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Abstract:  10 

Comparative analysis of MISR, MODIS, and AERONET AOD products performed over 11 

seven AERONET stations located in the Middle East and North Africa for the period of 2000 12 

– 2015. Sites are categorized into dust, biomass burning and mixed. MISR and MODIS 13 

AODs agree during high dust seasons but MODIS tends to underestimate AODs during low 14 

dust seasons. Over dust dominating sites, MODIS/Terra AOD indicates a negative trend over 15 

the time series, while MODIS/Aqua, MISR, and AERONET depict a positive trend. A 16 

deviation between MODIS/Aqua and MODIS/Terra was observed regardless of the 17 

geographic location and data sampling. The performance of MODIS is similar over all region 18 

with ~68% of AODs within the  confidence range. MISR AOD 19 

retrievals fall within 72% of the same confidence range for all sites examined here. Both 20 

MISR and MODIS capture aerosol climatology; however few cases were observed where 21 

one of the two sensors better captures the climatology over a certain location or AOD range 22 

than the other sensor. 23 
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 27 

1. Introduction 28 

The Middle East and North Africa host the largest dust source in the world, the Sahara Desert 29 

in North Africa that may be responsible for up to 18 percent of global dust emission (Todd 30 

et al., 2007, Bou Karam et al. 2010, Schepanski et al. 2016). The vast 650,000 km2 Rub’ al 31 

Khali (Empty Quarter) sand desert is a major source of frequent dust outbreaks and severe 32 

dust storms that has major effects on human activities in the Arabian (Böer, 1997 Elagib and 33 

Addin 1997, Farahat et al., 2015). 34 

Air quality over the Arabian Peninsula has received significant attention during the past 15 35 

years due to unprecedented overall economic growth, and a booming oil and gas industry, 36 

however, air pollution studies are still far from complete. Frequently blowing dust storms 37 

play a significant role in pollutant transport over the Arabian Peninsula; and major 38 

environmental pollution events such as burning of Kuwait oil fields during the 1991, Gulf 39 

War resulted in a large environmental impact on the Arabian Gulf Area Sadiq and McCain 40 

(1993) and Farahat 2016. 41 

Aerosol optical depth, AOD, is a parameter to measure the extinction of a beam of light as it 42 

passes through a layer of atmosphere that contains aerosols. Both satellites and ground-based 43 

instrument can be used to measure AOD in the atmosphere, but within the same temporal 44 

coordinates and geographic location different instrument could generate different retrievals 45 

Kahn et al., 2007, Kokhanovsky et al., 2007, Liu et al., 2008 and Mishchenko et al., 2009.  46 

Since the turn of the 21st century, an upward trend of remotely sensed and ground-based 47 

AOD and air pollutants was observed over the Middle East and North Africa (El-Askary 48 

2009, Ansmann et al. 2011, Yu et al. 2013, Chin et al. 2014, Yu et al. 2015, Farahat et al. 49 

2016, Solomos et al. 2017. This positive trend is attributed to the increase in the Middle 50 

Eastern dust activity (Hsu et al., 2012) due to changes in wind speed and soil moisture Ginoux 51 

et al. 2001 and Kim et al. 2013. (Yu et al., 2015) concluded that the persistent of the La Niña 52 
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conditions (Hoell et al., 2013) have caused increment in Saudi Arabian dust activity during 2008 59 

– 2012.  Energy subsidies also encourages over energy consumption in the Middle East and 60 

North Africa with little incentive to adopt cleaner technology. Lack of applying strict 61 

environmental regulations have permitted exacerbated urban air pollution.  62 

During the last two decades, a large number of satellites, ground stations and computational 63 

models contributed to build global and regional maps for the temporal and spatial aerosol 64 

distributions. While, ground-based stations and field measurements can identify aerosols 65 

properties over specific geographic locations, the spare and non-continues data from ground-66 

based sensors scattered over the Middle East and North Africa is not sufficient to provide 67 

information on spatial and temporal trends of particulate pollution. On the other hand, 68 

satellites imagery could provide a significant source of data mapping over larger areas.  69 

For its wide spatial and temporal data availability space-born sensors are important sources 70 

to understand aerosols characteristics and transport, however low sensitivity to particle type 71 

under some physical conditions, high surface reflectivity, persistent cloud, and generally low 72 

aerosol optical depth could limit satellite data application in characterizing properties of 73 

airborne particles, especially in the Middle East.  74 

In order to evaluate the efficiency of space-borne sensors in representing ground observations 75 

recorded by AERONET stations we have performed detailed statistical inter-comparison analysis 76 

between satellite AOD products and AERONET for seven stations in the Middle East and North 77 

Africa representative for dust, biomass burning, and mixed aerosol conditions (Dubovik et al., 78 

(2000, 2002, 2006), Holben et al. (2001), Derimian et al., (2006), Basart et al. (2009), Eck 79 

el. (2010), Marey et al., 2010, Abdi et al., (2012)). Previously we analysed these seven 80 

AERONET stations to understand particles categorization and absorption properties (Farahat 81 

et al. 2016), and the current study extends the analysis to the satellite datasets.  82 
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In the first part of this article, we validated MISR and MODIS retrievals against collocated 83 

AERONET observations. We also assessed the consistency in aerosol trends between space-84 

borne sensors and ground-based data.  85 

In the second part, we evaluated representativeness of satellite-derived aerosol climatology 86 

over the study region from the long-term AERONET data for MISR and MODIS AOD 87 

products. It is especially relevant for the MISR instrument, as its sampling is limited by once 88 

per week observations of the same region from the two overlapping paths.  MODIS provides 89 

nearly daily observations to the same geographic location; however, the quality of the product 90 

diminishes over the bright targets potentially affecting MODIS-derived aerosol climatology.  91 

The collocated MISR, MODIS and AERONET data were obtained at the MAPSS website 92 

(http://giovanni.gsfc.nasa.gov/mapss.html).  93 

 94 

2. Materials and Methods  95 

2.1 MISR 96 

The Multi-angle Imaging SpectroRadimeter (MISR) instrument to measures tropospheric 97 

aerosol characteristics through the acquisition of global multi-angle imagery on the daylight 98 

side of Earth. MISR applies nine Charge Coupled Devices (CCDs), each with 4 independent 99 

line arrays positioned at nine view angles spread out at nadir, 26.1o, 45.6o, 60.0o, and 70.5o. 100 

In each of the nine MISR cameras, images are obtained from reflected and scattered sunlight 101 

in 4 bands blue, green, red, and near-infrared with a centre wavelength value of 446, 558, 102 

672, and 867 nm respectively. The combination of viewing cameras and spectral wavelengths 103 

enables MISR to retrieve aerosols AOD over high reflection surfaces like deserts.  104 

In this study, we use MISR version 22 (V22) AOD retrievals at 558 nm (green band) 105 

measured by MISR instrument with a 17.6 km resolution aboard the Terra satellite. MISR 106 

Level 2 aerosol retrievals use only data that pass angle-to-angle smoothness and spatial 107 

correlation tests (Martonchik et al. 2002), as well as stereoscopically derived cloud masks 108 
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and adaptive cloud-screening brightness thresholds (Zhao and Di Girolamo, 2004). MISR 110 

version 23 (V23) retrievals, released on February 2018, was not used in this study, as it has 111 

few known issues with the new product that are still under formal validation. Some of these 112 

known issues are related to data reliability over bright surfaces compared to dark water, 113 

which is significant for our analysis (Garay et al., 2018).  114 

2.2 MODIS 115 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a payload instrument on 116 

board the Terra and Aqua satellites. Terra's and Aqua orbit around the Earth from North to 117 

South and South to North across the equator during the morning and afternoon respectively 118 

(Kaufman et al., 1997). Terra MODIS and Aqua MODIS provides nearly daily coverage of 119 

the Earth’s surface and atmosphere in 36 wavelength bands, ranging from 0.412 to 41.2 µm, 120 

with spatial resolutions of 250 m (bands 1-2), 500 m (bands 3-7), 1000 m (bands 8-36). 121 

Located near-polar orbit (705 km), MODIS has swath dimensions of 2330 km × 10 km and 122 

a scan rate of 20.3 rpm.  With its high radiometric sensitivity and swath resolution MODIS 123 

retrievals provides information about aerosols optical and physical characteristics. MODIS 124 

uses 14 spectral band radiance values to evaluate atmospheric contamination and determine 125 

whether scenes are affected by cloud shadow (Ackerman et al., 1998).  126 

The Deep Blue is a NASA developed algorithm to calculate AOD over land using MODIS 127 

data. Bu measuring contrast between aerosols and surface features, Deep Blue retrieves 128 

AOD.  Over bright land, Deep Blue uses (0.412, 0.470/0.490 µm) and dark land (0.470/0.490, 129 

0.650 µm) for AOD retrievals. Over water, the Deep Blue algorithm is not used.  130 

The MODIS dark-target algorithm derives aerosol characteristics, including AOD, over 131 

ocean (dark in visible and longer wavelengths) and dark land surfaces (low values of surface 132 

reflectance) (e.g., dark soil and vegetated regions) in parts of the visible (VIS, 0.47 and 0.65 133 

µm) and shortwave infrared (SWIR, 2.1 µm) spectrum (Kaufman et al., 1997).  134 

Deleted:  is designed aerosol retrieval from MODIS 135 
observations136 

Deleted: , 137 

Deleted:  138 



 
6 

 139 

Level 2 collection 6.1 of the algorithm are used to retrieve MODIS aerosols’ time series 140 

data. Levy et al. (2010) reported that the dark-target algorithm AOD at 550 nm 141 

measurement for (C005) includes uncertainty of ± (0.05+0.03) and ± (0.15+0.05) over 142 

ocean and land respectively. This uncertainty is caused by uncertainties in computing cloud 143 

masking, surface reflectance, aerosol model type (e.g., single scattering albedo), pixels 144 

selections and instrument calibration.  Both dark target and deep blue algorithms have been 145 

used. Dark target retrievals were used over water regions while deep blue data were used 146 

over land. Data are available at https://giovanni.gsfc.nasa.gov/giovanni. For regions like 147 

Bahrain where large water body surrounds land, a combined Dark Target and Deep Blue 148 

AOD for land and Ocean has been applied.  149 

2.3 AERONET 150 

The Aerosol Robotic Network (AERONET) Holben et al., 1998 and Holben et al., 2001 is a 151 

ground-based remote sensing aerosols network that provides a long-term data related to 152 

aerosol optical, microphysical and radiative properties. With over 700 global stations, the 153 

AERONET data is widely used in validating satellite retrievals Chu et al., 1998 and Higurashi 154 

et al., 2000. 155 

The sun photometers used by AERONET include sun collimators to measure spectral direct-156 

beam solar radiation. The collimators are used to determine columnar spectral AOD and 157 

water vapour, provided at a temporal resolution of approximately 10–15 min (Sayer et al. 158 

2014). AERONET direct-sun AOD has a typical uncertainty of 0.01–0.02 (Holben et al., 159 

1998) and is provided at multiple wavelengths at 340, 380, 440, 500, 675, 950, and 1020 nm.  160 

Seven AERONET sites were selected for MODIS/ Terra, MODIS/ Aqua, and MISR/Terra 161 

satellites validation in this study (Table 1.). The sites were selected based on their geographic 162 

locations to represent aerosols characteristics over North Africa and the Middle East (Farahat 163 
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et al., 2016). A record of long-term data collection was another factor in the selection process. 170 

Level 2.0 Version 3 AERONET data available at https://aeronet.gsfc.nasa.gov have been 171 

used in the study.  172 

Data Matching Approach 173 

Multi-sensors data matching approach requires using only spatial and temporal matching data 174 

to reduce uncertainties associated with using different instruments and clouds shadow Liu 175 

and Mishchenko (2008) and Mishchenko et al., 2009.  176 

The comparison of MISR and MODIS products against AERONET is performed to evaluate 177 

satellites’ retrieval over individual North Africa and Middle East sites (see Table 1). There 178 

is only a small number of AERONET measurements that are perfectly collocated with 179 

MODIS and MISR. One way to work with this lack of compatibility problem is to compare 180 

satellites measurements nearby a certain AERONET site and comparing AERONET 181 

measurements nearly synchronized with the satellite overpass time (Sioris et al. 2017). 182 

Another reasonable strategy is to average all satellite measurements with a certain distance 183 

of an AERONET location and average all AERONET measurements within a certain time 184 

range (Mishchenko et al., 2010). The results presented in this paper are based on the second 185 

approach as it compares average spatial satellite measurements with average temporal 186 

AERONET measurements. We implemented (Basart et al., 2009) approach in using a spatial 187 

and temporal threshold of 50 km and 30 min for MISR, MODIS, and AERONET data 188 

matching.  189 

We use the Giovanni Multi-sensor Aerosol Products Sampling System MAPSS 190 

(http://giovanni.gsfc.nasa.gov/aerostat/) for the data inter-comparison as aerosols products 191 

are averaged from measurements that are within a radius of ~ 27.5 km from the AERONET 192 

station and within 30 min of each satellite flyover over this location. These data are 193 

represented in the article by MISR / MODIS “matched AERONET data”.  194 
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 “All data” represents AOD products at the selected station. AERONET station ‘all data’ 200 

are obtained through AEROSOL ROBOTIC NETWORK (AERONET) website 201 

(https://aeronet.gsfc.nasa.gov/). Daily AOD  data with level 2.0 quality was used in the 202 

analysis (Smirnov et al., 2000) . Level 2.0 AOD retrievals are accurate up to 0.02 for mid-203 

visible wavelengths.  204 

MISR ‘all data’ is available through MISR website (https://www-205 

misr.jpl.nasa.gov/getData/accessData/).    206 

 207 

3. Statistics  208 

We have used two statistical parameters to compare data retrievals from space-borne and 209 

ground based sensors including: 210 

(1) Correlation coefficient (R), 211 

The correlation coefficient is a parameter to measure data dependence. If the value of R is 212 

close to zero, it indicates weak data agreement. And values close to 1 or -1 indicate that data 213 

retrievals are positively or negatively linearly related (Cheng et al., 2012).  214 

  215 

(2) Good Fraction (Gfraction). 216 

The G- fraction indicator uses a data confidence range defined by MISR and MODIS 217 

Bruegge et al., 1998 and Remer et al., 2005 over the land and ocean that combines absolute 218 

and relative criterion and weights data equally such that small abnormalities will not affect 219 

the inter-comparison statistics (Kahn et al., 2009). In this study, we use MODIS confidence 220 

range which defines data retrieval as “good” if the difference between MODIS and 221 

AERONET is less than 222 

,   Over ocean,       (1) 223 

,   Over land.        (2) 224 
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 226 

where  is the optical depth retrieved using AERONET stations. The Gfraction is the 227 

percentage of MODIS data retrievals that satisfies (Equations (1) and (2)) over ocean and 228 

land respectively. Optical depth threshold over land (Equation (2)) is higher than over ocean 229 

(Equation (1)) due to harder data retrievals and high data instability over land.    230 

A good aspect of using data confidence range is excluding small fraction data outliers from 231 

producing inexplicably large influence on comparison statistics by weighting all events 232 

equally.  233 

 234 

4. Results and discussion 235 

4.1 Validating MISR and MODIS AOD retrievals against AERONET observations 236 

over the Middle East and North Africa 237 

Illustrated in Figures 2, 3 and Tables 2, 3 is a regression analysis of MISR and MODIS Terra 238 

AOD products against AERONET AOD over the seven AERONET sites, shown in Table1, 239 

from 2000 – 2015.  240 

The correlation coefficient between MISR and AERONET AOD at region 1 is equal to or 241 

above 0.85 except in Bahrain during DJF and JJA (Figure (2) and Table 2), which could be 242 

attributed to lack of data and the impact of water surface reflectivity over Bahrain. Similar 243 

correlation coefficient values were found in region 2 where MISR-AERONET AOD shows 244 

less error than MODIS (Figures (2, 3) and Table 3). In general, MODIS-AERONET AOD 245 

correlation coefficient is lower than those of MISR at all sites, except Mezaira, where MISR 246 

and MODIS matched AERONET AOD correlation almost match.  The lowest MODIS-247 

AERONET AOD correlation coefficient was found over Cairo but could be attributed to the 248 

lack of data availability at this location (Figs 3e-h). Low values of MODIS-AERONET 249 

correlation coefficient is also found over Saada, Taman, and Sedee Boker sites. 250 
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Over all AERONET stations, the number of MODIS AERONET matched AODs are 4 to 8 254 

times those of MISR which is expected from the MISR’s sampling.  255 

Comparisons show that the difference between MISR and MODIS retrievals at the selected 256 

AERONET sites could be significant as expected from the MODIS Dark Target algorithm 257 

performance over bright land surfaces Kokhanovsky et al. (2007).  258 

High AOD values over regions 1 and 2 measured by both AERONET and satellites’ sensors 259 

indicate higher dust activities that peaks during May – Aug during dust storms season. Higher 260 

AOD values recorded during SON over Cairo station could be caused by seasonal rice straw 261 

burning by farmers in Cairo, an environmental phenomena known as Cairo Black cloud 262 

(Marey et al. 2010).  As shown in (Figure (3)), the daily variability in MODIS measurements 263 

is larger than those of MISR at all the three regions. In general, MODIS tends to 264 

underestimate the AOD values on low dust seasons (Figures (2, 3) and Tables 2, 3).  265 

The MODIS underestimated AOD values is more noticeable over Bahrain. This could be 266 

attributed to large water body surrounding Bahrain, which should affect surface reflectivity. 267 

Moreover, water in the Arabian Gulf has been polluted in recent years (Afnan 2013), leading 268 

to possible changes in watercolour and uncertainties in calculating surface reflectivity. The 269 

patchy land surface or pixel grid contaminated by water body is the dominant error sources 270 

for MODIS aerosol inversion over the land areas (He et al. 2010).  271 

Compared to MODIS, MISR’s outperform in retrieving AOD over region 1 including vast 272 

highly reflecting desert areas can be attributed to its multispectral and multi-angular 273 

coverage, which make MISR provides better viewing over a variety of landscapes. 274 

Meanwhile, MISR retrieval also take into consideration aerosols’ particles nonsphericity, 275 

which could have significant effect on its AOD retrievals (von Hoyningen-Huen and Posse 276 

1997). MISR’s retrieval did not well perform over Cairo site due to lack of matched points 277 

in most of the seasons (13 in DJF, 5 in MAM & JJA, and 4 in SON during 2000 - 2015).   278 
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 279 

4.2 Trends of AOD MISR, MODIS, and AERONET retrievals over the Middle East 280 

and North Africa 281 

Figure 4 shows time series of monthly mean AOD derived from MODIS/Aqua, 282 

MODIS/Terra, MISR and AERONET over a) dust b) biomass and c) mixed dominated 283 

aerosol regions. The satellite AOD trends are calculated from the data collocated with 284 

AERONET observations. 285 

Trends of aerosol loading from 2000 to 2005 are analysed by plotting fitting lines of monthly 286 

mean AOD retrievals by MISR and MODIS/Terra and Aqua. The AOD retrieved by different 287 

instrument shows different trends. MODIS/ Aqua and MISR AOD at Solar Village have 288 

positive trends, while MODIS/ Terra AOD have negative trends along time series (Fig. 4a). 289 

Terra depicts a negative correlation coefficient with time while Aqua shows a positive one. 290 

Terra AOD decreases 0.0071/year, while Aqua increases 0.0015/year. Aqua have lower 291 

correlation coefficient for AOD compared to Terra, which indicates Aqua performed more 292 

stable during the study period. Discrepancy between Aqua and Terra retrievals could be 293 

related to instrument calibration, or the difference in aerosol and cloud conditions from the 294 

morning to the afternoon. Both MODIS Aqua and Terra are underestimating AOD at Solar 295 

Village. MISR AOD trend shows a better agreement with Solar Village AERONET AOD as 296 

compared to MODIS. 297 

In order to understand whether the discrepancy temporal trend of Terra and Aqua is a result 298 

of regional conditions or if it exists in all sites, we investigated Terra, Aqua, MISR, and 299 

AERONET over other sites.    300 

Both MODIS/Aqua and MODIS/Terra AOD show a stable trend over time at Mezaria site 301 

(not shown in the figure) with a correlation coefficient of 0.11 and 0.04 respectively. Both 302 

Terra and Aqua AOD increase 0.008 and 0.001/year, respectively. Aqua AOD over Bahrain 303 
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(not shown in the figure) show, less time trend stability compared to those at Solar Village 309 

with a correlation where Terra AOD decreases 0.0027/year, while Aqua increases 310 

0.0066/year. Although Solar Village, Mezaria, and Bahrain are all located in or next to a 311 

desert region, the inconsistency between Terra and Aqua measurements is subject to the 312 

regional conditions. For example, the large water body surrounding Bahrain could mean that 313 

the great majority of the MODIS retrievals are from Dark Target algorithm. MODIS/Aqua, 314 

MODIS/Terra, and MISR AODs depicts a positive trend over Cairo, however a 2 years of 315 

available AERONET data is not sufficient for the trend analysis (Fig. 4b). Over Cairo, 316 

MODIS/Terra, MODIS Aqua, and MISR measurements agree on AOD increase by 0.001, 317 

0.0007, and 0.0007/year respectively with correlation coefficients 0.10, 0.04, and 0.22 318 

respectively. Despite the deviation between the three aforementioned sensors, they all agree 319 

on AOD temporal trend increase over Cairo. This could be attributed to the high pollution 320 

level at the mega city of Cairo due to high population, vehicle emission, and biomass burning. 321 

Taman site (Fig. 4c): MISR AOD agrees with Taman AERONET on a positive trend 322 

indicating the efficiency of MISR V22 algorithm over green areas with less black carbon 323 

particles. Aqua measurements show temporal AOD decrease of 0.0079/year with a 324 

correlation coefficient of 0.81 and Terra show AOD decrease of 0.0043/year with a 325 

correlation coefficient of 0.35. Meanwhile, MISR shows AOD increase of 0.0014/year with 326 

a correlation coefficient of 0.19.  327 

Long-range (2000 – 2015) tendency indicates that contradictory AOD trend of Terra and 328 

Aqua is individually explicit for each site and does not necessarily apply everywhere.    329 

AOD difference between Terra and Aqua could be used as another indicator of the long-330 

range satellites performance. AOD difference (Terra AOD minus Aqua AOD) varies from -331 

0.01 to 0.19, -0.10 to 0.18, -0.02 to 0.13 over Solar Village, Taman, and Cairo respectively 332 

(Fig. 5). Over the Solar Village, Terra overestimates AODs during 2002-2004 and 333 
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underestimates the AOD after 2005. Although Cairo and Taman show similar trend however 338 

over/underestimation amount is not unique for all sites. This is an indication that Aqua and 339 

Terra retrievals disagreement takes place regardless of the region but site sampling has 340 

significant effect on the amount of contradiction.    341 

Statistical comparison between MISR and MODIS/Terra AODs at corresponding 342 

AERONET stations is performed by calculating Gfraction using of  343 

as a confidence interval. Over the region 1, MISR AODs retrievals are more accurate than 344 

MODIS retrievals. MODIS, however, perform better over region 2 sites with high percent of 345 

the data points falling within the confidence range (Tables 2 and 3). High light reflections 346 

from the desert landscape surrounding region 1 could have an effect on MODIS retrievals.  347 

Excluding Bahrain and Cairo for low data retrievals the performance of MODIS tends to be 348 

similar over all region with ~ 68 percent of AODs retrievals fall within the 349 

 confidence range of the AERONET AOD while MISR retrievals 350 

show better data performance with ~ 72 percent  falls within the same confidence range. This 351 

could be attributed to low number of retrievals available for Bahrain and Cairo compared to 352 

other sites. Vast sea region surrounding Bahrain and complex landscape in Cairo could also 353 

have an impact on retrievals.  354 

4.3 Evaluating the MISR and MODIS climatology over Middle East and North Africa 355 

Comparisons between MISR and MODIS AOD at selected AERONET stations over the 356 

2000 – 2015 period are illustrated in Figures 6- 12.  357 

Figure (6a, b) shows histogram of the MISR, MODIS and AERONET AOD at Solar Village 358 

for MISR and MODIS data points collocated with AERONET observations. The mean, 359 

standard deviation, and number of measurements are also presented.  360 

MISR tends to underestimate the frequency of low AODs compared to AERONET but 361 

overestimate the frequency of high AODs. MISR histograms show prominent peaks at 0.55 362 
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and 0.75 not seen in AERONET. MISR and AERONET AOD climatology agree well with 364 

one another. MODIS also tends to underestimate the frequency of low AOD events and 365 

overestimate the frequency of high AOD events. High surface reflectance could cause 366 

overestimation in MODIS AODs (Ichoku et al., 2005). Both MISR and MODIS provide a 367 

good representation of the AOD climatology as compared to AERONET at the Solar Village.  368 

Mezaria station, which is located at an arid region in the UAE, has a similar climatology to 369 

the Solar Village site with dust dominating aerosol. Figure (7a, b) shows histogram of the 370 

MISR, MODIS and AERONET AOD at Mezaria.  371 

Unlike Solar Village, there is a big difference between the number of samples in the matched 372 

data set and full AERONET climatology. For MISR there are 116 matched cases and for 373 

MODIS there are 498 compared to the 1517 for the entire site. This has an impact on the 374 

overall assessment showing significant differences between the matched data and the full 375 

climatology for both MISR and MODIS. First, for the MISR case, the matched AERONET 376 

data have the highest frequency at AODs of 0.3 and 0.35, but the climatology shows the 377 

highest frequency at an AOD of 0.25. Second AODs in the range of 0.3 to 0.45 are 378 

oversampled relative to the climatology, and AODs less than 0.3 and greater than 0.5 are 379 

under-sampled with no AODs greater than 0.8. MODIS matched AERONET data show 380 

prominent peaks at 0.3 and 0.4 compared to the climatology that has a single peak at 0.25. 381 

Similar to MISR AODs are under-sampled less than 0.3 and greater than 0.6.  382 

MISR AOD retrievals matched to AERONET capture the variability in the distribution, but 383 

as in the case of Solar Village the frequency of low AOD events is underestimated and the 384 

frequency of high AOD events is overestimated. However, MISR does capture events with 385 

AODs greater than 1. A similar situation is seen in the MODIS comparison, but MODIS 386 

appears to do a better job capturing the overall shape of the AERONET AOD histogram for 387 

this site.  388 
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The Bahrain AERONET site is located in Manama fairly close to the Arabian Gulf, a location 389 

very different from the previous two sites. The site is also located in an urban area suffers 390 

from significant load of anthropogenic aerosols as a consequence of rapid Aluminium 391 

industrial development (Farahat 2016). Figure (8a, b) shows histogram of the MISR, MODIS 392 

and Bahrian AERONET measurements with statistical analysis displayed. The AERONET 393 

data matched to MISR show significant peaks at 0.25, 0.35, and 0.5 not seen in the all data 394 

climatology that has a single peak at 0.35. AODs less than 0.25 and greater than 0.6 are not 395 

representative in the matched data set at all. MISR is representing the peaks at 0.25 and 0.35 396 

in the matched data set but misses the peak at 0.5. Ångström exponent (AE), dependency of 397 

the AOD on wavelength, can also be used to determine particles’ size where the smaller the 398 

particle the larger the exponent. AE analysis show that the first peak at 0.25 is indicative of 399 

industrial particles with high AE values and the second peak at 0.35 indicates dust aerosol. 400 

The MISR climatology agrees well with the AERONET all data climatology for all AODs. 401 

MODIS on the other hand shows an extremely large frequency of AODs at 0.1 not 402 

represented by AERONET coupled with an underestimation of AODs greater than 0.3. This 403 

could be attributed to the size of the matching window and MODIS retrievals preferentially 404 

coming from the Arabian Gulf.   405 

SAADA station is located close to some hiking trails at the Agoundis Valley in the Atlas 406 

Mountains about 197 km from the city of Marrakesh.   407 

MISR AODs matched to AERONET agree well with MISR full climatology retrievals over 408 

SAADA station. Both retrievals slightly underestimate SAADA full climatology and over 409 

estimates SAADA matched data retrievals at AODs equal to 0.1 while show good agreement 410 

for AODs greater than 0.1.  MODIS matched to AERONET retrievals overestimate the 411 

frequency of AODs greater than 0.3. While MODIS AODs matched to AERONET captures 412 

climatology at AODs between 0.2 to 0.25, AODs frequency retrievals are under-sampled at 413 
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AODs between 0.1 to 0.15 with about 13 % less events than SAADA all data retrievals at 414 

AODs equal to 0.1. 415 

Figure (9a, b) indicates right skewed distribution of SAADA AODs towards small AOD 416 

values with 11.5 % and 30.1 % of AODs > 0.4 as measured by MISR and MODIS 417 

respectively. Taking into consideration MODIS overestimation we conclude that SAADA 418 

site is characterized by small AODs values and this could be related to the land topography 419 

where the station is located.  420 

While MISR is capturing high AODs climatology over SAADA, both MISR and MODIS 421 

are underestimating the frequency of lower AODs events. Nevertheless, MISR captures the 422 

climatology of AODs less than 0.1 missed by MODIS retrievals.  423 

Taman AERONET station is located at the oasis city of Tamanrasset, which lies in Ahaggar 424 

National Park at southern Algeria.  425 

Figure (10 a, b) depicts that Taman AERONET AOD climatology is similar to those at 426 

SAADA and has a high frequency of low AODs events. Both MISR AODs matched to 427 

AERONET and MISR all data do not well capture the frequency of AODs less than 0.1 or 428 

larger than 1 while well describe the climatology for AODs in the range of 0.1 to 1. MODIS 429 

AODs matched data to AERONET correctly describe climatology with slight overestimation 430 

of AODs frequencies between 0.05 – 0.15 while not capturing AODs frequencies greater 431 

than 1. MISR and MODIS show similar prominent peaks at 0.1, 0.25, and 0.35, not observed 432 

in Taman AERONET AOD climatology, with more peaks observed by MISR at 0.5, 0.6, and 433 

0.8. Average AODs in SAADA and Taman is ~ 50 percent less than observed at Solar 434 

Village, Mezaria, and Bahrain sites.  435 

Except for AODs greater than 1 where ground observations could be more robust, both MISR 436 

and MODIS retrievals can provide very good climatology matching over Taman site. 437 
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Taking into consideration lower number of MISR matching AERONET observations 439 

compared to MODIS ~ 33 and 43 percent over SAADA and Taman respectively, MISR is 440 

outperforming over these two sites, which can be attributed to its multiangle viewing 441 

capabilities over complex terrains including mountainous areas (Atlas Mountains). 442 

Cairo is a mega city well known for its high pollution due to traffic and agriculture activities.  443 

MISR and MODIS matched data correctly capture AOD climatology over Cairo compared 444 

to AERONET as shown in Figure (11a, b). MISR retrievals collocated with AERONET 445 

capture prominent peaks of AERONET AOD at 0.15 – 0.25 and 0.5 with small 446 

underestimation observed at 0.3. MISR ‘all data’ AOD climatology over Cairo station agrees 447 

better with AERONET AOD climatology vs. collocated dataset with some oversampling at 448 

0.15. Frequency of high AODs retrievals at 0.7 and 0.8 have not been captured by MISR 449 

matched or all data retrievals. MODIS matched to AERONET AODs are also able to well 450 

present Cairo climatology data with a high overestimation of AODs frequency between 0.05 451 

- 0.2 and an underestimation of AODs larger than 0.4.  452 

The complex landscape and home-grown emissions in Cairo could impose major challenges 453 

in MODIS AODs retrievals. Moreover, Cairo is one of the most densely populated cities in 454 

the world that hosts major commercial and industrial centers in North Africa. Cairo also has 455 

complicated aerosols structure developed by long range transported dust in the spring, 456 

biomass burning in the fall, strong traffic and industrial emissions (Marey et al., 2010).    457 

Over Cairo station, MODIS correctly represents ground observations for AODs between 0.2 458 

- 0.4 while MISR all data better represents AOD climatology for AODs greater than 0.4. 459 

There is not enough collocated MISR-AERONET AODs to evaluate MISR ‘matched AOD’ 460 

climatology.     461 

MISR, MODIS climatology at SEDEE Boker are illustrated in Figures (12a, b). 462 
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MISR ‘matched’ AODs frequency show significant underestimation for AODs less than 0.2 464 

and an overestimation between 0.2 – 0.4 compared with AERONET retrievals. MISR 465 

correctly captures the climatology for AODs events greater than 0.4. MISR ‘matched’ and 466 

‘all data’ retrievals peaks at 0.25 and 0.2 respectively producing high frequency of AODs 467 

oversampling compared to AERONET. MISR data retrievals do not capture the climatology 468 

for AODs less than 0.1 over this site coincident with what was previously observed over 469 

other sites. MODIS matched AERONET data underestimates frequency of AODs less than 470 

0.2 while overestimates the frequencies between 0.2 - 0.6, and well match frequencies of 471 

higher AODs events larger than 0.6. MODIS retrievals are characterized by two prominent 472 

peaks at 0.1 and 0.25 that are not found in the AERONET matched data.  473 

At Sedee, MISR and MODIS retrievals are better in matching frequency of high AODs 474 

retrievals (greater than 0.4) than the frequency of low AODs. This could be an effect of 475 

possible long-range transport to Sedee Boker site (Farahat et al. 2016) along with complex 476 

mixtures of dust, pollution, smoke, and sea salt that could result in uncertainties in MISR and 477 

MODIS aerosol model selection.     478 

In the summary, MISR tends to underestimate AODs > 0.4 over Solar Village, Mezaria, 479 

Bahrain, and Cairo while agrees with AERONET over SAADA, Taman and Sedee Boker at 480 

all ranges of AODs. This could be expounded by insufficient particle absorption in MISR 481 

V22 algorithm (Kahn et al., 2005). Spherical particle absorption is produced by externally 482 

mixing small black carbon particles.  483 

Percentage of MISR, MODIS, and AERONET AODs greater than 0.4 recorded is shown in 484 

Table 4. Over Solar Village, both MISR and MODIS well capture high AODs greater than 485 

0.4 with very good agreement with the ground observations. Over Mezaria, both MISR and 486 

MODIS are over estimating the percentage of AODs greater than 0.4 by about 15.5 and 10.5 487 

percent respectively. MISR all data agrees well with AERONET all data in representing high 488 
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AOD over Bahrain while MODIS shows significant under-representation of those events by 489 

about 15 percent, less than reported by Bahrain AERONET station. At SAADA, MISR AOD 490 

agrees with AERONET in showing low percentage of AODs greater than 0.4, while MODIS 491 

retrievals overestimate percentage by about 24 percent. MISR AOD over Taman AERONET 492 

station shows very good agreement, while MODIS is slightly overestimating AODs. Among 493 

all seven sites considered in this study, Sedee Boker shows lowest occurrence of AODs 494 

greater than 0.4, which is confirmed by both MISR and MODIS retrievals. Cairo AERONET 495 

records the highest frequency of AODs > 0.4, however this is largely underestimated by both 496 

MISR and MODIS retrievals.  497 

It can concluded from the previous discussion that atmosphere around SAADA, Taman, 498 

and Sedee Boker sites is relatively clean and aerosol loads are small compared to Solar 499 

Village, Mezaria, Bahrain, and Cairo, however this could be affected by the location where 500 

AERONET station is installed for example SAADA and Taman stations are installed in a 501 

remote mountainous region away from urbanization while Cairo station is installed in the 502 

middle of large residential region with significant local emissions.   503 

 504 

Conclusion  505 

The performance of MODIS, MISR retrievals with corresponding AERONET 506 

measurements over different geographic locations in the Middle East and North Africa was 507 

investigated during 2000 – 2015.  508 

Long-range observations show dissimilar AODs trends between MODIS/Aqua, 509 

MODIS/Terra, MISR and AERONET measurements. MODIS/Aqua matched AERONET 510 

retrievals show stable trend over all sites while, MODIS/Terra matched AERONET retrievals 511 

show significant downward trend indicating possible changes in the sensor performance.   512 
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MISR matched AERONET AODs data depict high correlation compared to 513 

AERONET indicating good agreement with ground observations with about 72 percent of 514 

AODs retrievals fall within the expected confidence range.  515 

Consistency of MODIS and AERONET AODs vary based on the season, study area, 516 

and dominant aerosols type with about 68 percent of the retrieved AODs values fall within 517 

expected confidence range with the lowest performance over mixed particles regions. 518 

Comparing satellites’ AODs retrievals with corresponding AERONET 519 

measurements show that space-borne data retrievals accuracy can be affected by landscape, 520 

topology, and AOD range at which data is retrieved.  521 

Few AERONET sites are verified where MISR and MODIS retrievals well agree with 522 

ground observations, where other sites only MISR or MODIS could correctly describe the 523 

climatology.  524 

The AODs range at which MISR or MODIS could correctly describe ground 525 

observation is also investigated over different AERONET sites.  Over Solar Village both 526 

MISR and MODIS tend to underestimate the frequency of low AODs and overestimate the 527 

frequency of high AODs compared to AERONET with MISR histograms show prominent 528 

peaks at 0.55 and 0.75 not shown in AERONET. MISR can capture the frequency of AODs 529 

greater than 1 mostly missed by MODIS. Both MISR and MODIS are found to provide good 530 

representation of the AOD climatology over the Solar Village site. 531 

Similar to Solar Village, MISR underestimates frequency of lower AODs and 532 

overestimate frequencies of high AODs over Mezaria. MISR is able to correctly capture the 533 

frequency of AODs greater than 1, while MODIS retrievals are found to better represent the 534 

overall climatology. This is due to low number of MISR – matched AERONET retrievals 535 

compared to MODIS over this site. Prominent peaks at 0.3 and 0.4 were observed in MODIS 536 

matched Mezaria retrievals compared to the climatology, which has a single peak at 0.25.  537 
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Large water body surrounding Bahrain makes MODIS data preferentially comes from 538 

the Arabian Gulf which produces an extremely large frequency of AODs at 0.1 not observed 539 

in AERONET measurements paired with an underestimation of AODs greater than 0.3. 540 

Meanwhile, MISR retrievals agree well with AODs climatology over Bahrain.  541 

MISR AODs retrievals slightly underestimate SAADA climatology while show good 542 

agreement for AODs greater than 0.1.  MODIS retrievals underestimate the frequency of 543 

AODs retrievals between 0.1 to 0.15, match climatology at AODs between 0.2 to 0.25, and 544 

overestimate the frequency of AODs greater than 0.3.  SAADA site is characterized by small 545 

frequency of low AODs values and this could be related to the landscape nature surrounding 546 

Saada station. MISR is found be outperforming over Saada and Taman stations which can be 547 

attributed to its viewing multispectral and multiangular capabilities over mountainous 548 

regions.  549 

MISR retrievals well capture prominent peaks of AERONET data at 0.15 to 0.25 and 550 

0.5 with small underestimation observed at 0.3 over Cairo. It is recommended to use MISR 551 

all data rather than matched data only over Cairo as it is found to do a better job in describing 552 

the climatology over this station. MODIS data retrievals are also able to well present Cairo 553 

climatology with a high overestimation of AODs frequency between 0.05 to 0.2 and an 554 

underestimation of AODs larger than 0.4. While both MISR and MODIS well describe 555 

climatology over Cairo station, MODIS can correctly represent ground observations between 556 

0.2 to 0.4. 557 

Over Sedee Boker both MISR and MODIS retrievals well describe the climatology however 558 

they are more successful in matching frequency of high AODs greater than 0.4.  559 

Based on analysing frequency of AODs greater than 0.4, it was found that Saada, Taman, 560 

and Sedee Boker are having better air quality compared to other sites while Cairo was found 561 

to be the most polluted site.  562 



 
22 

Results presented in this study are important in providing a guideline for satellites retrievals 563 

end users on which sensor could provide reliable data over certain geographic location and 564 

AOD range.  565 

Adjacent geographic location and local climate among sites does not always 566 

guarantee that same sensor will provide consistent retrievals over all sites. For example, Solar 567 

Village, and Bahrain AERONET are surrounded by large desert regions in the and sharing 568 

almost similar climatic conditions, but MODIS is found to be more successful in describing 569 

climatology over Solar Village than over Bahrain and this could be attributed to different 570 

factors related to surface reflection, cloud coverage, and the large water body surrounding 571 

Bahrain. Thus in order to decrease data uncertainty, it is important to determine which sensor 572 

provides best retrieval over certain geographic location and AOD range.   573 
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including R: correlation coefficient, Gfraction: good fraction; N: number of 845 

observations 846 
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Figures caption 877 

Figure 1. Location of the AERONET stations over North Africa and the Middle East. The 878 

numbers on the map indicate the site location as 1: Saada, 2: Tamanrasset_INM, 3: Cairo, 879 

4: Sede Boker, 5: Solar Village, 6: Mezaira, 7: Bahrain. 880 

Figure 2. Scatter plot of MISR AOD versus AERONET AOD based on seasons and 881 

aerosols categorization.  882 

Figure 3. Scatter plot of MODIS AOD versus AERONET AOD based on seasons and 883 

aerosols categorization.  884 

Figure 4. Time series of monthly mean AOD derived from MODIS/Aqua, MODIS/Terra, 885 

MISR and AERONET over a) dust b) biomass and c) mixed dominated aerosol regions.  886 

Figure 5. Long range AOD difference for MODIS/Terra and MODIS/Aqua over the dust, 887 

biomass and mixed sites.  888 

Figure 6. Histogram of the MISR, MODIS and Solar Village AERONET measurements a) 889 

MISR b) MODIS data retrievals.  890 

Figure 7. Histogram of the MISR, MODIS and Mezaria AERONET measurements a) 891 

MISR b) MODIS data retrievals.  892 

Figure 8. Histogram of the MISR, MODIS and Bahrain AERONET measurements a) MISR 893 

b) MODIS data retrievals.  894 

Figure 9. Histogram of the MISR, MODIS and SAADA AERONET measurements a) 895 

MISR b) MODIS data retrievals.  896 
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Figure 10. Histogram of the MISR, MODIS and Taman AERONET measurements a) 898 

MISR b) MODIS data retrievals.  899 

Figure 11. Histogram of the MISR, MODIS and SEDEE Boker AERONET measurements 900 

a) MISR b) MODIS data retrievals.  901 

Figure 12. Histogram of the MISR, MODIS and Cairo AERONET measurements a) MISR 902 

b) MODIS data retrievals.  903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 



 
31 

 923 

 924 

 925 

 926 

Table 1. 927 

Location name Lon./Lat. Measurement period  

Solar Village 24.907o N/46.397o E 2000-2015 

Mezaria 23.105o N/53.755o E 2004-2015 

Bahrain 26.208o N/50.609o E 2000-2006 

Saada 31.626o N/8.156o W 2003-2015 

Taman 22.790o N/5.530o E 2000-2015 

Cairo 30.081o N/31.290o E 2005 -2007 

Sede Boker 30.855o N/34.782 o E 2000-2015 
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Table 2. 933 
AERONET 

Site 

Sensor Season Mean Value N R Gfraction (%) 

   AERONET Satellite    

 

 

 

 

Solar Village  

 

 

MISR 

DJF 0.31±0.22 0.38±0.20 338 0.94 60.05 

MAM 0.39±0.27 0.45±0.23 89 0.94 65.16 

JJA 0.39±0.18 0.45±0.17 141 0.90 70.21 

SON 0.27±0.16 0.35±0.14 3 0.99 33.33 

 DJF 0.27±0.19 0.33±0.17 1500 0.48 51.80 
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MODIS 

Terra 

MAM 0.36±0.24 0.26±0.17 389 0.68 90.23 

JJA 0.34±0.17 0.42±0.19 429 0.41 54.31 

SON 0.22±0.10 0.36±0.12 471 0.51 28.87 

 

 

 

 

Mezaria 

 

 

MISR 

DJF 0.33±0.15 0.40±0.17 60 0.89 75.00 

MAM 0.32±0.19 0.41±0.22 13 0.90 69.23 

JJA 0.42±0.13 0.47±0.17 21 0.85 80.95 

SON 0.29±0.07 0.36±0.07 22 0.87 77.27 

 

 

MODIS 

Terra 

DJF 0.32±0.15 0.35±0.19 198 0.86 74.74 

MAM 0.44±0.33 0.45±0.27 115 0.92 78.07 

JJA 0.39±0.14 0.43±0.20 89 0.81 71.91 

SON 0.28±0.13 0.30±0.16 97 0.87 77.31 

 

 

 

 

Bahrain 

 

 

MISR 

DJF 0.37±0.11 0.31±0.10 17 0.73 100 

MAM 0.31±0.11 0.28±0.14 3 0.89 100 

JJA 0.40±0.09 0.36±0.09 8 0.69 100 

SON 0.40±0.09 0.30±0.05 4 0.98 100 

 

 

MODIS 

Terra 

DJF 0.42±0.29 0.20±0.19 121 0.41 93.38 

MAM 0.50±0.28 0.13±0.15 25 0.26 96.00 

JJA 0.55±0.26 0.31±0.27 42 0.50 88.09 

SON 0.35±0.14 0.21±0.12 29 0.32 93.10 

 934 

 935 

Table 3. 936 

  937 
AERONET  

Site 

Sensor Season Mean Value N R Gfraction 

(%) 

   AERONET Satellite    

 

 

 

 

 

 

MISR 

DJF 0.24±0.16 0.22±0.15 149 0.93 97.29 

MAM 0.21±0.13 0.19±0.11 53 0.89 96.15 

JJA 0.29±0.14 0.27±0.15 80 0.93 97.46 

SON 0.19±0.15 0.19±0.12 60 0.94 98.30 
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SAADA  

 

MODIS 

Terra 

DJF 0.23±0.16 0.32±0.21 550 0.57 57.81 

MAM 0.24±0.18 0.39±0.23 90 0.43 44.44 

JJA 0.30±0.17 0.45±0.18 201 0.40 45.27 

SON 0.19±0.13 0.22±0.14 162 0.71 72.39 

 

 

 

 

Taman 

 

 

MISR 

DJF 0.19±0.23 0.24±0.19 135 0.92 70.89 

MAM 0.29±0.22 0.35±0.24 24 0.97 82.60 

JJA 0.35±0.30 0.39±0.19 36 0.85 71.42 

SON 0.19±0.15 0.19±0.12 60 0.94 98.30 

 

MODIS 

Terra 

DJF 0.19±0.22 0.18±0.16 319 0.67 81.81 

MAM 0.24±0.19 0.22±0.17 67 0.55 83.58 

JJA 0.37±0.32 0.29±0.20 69 0.69 84.05 

SON 0.14±0.14 0.13±0.10 117 0.54 84.61 

 

 

 

 

Cairo 

 

 

MISR 

DJF 0.33±0.20 0.28±0.11 13 0.94 100 

MAM 0.22±0.06 0.24±0.08 5 0.99 100 

JJA 0.43±0.23 0.34±0.11 5 0.99 100 

SON 0.38±0.21 0.29±0.12 4 0.97 100 

 

 

MODIS 

Terra 

DJF 0.33±0.16 0.20±0.11 158 0.30 95.56 

MAM 0.32±0.16 0.12±0.08 39 0.25 100 

JJA 0.35±0.14 0.28±0.07 58 0.17 94.82 

SON 0.38±0.19 0.20±0.09 29 0.07 93.82 

 

 

 

 

SEDEE_BOKER 

 

 

MISR 

DJF 0.14±0.06 0.21±0.07 23 0.87 40.90 

MAM 0.14±0.05 0.24±0.09 13 0.68 33.33 

JJA 0.16±0.05 0.24±0.06 163 0.85 33.33 

SON 0.15±0.07 0.23±0.06 72 0.89 33.80 

 

 

MODIS 

Terra 

DJF 0.16±0.12 0.23±0.14 1312 0.36 53.50 

MAM 0.21±0.18 0.24±0.19 338 0.34 65.68 

JJA 0.16±0.09 0.33±0.13 392 0.27 17.34 

SON 0.16±0.09 0.23±0.12 477 0.46 58.49 
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Table 4. 946 

 AERONET MISR MODIS 

 

N 

AOD  

N 

AOD  

N 

AOD 

% > 0.4 % > 0.4 % > 0.4 

Solar 

Village 

3978 28.7 684 32.8 2789 30.1 

Mezaria 1650 30.2 547 45.7 498 40.7 

Bahrain 1117 33.3 676 35.7 217 18.4 

SAADA 3184 10.8 667 11.5 1004 34.6 

Taman 1863 17.9 845 22.6 572 9.4 

Cairo 269 53.5 620 17.7 284 4.2 

SEDEE 5722 4.8 675 9 2519 12.8 
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Figure 2. 1014 
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Figure 3. 1037 
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Figure 4.  1065 
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 Figure 7. 1101 

Figure 8.  1102 
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Figure 9.  1110 
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Figure 10.  1120 
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Figure 11.  1130 
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Figure 12.  1138 
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