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Reply to the report by Referee_1 

 

1. The correctness of the transition from equations (1), (2) to equations (5), (6) when considering  

divergence-free waves (divV = 0) is in doubt. Since in an incompressible medium the speed of sound 

tends to infinity, the product “infinity to zero” in square brackets of equations (1), (2) becomes 

uncertain. 

 

We consider a compressible atmosphere stratified in a field of gravity. In equations (1), (2), the 

speed of sound refers to a compressible medium and is the final value, whereas the condition divV = 

0 determines  the properties of the perturbations only. 

 

2. The realization of the obtained modes was considered in the framework of a simplified model 

of an infinitely thin discontinuity in the altitude profile of temperature. In the atmospheres of the 

planets, the situation is most likely realized when the change of the parameters along the vertical 

occurs on scales of tens of kilometers, or even hundreds, for the Sun. Can the acceptance of the 

finite thickness of the transition layer significantly affect the conditions of realization of the 

evanescent wave modes considered in the work? 

 

The simplest model of a thin temperature gap is considered as an example in order to show the 

fundamental possibility of implementing the new types of wave modes obtained in the work. To 

understand how the thickness of the transition layer affects the properties of the modes considered, a 

separate study is needed. This effect seems to be significant. Especially when the magnitude of the 

transition layer is commensurate with the atmosphere scale height for the upper or lower isothermal 

half-spaces. In our opinion, it is more expedient to investigate the implementation of the received 

modes within the framework of an atmospheric model with a continuous non-isothermal altitude 

profile of temperature. 

  

 3. In the atmosphere, different types of gravity disturbances may occur: (1) freely propagating 

waves, having a real and non-zero vertical component of the wave vector; (2) evanescent wave 

modes, propagating only horizontally. Does it mean that sources of evanescent modes and freely 

propagating waves are fundamentally different? 
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The problem of sources was not analyzed in the work, we considered free waves (on the right 

side of equations (1), (2) there are zeros). It is unlikely that the sources of atmospheric acoustic-

gravity waves of different types must necessarily have a different nature. In our opinion, if the 

sources are localized in the isothermal interval of the heights of the atmosphere, they generate a 

freely propagating AGW more effectively. At heights of sharp temperature gradients, evanescent 

wave modes are preferred, since “surfaces” arise that support the propagation of such waves. This 

question requires separate study. 

 

4. It is not clear from the manuscript how complete is the list of possible evanescent modes. Are 

there additional requirements for disturbances that will lead to new solutions? 

 

It is likely that equations (1), (2) admit the possibility of the existence of other types of 

evanescent wave modes. When imposing other additional conditions on the properties of 

disturbances, besides those considered in the article, other types of evanescent modes can be 

obtained and Table 1 can be supplemented. 

 

The following inaccuracies  

 

1) The phrase “the properties of the medium" should be replaced by “the properties of the 

disturbances". 

 

2) The bottom line of Table 2 (line 2, p. 20) uses the abbreviations AMp, AM, which, 

apparently, should be replaced by AE and AEp. 

 

3) Mistakes are made in the names of subsections 2 and 2.1 (line 1, page 3 and line 

19, page 3). Probably should be 

 

2 Evanescent modes in the isothermal atmosphere 

2.1 Non-divergent and pseudo-non-divergent modes 

  

We have checked and corrected these inaccuracies in the text. 
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Reply to to the report by Referee_2 

 

The title: Perhaps, the authors should modify the title of the paper, as it addresses also the case 

of a vertically non-isothermal atmosphere. 

 

In the first part of the work, we considered.separate types of modes in an unlimited isothermal 

atmosphere.  In the second part, we studied the possibility of realizing the modes at a temperature 

discontinuity, but for each half-space within the isothermal model. Therefore, we are of the opinion 

that the term “isotermic atmosphere” in the title is appropriate. 

 

p. 1, l. 23 "consisting of acoustic and gravity regions" - are those regions on the dispersion plane 

or in different parts of the atmosphere? 

 

We changed the sentence to «consisting of acoustic and gravity regions on the dispersion plane». 

 

p. 2, l. 30: the authors claim that the possibility of the existence of a new type of evanescent 

acoustic-gravity modes is proved in the paper. Could the authors explain why this mode has been 

missing from the vast amount of previous studies of this problem? In other words, which novel 

element (assumption or method) allowed the authors to identify this previously unknown mode. 

 

We assumed that wave disturbances may exist in a stratified compressible atmosphere that satisfy 

the new additional conditions. Under the assumption of perturbation incompressibility (divV = 0), 

the known ND mode was obtained, and under the assumption of perturbation inelasticity (div(ρ0V) = 

0) a new AE mode was obtained. In the text of the article indicated, under which assumption each of 

these modes is obtained. 

 

p. 3, l. 8: Please mention that the sound speed is determined by the temperature. 

 

We added in the text the definition of the atmospheric scale height in the form H = kT / mg, 

clearly indicating the dependence on temperature. 

 

Eq. (11): the RHS of the equation may be confusing: it is not clear that it actually consists 
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of two different lines corresponding to different signs on the LHS. Please modify 

the equation, by, e.g., adding a comma after k_x in the top raw, and a full stop after k_x 

in the bottom raw. 

 

Equation (11) was written in one line. 

 

It would be instructive to link the term "anelastic" with the terms "compressive" or 

"incompressive", which are commonly used in the solar atmospheric research. 

 

According to the physical meaning, ND mode is “incompressible” (divV = 0), the other 

considered modes, that is, NDp, AE, AEp modes, are “compressible” (divV ≠ 0). We use the term 

"anelastic" for disturbances with div(ρ0V) = 0. 

 

 The term "an unlimited atmosphere" would perhaps sound better as "an unbounded 

atmosphere". 

 

Replaced. 

 

p. 10, l. 8: Please give the physical meaning of this boundary condition. In other words, the 

continuity of which physical quantity or quantities should be kept across the interface? 

 

Obviously, if the atmosphere is barometric, then the equilibrium pressure p0 should be continuous 

across the interface, and hence the value of ρc2 also. In addition, for the perturbed values, we require 

continuity of the vertical velocity component Vz (kinematic condition) and perturbed pressure 

(dynamic condition). Under these assumptions, we obtained equations (29), (30). For more details 

see, for example, Tolstoy (1963), Rosental and Gough (1994), Cheremnykh et al. (2018a). 

  

Throughout the paper: please use "equation" instead of "equality". 

 

Corrected. 
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p. 11, l. 1: It is not clear how the 8th order polynomial in Eq. (31) is obtained from Eq.(30) which 

has a 4th order polynomial in the numerator. 

 

To get rid of the radicals in expressions (28), (29), which determine the values of a1 and a2, these 

expressions were squared several times when a polynomial was obtained. The procedure for 

obtaining a polynomial from boundary conditions (30) is described in Miles and Roberts (1992). 

Note that expression (31) is only part of the full polynomial expression obtained in Miles and 

Roberts (1992). Moreover, in (31) two non-physical roots are omitted. 

 

p. 15, l. 4: "the f-mode observed on the Sun should not be compared with the nondivergent 

ND mode, but with non-divergent pseudo–mode NDp." First of all, I think that the word 

"associated" would be better than "compared" in this context. Anyway, please 

explain the physical implications of this association (or comparison). 

 

We agree that "associated" better reflects the meaning of the statement. ND mode and pseudo – 

mode NDp have the same variance. Therefore, when observing ω (kx), these modes are 

indistinguishable. The modes differ in the sign of polarization (in one mode, the Vx oscillations are 

ahead of Vz by 90 °, and in the other mode they are 90 ° behind) and the pattern of amplitude 

variation with height. Physically, ND mode is "incompressible" (divV = 0), and NDp mode is 

"compressive" (divV ≠ 0). In the framework of the considered model, only the NDp mode can 

satisfy the condition of energy reduction in both sides of the interface if the temperature in the upper 

half-space is higher than in the lower half-space. 

 

Table 2 and 3: Please remind the abbreviations used in the tables (i.e., "L", "Lp", "BV", 

"BVp", etc.) in the captions. It would allow using those tables in review papers and 

presentations. 

 

We gave the full names of the modes in the headings of Tables 2 and 3.



6 
 

EVANESCENT ACOUSTIC-GRAVITY MODES IN THE ISOTHERMAL 

ATMOSPHERE: SYSTEMATIZATION, APPLICATIONS TO THE EARTH'S 

AND SOLAR ATMOSPHERES  
 

Oleg K. Cheremnykh, Alla K. Fedorenko, Evgen I. Kryuchkov, Yuriy A. Selivanov 

 

Space Research Institute NASU-SSAU, Kyiv, 03187, Ukraine 

Correspondence to: Yuriy A. Selivanov (yuraslv@gmail.com) 

 

Abstract. The objects of research in this work are evanescent wave modes in a gravitationally 

stratified atmosphere and their associated pseudo-modes. Whereas the former, according to the 

dispersion relation, rapidly decrease with distance from a certain surface, the latter, having the same 

dispersion law, differ from the first by the form of polarization and the nature of decreasing from the 

surface. Within a linear hydrodynamic model, the propagation features of evanescent wave modes in 

an isothermal atmosphere are studied. Research carried out for different assumptions about the 

properties of the disturbances. On this way, a new wave mode - anelastic evanescent wave mode - 

was discovered that satisfies the dispersion relation  12   gk x . Also, the possibility of the 

existence of a pseudo-mode related to it is indicated. The case of two isothermal media differing in 

temperature at the interface is studied in detail.  It is shown that a non-divergent pseudo-mode with a 

horizontal scale 121 H/~k x  can be realized on the interface with dispersion gk x2 . Dispersion 

relation  12   gk x  at the interface of two media is satisfied by the wave mode, which has 

different types of amplitude versus height dependencies at different horizontal scales xk . The 

applicability of the obtained results to clarify the properties of f-mode observed on the Sun is 

analyzed.  

 

Keywords: acoustic-gravity waves, evanescent wave modes, isothermal atmosphere, solar 

atmosphere, earth’s atmosphere 

 

1 Introduction  
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Acoustic - gravity  waves (AGWs)  in  the  Earth's  atmosphere  are  studied  theoretically  and  

experimentally  for  more than 60 years.  The linear theory of AGW (Hines, 1960; Yeh  and  Liu, 

1974;  Francis, 1975)  admits the existence in the atmosphere of a continuous spectrum of freely 

propagating waves, consisting of acoustic and gravity regions on the dispersion plane, as well as of 

evanescent modes, which can only propagate horizontally.  

The freely propagating AGWs effectively transfer the energy and momentum between various 

atmospheric layers and thus play an important role in the dynamics and energy balance of the 

atmosphere.  These waves are generated by various sources (both natural and technogenic ones), 

which are accompanied by a significant energy output into the atmosphere.  Further, when the 

AGWs propagate upward the energy conservation compensates for the decrease of the atmospheric 

density with the height by exponentially increasing amplitude.  Therefore at a certain height the 

waves become nonlinear. Significant progress in the development of the nonlinear theory of AGW 

was achieved by a number of authors, in particular, Belashov (1990), Nekrasov et al. (1995), 

Kaladze et al. (2008), Stenflo and Shukla (2009), Huang et al. (2014).  Numerical  modeling  of the 

freely  propagating  AGWs  in the realistic  viscous and heat-conducting atmosphere is an important 

area of modern studies of these waves (i.e. Vadas, 2012; Cheremnykh et al., 2010).  

Satellite observations of AGWs in the Earth’s polar thermosphere indicate a prevailing presence 

of waves with oscillation periods concentrated around the Brunt–Väisälä  period and of horizontal 

scale of about 500 - 700 km (Johnson  et  al., 1995;  Innis  and  Conde, 2002;  Fedorenko et al., 

2015). Azimuths of the propagation of these AGW demonstrate the close connection with the 

directions of background winds in the thermosphere.  Moreover, the amplitudes of the waves depend 

on the speed of headwind but do not depend on height (Fedorenko  and  Kryuchkov, 2013;  

Fedorenko et al., 2018). These experimental results cannot be sufficiently explained by the theory of 

freely propagating AGWs. They may indicate waveguide or evanescent (along a horizontal surface) 

propagation of at least part of the observed waves. 

As well as freely  propagating  AGWs, evanescent wave modes also play an important role in 

atmospheric dynamics of the Sun and planets.  Evanescent waves propagate horizontally in an 

atmosphere, vertically stratified by gravity, subject to the presence of vertical gradients of 

parameters. The energy of these waves should decrease both up and down from the level at which 

they are generated. Therefore, evanescent waves are most effectively generated in areas of presence 

of significant vertical gradients of temperature and density or strong local currents.  For example, in 

the solar atmosphere suitable conditions for realization evanescent modes occur at the boundary 
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between the chromosphere and corona (Jones, 1969).  In the Earth's atmosphere, such waves can be 

efficiently generated at sharp vertical temperature gradients, for example, at the base of the 

thermosphere or at the heights of the tropo- and mesopause.  Also, evanescent wave modes can 

emerge in the presence of strong inhomogeneous winds, for example, in the region of the polar 

circulation of the thermosphere.  

The study of evanescent waves traditionally gets less attention than the study of freely 

propagating AGWs. The most known of them are the horizontal Lamb wave and vertical oscillations 

with Brunt–Väisälä (BV) frequency (Beer, 1974; Waltercheid and Hecht, 2003).  In hydrodynamics, 

physics of terrestrial and solar atmosphere, the surface gravity mode with dispersion gkx2  is 

also well studied (Tolstoy, 1963; Jones, 1969). In particular, it was shown that it is the fundamental 

mode (f - mode) of oscillations in the solar atmosphere (Jones, 1969).  Experimental f - mode 

observations are used to study flows, refinement of the solar radius and other parameters of the Sun 

(Ghosh et al., 1995; Antia, 1998).  In the earth's atmosphere, evanescent waves are often observed at 

altitudes near the mesopause using ground-based instrumentation (Shimkhada  et al., 2009).  

In this paper, different types of evanescent acoustic-gravity modes characteristic of an 

isothermal atmosphere are investigated using a set of linearized hydrodynamic equations.  In 

particular, the possibility of the existence of a new type of evanescent acoustic-gravity modes with 

the dispersion  12   gk x  is proved in the assumption of anelastisity of the disturbance. 

Also the possibility of realization the evanescent modes in the model of a thin temperature gap 

studied. 

  

2 Evanescent  modes in the isothermal atmosphere  

 

Consider an unbounded ideal isothermal atmosphere, stratified in a field of gravity.  Linear 

perturbations in such a medium satisfy a set of four first order hydrodynamic equations (Hines, 

1960). These equations are convenient  to bring to a set of two second order equations for the 

perturbations of the horizontal xV  and vertical zV  particle velocities (Tolstoy, 1963):  
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where 0 ,  , g  denote background atmosphere density, ratio of specific heats, acceleration of 

gravity, respectively; gHc   is the sound speed,   mg/kTdzdH  00   is the density 

scale height, T is the temperature , k  is the Boltzmann constant, m  is the molecular mass of the 

atmospheric gas.  

Solutions to the system (1), (2) are usually searched for in the form: 

    xktizaVV xzx expexp~,  ,               (3) 

where  , xk  are cyclic frequency and horizontal component of the wave vector, respectively; 

parameter a   sets the vertical scale of the change in the amplitude of velocities,  Vx and Vz, with the 

height, z. For brevity, we will refer to a  as the stratification of the corresponding mode. 

The system (1), (2) allows, on the plot “frequency-wave number”, for the existence of gravity 

and acoustic regions of freely propagating waves, for which zik
H

a 
2
1  (Hines, 1960), where zk  

is the vertical component of the wave vector. Also, from (1), (2) we get the solutions in the form of 

evanescent wave modes having real a  and propagating horizontally (Waltercheid  and  Hecht, 

2003).  Solutions in the form of evanescent modes are usually obtained by imposing additional 

conditions on the perturbation properties.  

               

2.1    Non - divergent  and  pseudo - non - divergent  modes  

 

Let us note the well known in hydrodynamics approximation of perturbations incompressibility (see, 

e.g., Ladikov-Roev et al., 2010), for which  

0








z

V
x

VVdiv zx


 .                (4) 

In frames of this approximation, we obtain the following equations from (1), (2):  

x
Vg

t
V zx








2

2

 ,                              (5) 

x
Vg

t
V xz








2

2

 .                                (6) 

After substituting (3) into equations (5), (6) we find:  

zxx gVikV  2  ,  



10 
 

xxz gVikV  2  .   

This yields a dispersion equation for incompressible wave modes in the form  

gkx2 .                    (7) 

Given the dispersion found, we obtain an expression for the polarization of the incompressible 

modes:  

xz iVV   .                     (8) 

Further, from the condition (4) and polarization (8) we get xka  . Insofar as a  is real value then 

non - divergent  (ND)  wave mode has no periodic vertical solution and is horizontally propagating.  

Let us show that the dispersion relation (7) is also satisfied by another wave mode.  After using 

this relation in (1), (2) we get:  

    0)11  aHiVHkV zxx   ,              (9) 

  011
2











xx
zx k

a
k
HaVHaiV 

  .                 (10) 

From the system (9), (10) follows:  

  012  Hk
H
k

H
aa x

x  ,  

which implies that there are two solutions to this equation: 

xka   , xk
H

a 
1 .                 (11) 

The first solution in (11) corresponds to the non-divergent (ND) wave mode, and the second 

one we call pseudo-non-divergent mode (NDp).  The expression for polarization NDp is obtained 

from (9) and has the form:  

zxxx V
H

kik
H

V 






 















11  .   

Also for this mode holds the equation  

 
 Hk

Hk
H
V

Vdiv
x

xz





1

21
 ,  

which shows that for NDp mode 0Vdiv


 only when Hk x 2/1 .  
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2.2   Anelastic and pseudo-anelastic modes  

    

Let us show that equations (1), (2) indicate that another wave mode, not previously studied, may 

exist. To do this, we introduce, according to Bannon (1996), the anelastic linear perturbations, which 

satisfy the condition 

  00 Vdiv


  .                       (12)  

In the isothermal atmosphere with barometric density distribution we have 

,00

Hz






 

therefore, for such anelastic perturbations, the following equation holds: 

H
VVdiv z


 .                            (13) 

Substituting (13) into equations (1), (2) we get:  

 
x

Vg
t
V zx






 12

2

  ,  

 
x

V
g

t
V xz








12

2

  .                 

Thus, given (3), should:  

  zxx VgikV 12    ,                      (14) 

  xxz gVikV 12    .                        (15) 

Then the dispersion equation for anelastic (AE) modes takes the form:  

 12   gk x .                        (16)  

With the resulting dispersion, polarization follows from equations (14), (15):  

zx iVV   .                          (17) 

Further, taking into account (13), we obtain xk
H

a 
1 .  Consequently, the AE mode also does not 

have a solution periodic vertically and can only propagate horizontally. 

After substituting the dispersion (16) into equations (1), (2) we get:  

    011  )aHiVHkV zxx   ,                  (18) 



12 
 

  011
2
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
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




xx
zx k

a
k
HaVHaiV 

  ,                 (19) 

whence we get a pair of values a , identical to (11). Consequently, there is another wave solution 

that satisfies the equation (16), we call it pseudo-anelastic (AEp) mode.  The first value in (11) 

corresponds to the AEp wave mode, and the second – to the AE one.  

Polarization of the AEp mode has the form:  

zxxx Vk
H

i
H

kV 










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


 



 11

    

that follows from (18) or (19).  

  

3     General properties of evanescent modes 

  

Let us prove that the different types of evanescent modes characteristic of an isothermal atmosphere 

are related.  We substitute (3) into system (1), (2) without additional conditions that were imposed in 

Section 2 when deriving ND and AE mode.  As a result, we get:  
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
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where  


 12 


H
gN  is the square of the Brunt-Väisälä frequency.  

From system (20), (21) we obtain the dispersion equation:  
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 .                  (22) 

Expressions 22 N  and 222 ck x  are well-known dispersions of Brunt-Väisälä  

oscillations with H/a 1  and Lamb waves (L) with   H/a  1 . In addition to these known 

modes, dispersion (22) also admits the existence of additional solutions in the form of BV pseudo-

modes (BVp) with 22 N ,   H/a  1  and Lamb pseudo-modes (Lp) with 222 ck x , 

H/a 1  (Beer, 1974;  Waltercheid and  Hecht, 2003).  
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 Then represent (22) in the form of a quadratic equation with respect to a :  

  0122

22
2

2

2
2  




c
gk

k
cH

aa x
x  .   

The solution to this equation is:  

     2

22

22

2
11

2
1







 




H
k

c
gkgk

H
a x

xx


  .               (23) 

From which it follows that for modes with dispersions  12   gk x  and gk x2  there are two 

possible values: xka   and xk
H

a 
1 .  The first value corresponds to modes ND and AEp, and the 

second - NDp and AE.  

Thus, each evanescent mode can be associated with a pseudo-mode, which satisfies the same 

dispersion relation, but differs in polarization and dependence of the amplitude from the height, i.e., 

in its stratification. Table 1 presents the properties of different evanescent modes, characteristic of 

the isothermal atmosphere: BV oscillations, Lamb waves, non-divergent and anelastic modes, along 

with associated pseudo-modes: BVp, Lp, NDp, AEp. Table 1 shows that for all pseudo-modes, the 

polarization changes depending on the value of xk . Wave modes AE and ND at Hk x 2/1  

completely coincide with AEp  and NDp, respectively. 

The location of the dispersion curves for anelastic and non-divergent modes relative to gravity 

and acoustic regions in the (, kx) plane is shown in Fig. 1. The  12   gk x  mode touches the 

gravity region of freely propagating AGWs at the same value Hk x 2/1  at which the gk x2  

curve touches the acoustic region (see Figure 1).  In this case, the dispersion curves of AE and ND 

modes are symmetric relative to the “characteristic” curve (see Beer, 1974), which separates the 

AGW acoustic region from the AGW gravity region.  In fact, the characteristic curve is the 

geometric mean of the dispersion curves of AE and ND modes with   cNkgk xx  1222   .  

From Figure 1 we see that the dispersion curves of different evanescent modes have intersection 

at separate points.  Lamb dispersion curve with 222 ck x  intersects with BV curve with 

22 N  at the point cNk x / . However, these modes cannot interact with each other by reason 

of different polarizations and values of a . At the same time, the pairs Lp - BV and L - BVp 

completely coincide in these properties and are indistinguishable at the intersection points.  
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Dispersion curves gkx2  and  12   gkx  intersect with the Lamb curve and the BV 

curve at points Hkx /1  ,   Hkx  /1 . In addition, the ND mode curve  intersects with the 

Lamb curve at the same value xk , at which the AE mode curve intersects with the BV curve (see 

Fig. 1).  ND and AE modes cannot interact with the Lamb mode and BV oscillations due to different 

polarizations (Table 1).  Pseudo-modes  NDp  and  AЕp, at the points of intersection with the Lamb 

wave and the BV oscillations, have the same polarization and values of a .  Similarly, ND  and  AE 

are indistinguishable at the points of intersection with Lp and BVp. Table 2 shows all evanescent 

modes that coincide with each other at the points of intersection of the dispersion curves, and 

between which interaction is possible.  The cases of ND and AE mode curves intersection with 

curves ( H/a 21 ), which separate the area of freely  propagating  AGWs from the evanescent 

area, are not presented in Table 2.  

  

4      The energy of evanescent modes in an isothermal atmosphere  

  

In Sections 2 and 3, we considered a model of an unbounded isothermal stratified atmosphere to 

determine which types of evanescent  modes can satisfy the initial system of equations (1), (2).  

However, in an infinitely extended medium, the necessary condition for the existence of evanescent 

modes is the absence of unlimited growth of oscillation energy above and below the height level at 

which they are generated. It is easy to verify that in an isothermal infinite atmosphere, none of the 

modes listed in Table 1 satisfy this condition.  

Suppose further that an evanescent wave is generated at a certain altitude level 0z . The 

kinetic energy density   22~ zx VVzE   of waves should decrease both up and down from the level 

0z . When z  the energy density 012exp~ 





  z

H
aE , if Ha 2/1 , and E , if a 

Ha 2/1 .  When z  the energy density 0E  , if a Ha 2/1  and E  , if a 

Ha 2/1 .  Based on these considerations, it is not difficult to understand how the energy density 

varies with height for different types of evanescent modes in an infinite isothermal atmosphere (see 

Table 3). Therefore, for the realization of such modes, it is necessary to have boundaries in the 

medium at which the condition for reducing energy in both directions from this boundary can be 

satisfied.  
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The presence of boundaries is not the only condition that can limit the energy of the evanescent 

mode.  If the equality H/a 21 holds for these modes, then their energy is not varies with height in 

an isothermal atmosphere.  For an infinite atmosphere, this solution does not seem to be physical, 

but it can make sense for a real atmosphere of finite height.  As follows from (11), for the ND and 

AE modes, as well as their pseudo-modes, the condition H/a 21  performed at the point 

H/k x 21 .  Also, at this point, the ND mode is identical to the NDp mode, and the AE mode 

completely coincides with AЕp.  In addition, when H/k x 21  these  evanescent modes adjoin the 

border of regions of freely  propagating  AGW (see Fig.1).  

Consider some features of the energy balance for the evanescent modes.  It follows from 

equation (20) that: 
2

22

2
22

2

2
2 1 















 

ck
Vk

c
gaV

x
xxz

  .                   (24) 

Combining equations (22) and (24) gives the relation:  







 

























 a

c
gNV

g
Na

ck
V z

x
x 22

2
2

0

2

22

2
2

0 11


  .               (25) 

The average density of the kinetic energy of the perturbations is  22
04

1
zxk VVE    and of the 

potential energy is 







 2

2
2

22

2
2

04
1


 NV

ck
VE z

x
xp  (Yeh, Liu, 1974; Fedorenko, 2010).  Therefore, 

from equation (25) it follows that for the evanescent modes pk EE  . At the same time, for freely  

propagating  AGWs is always fulfilled the equality pk EE   (Yeh, Liu, 1974).  At the point 

H/a 21  where evanescent modes on the plane (, kx) in Fig. 1 are adjacent to areas of freely 

propagating AGWs, the equality a
c
g

g
Na  2

2

 holds.  Taking this circumstance into account, 

from (25) we obtain:  

  







 2

2
2

22

2
20220

44 
 NV

ck
VVV z

x
xzx  ,                  (26) 

that is, at this point pk EE  .  
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5      Evanescent modes at the interface of isothermal media  

 

Let us consider the possibility of realization of evanescent modes in the atmosphere at a thin 

interface between two isothermal half-spaces of infinite extent, which differ in temperature T. Let 

the boundary be localized at some altitude level 0z .  In the lower half-space ( 0z ) we have 

1TT  , while in the upper half-space ( 0z ) we have 2TT   and it is assumed that 12 TT  . Note 

that a similar model was considered by Rosental and Gough (1994). We will search for solutions to 

the system (1), (2) in the form of     xktizaVV xzx expexp~, 1  for the lower half-plane and in the 

form     xktizaVV xzx expexp~, 2  for the upper half-plane.  Substituting these dependencies 

into (1), (2) yields:  

21

2

2
122

2
1

2

2
11

1 4
1

2
1

/

xx
Nkk

cHH
a 











  ,                  (27) 

2/1

2

2
222

2
2

2

2
22

2 4
1

2
1












 Nkk
cHH

a xx  .                      (28) 

Here  indices 1 and 2 denote the values in the lower and upper half-spaces, respectively.  

The density of the kinetic energy of evanescent waves should decrease from the level 0z  

both up and down. This condition limits the possible values of 1a  and 2a . In the upper half-space     

( 0z ), when z  the energy density 012exp~
2

22 







 z

H
aE , if 22 2/1 Ha  .  In the 

lower half-space ( 0z ), when z  the energy density 012exp~
1

11 







 z

H
aE , if 

11 2/1 Ha  .  Therefore, it is necessary to take in the expression (27) for  1a   the solution with a “+” 

sign  and in expression (28) for 2a , with a “-” sign, so that the energy decreases on both sides of the 

interface.  

It is also necessary to consider that the possible values of 1a  and 2a  must satisfy the boundary 

condition (Tolstoy, 1963; Rosental and Gough, 1994),  arising from (1), (2): 

  

0
22

2
2

2
22

2
22

0
22

1
2

1
22

2
11









zx

x

zx

x

kc
agk

c
kc
agk

c








  ,                (29) 
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where 1  and 2  are the densities on both sides of the boundary. The procedure for deriving 

equality (29) is exactly the same as in the papers by Cheremnykh et al. (2018a) and Cheremnykh et 

al. (2018b). When obtaining (29) we require continuity of the vertical velocity component  

(kinematic condition) and perturbed pressure (dynamic condition). In the barometric 

atmosphere we have 0
2 pc   , where 0p  is the equilibrium pressure, which must be continuous 

across the interface.  Therefore, when 21    equation (29) can be written as:  

22
2

2
2

22

22
1

2
1

22

x

x

x

x

kc
agk

kc
agk














 .                      (30) 

Dispersion dependencies of  xkf  calculated numerically by means of the expression (30) 

are shown in Fig. 2a for different values of the parameter 12 / HHd  .  On each of these curves, the 

condition for decreasing energy up and down from the interface is satisfied.  The long-wavelength 

part of the spectrum, where the most interesting features appear, is shown in more detail in Fig. 2b. 

Also shown in these figures are the dispersion curves gk x  and  1  gk x  for the ND 

and AE wave modes. The discontinuities of the  xkf  curves, as well as their cut-off for 

smaller xk  values, are  due to requirements 11 2/1 Ha   and 22 2/1 Ha  .  Some features of the 

behavior of  xkf  will be discussed below.  

As shown by Miles and Roberts (1992), the dispersion equation (30) can be rewrited to a 

polynomial form suitable for analysis:  

             0111212112 2624
1

2242
1

422424
1

622
1

8  gkdcgkdcgkkdckdc xxxxx 
. (31)  

 Non-physical solutions (Miles and  Roberts, 1992) arising from quadratic expressions under the 

radicals were excluded from consideration while obtaining equation (31) (see (27), (28)). 

Expressions (31) can be analyzed by examining their asymptotic behavior. 

If 22
1

2 ckx , then from (31) we get:  

 
 

0
1
1

1
2 22

2

2
2

2
14 







 gk
d
d

d
N

x  .   

It follows from this expression:  
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  



 


 2224

1
2

1
2 1

1
1 gkdNN

d x  .                   (32) 

The expression (32) contains an interesting dependence of the frequency on the parameter .d  In the 

limit d , the dispersion gkx2  of the ND (NDp) mode, independent of the properties of 

both environments, follows from (32).  With 1d  and using (32), we obtain the dispersion of the 

BV (BVp) mode with the parameters of the lower medium, that is, 2
1

2 N .  The indicated 

asymptotic features are visible on the curves shown in Fig. 2 below.   

In the long-wave limit, i.e., at 0xk , from (31) it follows:  

        0111212 424
1

222
1

4  xx kdckdc  .   

Hence we find:  

       124111
12

22
22

12 


 


 ddd
kc x  .                (33) 

 For the considered small xk , for different values of d, from (33) we obtain the family of Lamb-

type acoustic modes (see Fig. 2b).  For large values of d , using (33), we obtain the expression 
22

2
22

1
2

xx kcdkc  , i.e. the oscillation frequency is determined by the characteristics of the medium 

in the upper half-space.  

The evanescent modes frequencies lie on the  xk,  plane between the acoustic and gravity 

regions of freely propagating AGW determined for upper and lower media separately (see Fig. 1).  It 

is necessary to take into account when considering evanescent modes at the boundary of two 

isothermal media with different temperatures, that the evanescent regions are different in the upper 

and lower half-planes. On the  xk,  plane, these regions are shifted relative to each other the 

more, the more is the value of d . At the same time, the wave modes at the interface of the media 

should remain evanescent in both media, and their dispersions should be enclosed within the overlap 

region of two evanescent regions.  The cut-off curves for evanescent regions in the media under 

consideration are obtained in case of the null expressions under the radicals in (27) and (28). Gaps 

on the  xkf  dispersion curves are due to the evanescent areas of the two media do not match 

(see. Fig. 3).  
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Note that the dispersion curves  xkf  for values 4d  are mostly inside both evanescent 

regions (see Fig. 3a, 3b), except for the longest waves. When 4d , the dispersion curve  xkf  

breaks into two separate branches (see Fig. 3 c , 3 d).  The long-wave branch is acoustic, and another 

branch with 14.0 Hk x   is surface gravity by its physical nature.  

                

6     Characteristic scales of ND and AE evanescent modes on  the discontinuity  

 

In an unlimited isothermal medium, evanescent modes are separate “pure” solutions of 

hydrodynamic equations. At the interface between two isothermal media with different 

temperatures, dispersion of the evanescent modes have a combined character, composing different 

types of “pure” modes, depending on the value of the parameter d  and spectral properties  xk .  

For some values of d , the curves of the dispersion equation (30) approach fairly close to the 

curves gkx2  and  12   gk x , and also intersect them at different points. These intersection 

points correspond to the specific value of xk , at which the dispersions of the ND and AE modes are 

realized, in the model under consideration, in a “pure” form.  Let us now examine these cases in 

more detail.  For this purpose, we substitute the dispersion relations gk x2  and  12   gkx  

directly into (27), (28), and then into the boundary condition (30).  

As was shown in Section 2, for dispersion relations gkx2  and  12   gk x , values 1a  

and 2a  coincide and are determined by expressions (11). Consider the valid values of 1a  and 2a  for 

these dispersions with regard to the requirement of energy decay in both directions from the 

interface 11 2/1 Ha   and 22 2/1 Ha  .    

             

6.1     Dispersion of the form gkx2   

 

For a dispersion of the form gkx2 , we first analyze the stratification of the ND mode with 

xka 1 , xka 2 .  In order for the energy of this mode to decay in both directions from the 

discontinuity, the following inequalities 21 2/12/1 HkH x   must be satisfied, i.e., 21 HH  .  

Therefore, ND mode can be realized at the discontinuity, if the ambient temperature in the upper 
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region is less and the density is greater than they are in the lower region.  This situation corresponds 

to the unstable state of the atmosphere (see Roberts, B., 1991).  

Take the stratification of the NDp modes in the form of xk
H

a 
1

1
1 , xk

H
a 

2
2

1 . The 

energy in this case decreases both ways from the discontinuity, if 12 2/12/1 HkH x  , i.e. when 

12 HH  .  This condition corresponds to the stable state and the case under consideration.  For the 

NDp mode from the dispersion equation (30) we get:  
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
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


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


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


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


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


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




21
1

12
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121121
H

kk
H

H
H

kk
H

H xxxx 
 , 1/1 Hk x   , 2/1 Hk x   .         (34)  

From (34) it follows:  

  













1
811

4
1

2
1 d

d
dH

dk x 
 .                     (35) 

Figure 4a shows values of  xk   for which the dispersion curve gk x2   intersects with the 

calculated dispersion curve   xkf  depending on the parameter d .  The upper solid curve in 

this figure corresponds to the solution (35) with the sign “+” before the radical and shows the points 

of intersection with the shorter wavelength branch.  The lower dashed curve corresponds to the 

solution with a sign “–” and represents the points of intersection with the long-wavelength branch.  

For the upper curve 12/1 Hk x   when d . For 5.2d , there are no intersections of the 

curve  xkf  calculated numerically from (30) with the curve for the dispersion gkx2 .  

When combining the stratifications for ND modes as xka 1  and for NDp modes as  

xk
H

a 
2

2
1 , equation (30) yields the only possible value of 221 H/kx  . For a combination of 

stratifications xk
H

a 
1

1
1  (NDp) , xka 2  (ND) we get 12/1 Hk x  .  Both of these cases do not 

satisfy the condition of energy decrease with height.  

Thus, consideration of the possible values of 1a  and 2a  leads to the conclusion that on the 

interface of two isothermal media with 12 HH   can only be implemented NDp mode with a 

dispersion gk x2  and a specific scale 121 H/~kx .  
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6.2    Dispersion of the form  12   gkx    

 

For the AE stratification of the form xk
H

a 
1

1
1

, xk
H

a 
2

2
1

 and for the AEp  stratification of 

the form xka 1 , xka 2 , from the dispersion equation (30) follows the identity 21 HH  . 

Therefore, such modes do not realize at a temperature discontinuity.  Apparently, to study the 

conditions of realization of AE and AEp modes, it is necessary to consider atmospheric models in 

which height profile  zH  is continuous.  

It should be noted that for the dispersion of the form  12   gkx , cases of combined modes 

stratifications are possible, satisfying the condition of decreasing energy on both sides of the 

boundary.  So, for the combination of stratifications xka 1  (AEp), xk
H

a 
2

2
1  (AE) from (30) 

we obtain the relation:  

  




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 
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1
12

12
H

kHkH xx 
  .   

Whence   dH
kx 







2
1

1

 .  In this case, the inequality    2/d  must be satisfied.  When 

3/5  we get the following restriction: 5d . Given this limitation and condition 12/1 dHkx  , 

we obtain that a mode with a dispersion of  12   gk x  and stratification of AE type for the 

upper half-space and of AEp type for the lower half-space can propagate at the boundary in the 

range 51  d and for 12/1 Hk x  . For the stratifications xk
H

a 
1

1
1  (AE), xka 2  (AEp) from 

equation (30) we obtain the relation:  

 

 







 
 21

1
2

2 xx kH
H

kH  .   

 It implies the ratio   






2
1

1 dH
kx , in which the parameter d  can take any values with 1d , 

and the horizontal wave number is limited by the inequality 12/1 Hkx  . Features of the behavior of 

the  12   gk x  mode at the discontinuity, depending on the scale xk  are shown in Fig. 4b.  
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7     Discussion  

  

Let us dwell on some of the results in terms of their use for the analysis of experimental data.  

With the f-mode observed on the Sun, one should identify the mode that we classify as ND 

mode, for which gkx2 ,  zkV xz exp~  and 0Vdiv


 (Roberts, B., 1991).  In the framework of 

the considered temperature discontinuity model, it was shown that with 21 TT   (corresponds to the 

chromosphere-corona interface) the condition for decreasing amplitude with height to both sides of 

the interface is satisfied only by the NDp mode with gk x2 , zk
H

V xz 





 

1exp~  and 0Vdiv


.  

When the ratio d  (i.e., 12 HH ), the NDp mode with 12/1 Hk x  asymptotically 

approaches ND mode.  On the interface between the chromosphere and the solar corona d  is large, 

but of finite magnitude: 50~d  (Athay, 1976; Jones, 1969). Therefore, the condition  of the 

presence of a free surface, which is required for the realization of the ND mode, is fulfilled only 

approximately.  Therefore, in the framework of the temperature discontinuity model, the f - mode 

observed on the Sun should not be associated with the non-divergent ND mode, but with non-

divergent pseudo – mode NDp.  

For the Earth's atmosphere, the maximum possible value of d  is observed at the interface 

between the thermosphere with KT 1500800~2   (depending on solar activity) and the underlying 

atmosphere with KT 300~1 . When 5d , the dispersion (30) asymptotically tends 

to  12   gkx  with xk . Therefore, it can be expected that evanescent modes in this case 

will be close to  12   gk x . 

 In other layers of the earth's atmosphere we have 3.1d (Jursa, 1985). As follows from (33), 

for small values of 3.1d  and for the wavelengths in the interval   15.15.0~ Hk x  , the relation 

22 N is satisfied (see Fig. 2). Therefore, it can be expected that at small positive temperature 

gradients in the atmosphere, waves with a frequency close to the frequency of Brent-Väisälä should 

prevail.  These conclusions experimentally confirm (Shimkhada et al., 2009) the results of 

observations of short-period evanescent waves with small wavelengths at altitudes near the 

mesopause.   

              

8      Main results  
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In the paper, different types of evanescent acoustic-gravity modes characteristic of an isothermal 

atmosphere are investigated.  A new mode was derived in the form of anelastic acoustic-gravity 

wave mode with the dispersion equation  12   gk x . The main properties of the AE mode 

are presented in Table 1 in comparison with other known evanescent modes.  It is shown that for 

both anelastic and non-divergent modes there are pseudo-modes that satisfy the same dispersions, 

but having different polarization and the dependence of the amplitude of the disturbances on the 

height.  

For AE and ND evanescent modes, the value of Hk x 2/1  sets a special scale (wavelength) at 

which these modes are identical to their pseudo-modes AEp and NDp. In addition, at the same point 

they are adjacent to the boundaries of the continuous spectrum (AE mode to the gravity region, and 

ND mode to the acoustic region, respectively).  

The features of the evanescent modes realization at the interface of two isothermal media are 

considered.  It is shown that in this case, dispersions of evanescent modes are combined, merging 

the features of different types of modes characteristic of an unbounded isothermal atmosphere. This 

effect is most pronounced in the following asymptotic cases: 1) when d , we obtain the 

dispersion for the ND (NDp) mode in the form gkx2 ;  2) when 1d , for scales 1~ Hk x , a 

mode with 2
1

2 N  is realized;  3) for 0xk , a Lamb wave with a dispersion relation of the form 

22
2

2
xkc  is obtained, which depends only on the parameters of the medium in the upper half-

space.  

It was demonstrated that on the interface of two isothermal media with 12 TT  , the NDp mode 

with the dispersion gk x2  and the selected scale 12/1~ Hk x  is realized. At the same time, the 

ND mode does not satisfy the condition of decreasing energy on each side of the interface.   

Dispersion  12   gk x  on the interface of two media is satisfied by the wave mode, which 

has different types of amplitude versus height dependencies at different horizontal scales xk .  When 

12/1 Hkx  , the height dependence of AE amplitude for 0z  and AEp amplitude for 0z  satisfy 

the condition of decreasing energy from the interface. On the contrary, when 12/1 Hkx  , this 

condition is satisfied by AEp amplitude for 0z  and AE amplitude for 0z .  

It is important to note that according to our analysis in the framework of the temperature 

discontinuity model: (1) the f - mode observed on the Sun should not be associated with the non-
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divergent ( gkx2 , 0divV ) mode, but with its non-divergent pseudo–mode ( gkx2 , 

0divV ). (2) At the interface between the earth’s thermosphere and the underlying atmosphere it 

can be expected that evanescent modes with short wavelengths will be close to the new mode 

(  12   gk x ). (3) Oscillations with a frequency close to the frequency of Brent-Väisälä should 

prevail at altitudes near the earth’s mesopause. 
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Table 1.  Properties of different evanescent acoustic-gravity modes 

Mode type Dispersion a  Polarization 

Lamb Wave (L) 
222 ck x  

H
 1  0zV ; 0xV  

Lamb's Pseudo-mode (Lp) 
H
1      zxxx VckNigkV 2222    

BV Oscillations (BV) 
22 N  

H
1  0xV ; 0zV  

BV Pseudo-mode (BVp) 
H

 1      zxxx gVkiNckV  2222  

Non-divergent (ND) 
mode, 0Vdiv


 

gkx2  
xk  zx iVV   

Pseudo-non-divergent 
mode (NDp), 0Vdiv


 xk

H


1  zxxx V
H

kik
H

V 






 















11

 

Anelastic mode (AE), 

  00 Vdiv


  
 12   gkx  

xk
H


1  zx iVV   

Pseudo-anelastic mode 
(AEp),   00 Vdiv


  xk  zxxx Vk

H
i

H
kV 
















 



 11
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Table 2.  The coincidence of the evanescent mode properties at the intersection points of the 

dispersion curves *  

 Lamb 
Wave (L) 

Lamb's 
Pseudo-

mode  
( Lp) 

 BV 
Oscillations 

(Bv) 

BV 
Pseudo-

mode  
(Bvp) 

 Non-
divergent 

mode 
(ND) 

 Pseudo-
non-

divergent 
mode 
(NDp) 

 
Anelastic 

mode  
(AE) 

 Pseudo-
anelastic 

mode 
(AEp) 

 BVp 
 NDp 
 AEp 

 BV 
 ND 
 AE 

 Lp 
 NDp 
 AEp 

 L 
 ND 
 AE 

 Lp 
 BVp 

 

 L 
 BV 

 

 Lp 
 BVp 

 

 L 
 BV 

 
  

* Note.  The bottom rows show the modes that are indistinguishable from the corresponding 

mode of the top row at the point of intersection of the dispersion curves.  
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Table 3. The change in energy density of evanescent modes with height in an infinite isothermal 

atmosphere  

D
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do
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e 

(A
E

p)
 

z
 

0E
 

E
 

E  0E
 

0E , 
Hk x 2/1

E , 
Hk x 2/1

 

0E , 
Hk x 2/1

E , 
Hk x 2/1  

0E , 
Hk x 2/1

E , 
Hk x 2/1

 

0E , 
Hk x 2/1

E , 
Hkx 2/1

 

z
 

E
 

0E
 

0E  E
 

E , 
Hk x 2/1

 

0E , 
Hk x 2/1

 

E , 
Hk x 2/1  
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E , 
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0E , 
Hk x 2/1

 

E , 
Hk x 2/1

 

0E , 
Hk x 2/1
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 Fig.  1. Dispersion dependencies  xkf  : 1) boundaries between acoustic and gravity regions 

for  freely propagating waves (dashed lines); 2) evanescent mode: gk x  (upper solid curve) 

and  1  gk x  (lower solid curve), N  (thin horizontal line), ck x  (thin sloping 

straight line) 
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Fig.  2. Dispersion dependencies  xkf  at the boundary of the discontinuity for different values 

of the parameter d .  General dependence (a), long-wave part in more detail (b). Thin curves denote 

gk x (upper curve) and  1  gk x  (lower curve), N  (horizontal line) 
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Fig.  3. Dispersion dependencies of the  xkf  type at the temperature discontinuity boundary 

for 2d  (a), 3d  (b), 5d  (c), 20d  (d). The dashed curves represent the boundaries of 

the areas with free propagation of AGW in the upper and lower half-space. Thin curves 

denote gk x (upper curve) and  1  gkx  (lower curve) 
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 Fig.  4. Horizontal scales 1Hkx , on which the modes with the dispersion gkx2  (a) and 

 12   gk x  (b) are realized, depending on 12 / HHd   


