/12/1 HkH x   must be satisfied, i.e., 21 HH  .  367 

Therefore, ND mode can be realized at the discontinuity, if the ambient temperature in the upper 368 
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region is less and the density is greater than they are in the lower region.  This situation corresponds 369 

to the unstable state of the atmosphere (see Roberts, B., 1991).  370 

Take the stratification of the NDp modes in the form of xk
H

a 
1

1
1 , xk

H
a 

2
2

1 . The 371 

energy in this case decreases both ways from the discontinuity, if 12 2/12/1 HkH x  , i.e. when 372 

12 HH  .  This condition corresponds to the stable state and the case under consideration.  For the 373 

NDp mode from the dispersion equation (30) we get:  374 






































21
1

12
2

121121
H

kk
H

H
H

kk
H

H xxxx 
 , 1/1 Hk x   , 2/1 Hk x   .         (34)  375 

From (34) it follows:  376 

  













1
811

4
1

2
1 d

d
dH

dk x 
 .                     (35) 377 

Figure 4a shows values of  xk   for which the dispersion curve gk x2   intersects with the 378 

calculated dispersion curve   xkf  depending on the parameter d .  The upper solid curve in 379 

this figure corresponds to the solution (35) with the sign “+” before the radical and shows the points 380 

of intersection with the shorter wavelength branch.  The lower dashed curve corresponds to the 381 

solution with a sign “–” and represents the points of intersection with the long-wavelength branch.  382 

For the upper curve 12/1 Hk x   when d . For 5.2d , there are no intersections of the 383 

curve  xkf  calculated numerically from (30) with the curve for the dispersion gkx2 .  384 

When combining the stratifications for ND modes as xka 1  and for NDp modes as  385 

xk
H

a 
2

2
1 , equation (30) yields the only possible value of 221 H/kx  . For a combination of 386 

stratifications xk
H

a 
1

1
1  (NDp) , xka 2  (ND) we get 12/1 Hk x  .  Both of these cases do not 387 

satisfy the condition of energy decrease with height.  388 

Thus, consideration of the possible values of 1a  and 2a  leads to the conclusion that on the 389 

interface of two isothermal media with 12 HH   can only be implemented NDp mode with a 390 

dispersion gk x2  and a specific scale 121 H/~kx .  391 

 392 
 393 



16 
 

6.2    Dispersion of the form  12   gkx    394 

 395 

For the AE stratification of the form xk
H

a 
1

1
1

, xk
H

a 
2

2
1

 and for the AEp  stratification of 396 

the form xka 1 , xka 2 , from the dispersion equation (30) follows the identity 21 HH  . 397 

Therefore, such modes do not realize at a temperature discontinuity.  Apparently, to study the 398 

conditions of realization of AE and AEp modes, it is necessary to consider atmospheric models in 399 

which height profile  zH  is continuous.  400 

It should be noted that for the dispersion of the form  12   gkx , cases of combined modes 401 

stratifications are possible, satisfying the condition of decreasing energy on both sides of the 402 

boundary.  So, for the combination of stratifications xka 1  (AEp), xk
H

a 
2

2
1  (AE) from (30) 403 

we obtain the relation:  404 

  






 


1
12

12
H

kHkH xx 
  .   405 

Whence   dH
kx 







2
1

1

 .  In this case, the inequality    2/d  must be satisfied.  When 406 

3/5  we get the following restriction: 5d . Given this limitation and condition 12/1 dHkx  , 407 

we obtain that a mode with a dispersion of  12   gk x  and stratification of AE type for the 408 

upper half-space and of AEp type for the lower half-space can propagate at the boundary in the 409 

range 51  d and for 12/1 Hk x  . For the stratifications xk
H

a 
1

1
1  (AE), xka 2  (AEp) from 410 

equation (30) we obtain the relation:  411 

 

 







 
 21

1
2

2 xx kH
H

kH  .   412 

 It implies the ratio   






2
1

1 dH
kx , in which the parameter d  can take any values with 1d , 413 

and the horizontal wave number is limited by the inequality 12/1 Hkx  . Features of the behavior of 414 

the  12   gk x  mode at the discontinuity, depending on the scale xk  are shown in Fig. 4b.  415 

 416 
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7     Discussion  417 

  418 

Let us dwell on some of the results in terms of their use for the analysis of experimental data.  419 

With the f-mode observed on the Sun, one should identify the mode that we classify as ND 420 

mode, for which gkx2 ,  zkV xz exp~  and 0Vdiv


 (Roberts, B., 1991).  In the framework of 421 

the considered temperature discontinuity model, it was shown that with 21 TT   (corresponds to the 422 

chromosphere-corona interface) the condition for decreasing amplitude with height to both sides of 423 

the interface is satisfied only by the NDp mode with gk x2 , zk
H

V xz 





 

1exp~  and 0Vdiv


.  424 

When the ratio d  (i.e., 12 HH ), the NDp mode with 12/1 Hk x  asymptotically 425 

approaches ND mode.  On the interface between the chromosphere and the solar corona d  is large, 426 

but of finite magnitude: 50~d  (Athay, 1976; Jones, 1969). Therefore, the condition  of the 427 

presence of a free surface, which is required for the realization of the ND mode, is fulfilled only 428 

approximately.  Therefore, in the framework of the temperature discontinuity model, the f - mode 429 

observed on the Sun should not be associated with the non-divergent ND mode, but with non-430 

divergent pseudo – mode NDp.  431 

For the Earth's atmosphere, the maximum possible value of d  is observed at the interface 432 

between the thermosphere with KT 1500800~2   (depending on solar activity) and the underlying 433 

atmosphere with KT 300~1 . When 5d , the dispersion (30) asymptotically tends 434 

to  12   gkx  with xk . Therefore, it can be expected that evanescent modes in this case 435 

will be close to  12   gk x . 436 

 In other layers of the earth's atmosphere we have 3.1d (Jursa, 1985). As follows from (33), 437 

for small values of 3.1d  and for the wavelengths in the interval   15.15.0~ Hk x  , the relation 438 

22 N is satisfied (see Fig. 2). Therefore, it can be expected that at small positive temperature 439 

gradients in the atmosphere, waves with a frequency close to the frequency of Brent-Väisälä should 440 

prevail.  These conclusions experimentally confirm (Shimkhada et al., 2009) the results of 441 

observations of short-period evanescent waves with small wavelengths at altitudes near the 442 

mesopause.   443 

              444 

8      Main results  445 
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 446 

In the paper, different types of evanescent acoustic-gravity modes characteristic of an isothermal 447 

atmosphere are investigated.  A new mode was derived in the form of anelastic acoustic-gravity 448 

wave mode with the dispersion equation  12   gk x . The main properties of the AE mode 449 

are presented in Table 1 in comparison with other known evanescent modes.  It is shown that for 450 

both anelastic and non-divergent modes there are pseudo-modes that satisfy the same dispersions, 451 

but having different polarization and the dependence of the amplitude of the disturbances on the 452 

height.  453 

For AE and ND evanescent modes, the value of Hk x 2/1  sets a special scale (wavelength) at 454 

which these modes are identical to their pseudo-modes AEp and NDp. In addition, at the same point 455 

they are adjacent to the boundaries of the continuous spectrum (AE mode to the gravity region, and 456 

ND mode to the acoustic region, respectively).  457 

The features of the evanescent modes realization at the interface of two isothermal media are 458 

considered.  It is shown that in this case, dispersions of evanescent modes are combined, merging 459 

the features of different types of modes characteristic of an unbounded isothermal atmosphere. This 460 

effect is most pronounced in the following asymptotic cases: 1) when d , we obtain the 461 

dispersion for the ND (NDp) mode in the form gkx2 ;  2) when 1d , for scales 1~ Hk x , a 462 

mode with 2
1

2 N  is realized;  3) for 0xk , a Lamb wave with a dispersion relation of the form 463 

22
2

2
xkc  is obtained, which depends only on the parameters of the medium in the upper half-464 

space.  465 

It was demonstrated that on the interface of two isothermal media with 12 TT  , the NDp mode 466 

with the dispersion gk x2  and the selected scale 12/1~ Hk x  is realized. At the same time, the 467 

ND mode does not satisfy the condition of decreasing energy on each side of the interface.   468 

Dispersion  12   gk x  on the interface of two media is satisfied by the wave mode, which 469 

has different types of amplitude versus height dependencies at different horizontal scales xk .  When 470 

12/1 Hkx  , the height dependence of AE amplitude for 0z  and AEp amplitude for 0z  satisfy 471 

the condition of decreasing energy from the interface. On the contrary, when 12/1 Hkx  , this 472 

condition is satisfied by AEp amplitude for 0z  and AE amplitude for 0z .  473 

It is important to note that according to our analysis in the framework of the temperature 474 

discontinuity model: (1) the f - mode observed on the Sun should not be associated with the non-475 
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divergent ( gkx2 , 0divV ) mode, but with its non-divergent pseudo–mode ( gkx2 , 476 

0divV ). (2) At the interface between the earth’s thermosphere and the underlying atmosphere it 477 

can be expected that evanescent modes with short wavelengths will be close to the new mode 478 

(  12   gk x ). (3) Oscillations with a frequency close to the frequency of Brent-Väisälä should 479 

prevail at altitudes near the earth’s mesopause. 480 
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Table 1.  Properties of different evanescent acoustic-gravity modes 560 

Mode type Dispersion a  Polarization 
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Table 2.  The coincidence of the evanescent mode properties at the intersection points of the 563 

dispersion curves *  564 
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  565 

* Note.  The bottom rows show the modes that are indistinguishable from the corresponding 566 

mode of the top row at the point of intersection of the dispersion curves.  567 

568 
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Table 3. The change in energy density of evanescent modes with height in an infinite isothermal 569 

atmosphere  570 
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 573 
 Fig.  1. Dispersion dependencies  xkf  : 1) boundaries between acoustic and gravity 574 

regions for  freely propagating waves (dashed lines); 2) evanescent mode: gk x  (upper solid 575 

curve) and  1  gk x  (lower solid curve), N  (thin horizontal line), ck x  (thin 576 
sloping straight line). 577 

578 
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 579 

 
 

 580 
 Fig.  2. Dispersion dependencies  xkf  at the boundary of the discontinuity for different 581 

values of the parameter d .  General dependence (a), long-wave part in more detail (b). Thin curves 582 
denote gk x (upper curve) and  1  gk x  (lower curve), N  (horizontal line) 583 
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 586 

  

  
  587 

Fig.  3. Dispersion dependencies of the  xkf  type at the temperature discontinuity 588 
boundary for 2d  (a), 3d  (b), 5d  (c), 20d  (d). The dashed curves represent the 589 

boundaries of the areas with free propagation of AGW in the upper and lower half-space. Thin 590 
curves denote gk x (upper curve) and  1  gk x  (lower curve).  591 

592 
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 594 

 Fig.  4. Horizontal scales 1Hkx , on which the modes with the dispersion gkx2  (a) and 595 
 12   gk x  (b) are realized, depending on 12 / HHd  . 596 
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