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Abstract. The extraction of the magnetic signal induced by the oceanic M2 tide is typically based solely on the temporal

periodicity of the signal. Here, we propose a system of tailored trial functions that additionally takes the spatial constraint into

account that the sources of the signal are localized within the oceans. This construction requires knowledge of the underlying

conductivity model but not of the inducing tidal current velocity. Approximations of existing tidal magnetic field models

with these trial functions and comparisons with approximations based on other localized and non-localized trial functions are5

illustrated.

1 Introduction

Conductive sea water moving through the ambient Earth’s main magnetic field Bmain induces a secondary magnetic field Boc.

Due to their periodic nature, magnetic signals generated by ocean tides are particularly easy to detect and have been studied

in observatory data as early as, e.g., Malin (1970). However, the extraction of global models for magnetic fields induced by10

the dominating M2 tide from satellite data has become possible only recently (e.g., Sabaka et al. (2015, 2016); Tyler et al.

(2003)). Although the used extraction procedures are solely based on the temporal periodicity of the tidal signal (and not on

further information on the spatial localization of the sources), they seem, by visual inspection, to coincide very well with

results obtained by forward models such as in Kuvshinov and Olsen (2005). A more extensive comparison of forward models

of electromagnetic ocean tidal signals based on different ocean tide models has recently been published in Saynisch et al.15

(2018). In that work, it was shown that the residuals between the different models can exceed the nominal noise level of the

Swarm satellite mission. The ability to extract M2 tidal magnetic field signals in satellite data more precisely can therefore help

in constraining ocean tide models. In Grayver et al. (2016); Schnepf et al. (2015) it has been shown that an M2 tidal magnetic

field model can also be used to constrain 1-D models of the Earth’s mantle conductivity, and forward studies in Irrgang et al.

(2016) have shown that lateral variations in the conductivity of the ocean water itself should have a detectable influence on20

the measured magnetic field (although the latter study was performed for general ocean circulation and not for tidal current

systems).

In this short paper, we want to illustrate the effects that different (spatially localized) sets of trial functions can have on the

approximation of the magnetic field induced by the M2 tide in the first place.

1



In particular, we describe a possible setup for the inclusion of spatial localization constraints (in addition to the constraint

of temporal periodicity) for the approximation of ocean tide induced magnetic fields. Clearly, the velocity field u that is

responsible for the generation of the corresponding secondary magnetic field Boc vanishes over the continents. The precise

connection between u and Boc is given by the time-harmonic Maxwell equations

∇×Boc = µ0σ(E+u×Bmain),5

∇×E = iωBoc, (1)

∇ ·Boc = 0,

where we assume to have knowledge of Bmain, the underlying conductivity σ, and the frequency ω. Furthermore, E denotes the

electric field and µ0 is the vacuum permeability. Instead of using a fixed velocity field u, we substitute it by a set of functions

{u`}`=1,...,L (e.g., vectorial Slepian functions as in Plattner and Simons (2014, 2015) that are localized over the oceans) to10

obtain a set of corresponding trial functions {B`}`=1,...,L that each solve (1). The latter is suitable for the approximation of

Boc and reflects the spatial localization of the sources of the induced magnetic signal in the oceans. Thus, a magnetic field

model that is based on an expansion of the signal in terms of the function system {B`}`=1,...,L automatically reflects the spatial

origin of the signal as well as its temporal periodicity (described by the frequency ω). Additionally, due to the linear connection

between u and Boc, an approximation of Boc directly yields an approximation of the underlying tidal current velocity u in15

terms of the functions {u`}`=1,...,L. However, a model of the underlying conductivity σ has to be assumed for the construction

of the B`. Throughout this paper, we fix the underlying conductivity, meaning that we do not test the influence of a variation of

the conductivity model on the approximation of Boc. The goal of the paper is rather the illustration of the effect of the general

constraint that the (unknown) underlying u is restricted to the oceans. In a forthcoming study, the simultaneous reconstruction

of u and approximation of Boc, and a comparison with existing models, shall be investigated more thoroughly. Since the20

connection between σ and Boc is nonlinear, a simultaneous determination of σ and Boc (assuming a fixed velocity field model

for u) is not as straightforward. A detailed description of the trial functions is provided in Section 2.

In Section 3, we illustrate our approach with input data derived from the (satellite and observatory data based) CM5 model

of Sabaka et al. (2015) and from data derived from a forward model based on the X3DG solver from Kuvshinov (2008).

We approximate these input data sets separately in terms of time-periodic vector spherical harmonics, a system of spatially25

localized trial functions that contains no particular information on the underlying sources (in our case, Abel-Poisson kernels),

and the new set of trial functions indicated in the previous paragraph, respectively. We also include an example with artificial

continental noise. The residuals with respect to the input data show that the use of the function system {B`}`=1,...,L can filter

out undesired contributions to the M2 tidal magnetic field over the continents, without neglecting data over the continents.

These residuals can reach up to 15% of the maximal signal strength and have a magnitude that should be detectable at satellite30

altitude.
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2 Method and Function Systems

Given a so-called dictionaryD of trial functions, we use the Regularized (Orthogonal) Functional Matching Pursuit (cf. Fischer

and Michel (2013); Michel and Telschow (2014, 2016) for details) for the approximation of Boc. Shortly speaking, this is a

greedy-type algorithm that yields an approximation

B̄N =

N∑
i=1

αidi5

of Boc by iteratively choosing coefficients αi ∈ R and dictionary elements di ∈ D via

argmin
α∈R,d∈D

(
‖Ri−1−αFd‖2RM +λ‖B̄i−1 +αd‖2H

)
. (2)

Ri−1 = b−FB̄i−1 denotes the residual between the data b ∈ RM and the approximation after i−1 iterations. In this particular

setup, F represents the linear operator that evaluates a function at the M locations where data is provided, and H is a suitable

Hilbert space for the regularization of the problem1. The parameter λ controls the trade-off between the data misfit ‖Ri‖2RM10

and the regularizing term ‖B̄i‖2H, which imposes a certain porperty to B̄i such as smoothness (as in our case). The Regularized

(Orthogonal) Functional Matching Pursuit, in general, has the advantage that it can easily deal with different dictionaries D
(or combinations of such) from which the approximant B̄N is built. However, any other approximation method could be used

as well with the proposed function systems. In this paper, we use the term “dictionary”simply to describe a set of arbitrary

functions that we consider suitable for our purposes. These functions do not necessarily have to satisfy particular mathematical15

properties such as orthogonality or completeness. Therefore, we call such functions “trial functions” rather than, e.g., “basis

functions”.

In the following, we briefly introduce some function systems that can be used for the constitution ofD. In particular, Section

2.4 describes in more detail the already mentioned trial functions {B`}`=1,...,L that contain temporal and spatial constraints

tailored for ocean tide induced magnetic fields.20

2.1 Vector Spherical Harmonics

We briefly recapitulate the notion of classical vector spherical harmonics in a form that we need at a few occasions later

on. By Sr = {x ∈ R3 : |x|= r}, we denote the sphere of radius r, while S = S1 stands short for the unit sphere. Every unit

vector ξ = ξ(t,ϕ) ∈ S can be expressed in spherical coordinates with longitude ϕ and polar distance t= cos(ϑ), where ϑ is the

corresponding co-latitude. By Yn,k, we denote fully normalized spherical harmonics of degree n and order k: for every n ∈ N025

and k =−n, . . . ,n,

Yn,k(ξ) =

√
2n+ 1

4π

(n− |k|)!
(n+ |k|)! P

|k|
n (t)


√

2cos(kϕ), k < 0,

1, k = 0,
√

2sin(kϕ), k > 0.

1In our case, we use the norm ‖f‖2H =
∑

n,k(n+ 1
2
)4f̂(n,k) but other norms can be used as well depending on the property one wants to impose on f .

By f̂(n,k) we denote the Fourier coefficients of f as indicated in (3).
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The involved associated Legendre functions (ALFs) are, for t ∈ [−1,1], defined as

P kn (t) =
(−1)k

2nn!

(
1− t2

)k/2( d

dt

)n+k

(t2− 1)n.

If f is a scalar-valued square-integrable function on S, then, for every degree n ∈ N0 and order k =−n, . . . ,n, the values

f̂(n,k) =

∫
S

f(η)Yn,k(η)dS(η) (3)

are called the Fourier coefficients of the function f .5

Going over to the vectorial setting, it is well-known that every square-integrable vector field f on the unit sphere can be

uniquely decomposed into its radial and two tangential components such that

f = erf1 +∇Sf2 + LSf3

with scalar-valued functions f1,f2,f3 and the radial unit vector er = (
√

1− t2 cos(ϕ),
√

1− t2 sin(ϕ), t)T . By the surface

gradient ∇S, we denote the tangential component of the usual Euclidean gradient∇, i.e.,10

∇S = eϕ
1√

1− t2
∂

∂ϕ
+ et

√
1− t2 ∂

∂t
,

with unit vectors et = (−tcos(ϕ),−tsin(ϕ),
√

1− t2)T and eϕ = (−sin(ϕ),cos(ϕ),0)T . Moreover, the surface curl gradient

LS is defined by LSf(ξ) = ξ×∇Sf(ξ), where × is the usual cross product in R3. In other words,

LS =−eϕ
√

1− t2 ∂
∂t

+ et
1√

1− t2
∂

∂ϕ
.

Hence, we define three types of vector spherical harmonics: the radial15

y(1)

n,k = er Yn,k,

for degrees n≥ 0 and orders k =−n, . . . ,n, as well as the tangential

y(2)

n,k =

√
1

n(n+ 1)
∇SYn,k, (4)

y(3)

n,k =

√
1

n(n+ 1)
LSYn,k, (5)

for degrees n≥ 1 and orders k =−n, . . . ,n. Note that, for convenience, we set y(2)

0,0 = y(3)

0,0 = 0. It should further be noted that20

the vector spherical harmonics in (4) are surface curl-free while those in (5) are surface divergence-free. In analogy to (3), we

can now define the Fourier coefficients

f̂
(i)
(n,k) =

∫
S

f(η) ·y(i)

n,k(η)dS(η)
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Figure 1. The kernel K(r·,aη1) for a
r

= 0.91 (left) and a
r

= 0.67 (right). The fixed nodal point η1 ∈ S is marked by a white cross.

of square-integrable vector fields f on the unit sphere.

The vector spherical harmonics from above are defined solely on the unit sphere and can, therefore, only be used for the

expansion of vector-valued functions on S. However, for the approximation of satellite potential field data it is necessary to

have related functions that are also defined in the exterior of a sphere. For that purpose, we define the following gradients of

harmonic extensions of (scalar) spherical harmonics:5

hn,k(x) =
1

r2

(a
r

)n
(∇SYn,k(ξ)− ξ(n+ 1)Yn,k(ξ)) , (6)

for r = |x|> a and ξ = x
|x| ∈ S, where a is the radius of a reference sphere, e.g., Earth’s mean radius.

2.2 Vectorial Abel-Poisson Kernel

While the set of functions {hn,k}n∈N0,k=−n,...,n from (6) is suitable for the global approximation of potential field data, we are

also interested in localized functions. One possible choice is the Abel-Poisson kernel (see, e.g., Freeden and Gerhards (2012);10

Freeden et al. (1998)). For x,y ∈ R3, |x|> |y|, it is defined by

K(x,y) =
1

4π

|x|2− |y|2

|x− y|3
.

That is, with unit vectors ξ,η ∈ S and radii r > a > 0, we have

K(rξ,aη) =
1

4π

r2− a2(
a2 + r2− 2ar(ξ · η)

)3/2
which shows that K only depends on the spherical distance between ξ and η, since |ξ−η|2 = 2(1−ξ ·η). Therefore, the kernel15

is radially symmetric if we keep one of the variables fixed (we strictly keep the second argument fixed, here aη). The degree

of localization is determined by the ratio a
r . The closer it is to one, i.e., the smaller the difference between the radii a and r,

the better is the spatial localization of K(r·,aη) around η. In our case, we choose a to be the Earth’s mean radius, and r is the

radius of the sphere at which we evaluate the kernel. An illustration of the kernel is provided in Figure 1.

The corresponding vectorial Abel-Poisson kernel is simply defined by20

k(x,y) =∇xK(x,y) =
1

4π

∞∑
n=0

n∑
k=−n

Yn,k

(
y

|y|

)
hn,k(x).
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Further calculations show

k(x,y) =
1

4π

(
2

|x− y|3
x − 3

|x|2− |y|2

|x− y|5
(x− y)

)
. (7)

A spatially localized alternative to {hn,k}n∈N0,k=−n,...,n could then be defined by the set of functions {k(·,aηi)}i=1,...,M ,

where η1, . . . ,ηM ∈ S is a fixed set of adequately distributed nodal points.

2.3 Spherical Slepian Functions5

While the localization of Abel-Poisson kernels is of radially symmetric nature, one is often interested in regions of more

complex geometry, e.g., continents or oceans. Spherical Slepian functions, for instance, provide an orthonormal system of

functions that can reflect localization in such general predefined regions Γ⊂ S (see, e.g., Plattner and Simons (2015, 2017a);

Simons et al. (2006); Simons and Plattner (2015) for details).

Specifically, the function f showing the best localization in Γ, is the one that maximizes the energy ratio10

λΓ(f) =

∫
Γ
|f(η)|2dS(η)∫

S |f(η)|2dS(η)
, (8)

i.e., the one with an energy ratio closest to one. Let us now assume that g(i) is a bandlimited vectorial function of type i with

bandlimit N , i.e., it can be expanded as

g(i) =

N∑
n=0

n∑
k=−n

ĝ(i)

(n,k)y
(i)

n,k .

Further, the matrix P = (P(n,k),(m,j)) ∈ R(N+1)2×(N+1)2 contains (properly sorted2) all of the appearing inner products15

P(n,k),(m,j) =

∫
Γ

y(i)

n,k(η) ·y(i)

m,j(η)dS(η)

and ĝ = (ĝ(i)

(n,k))
T ∈ R(N+1)2 with n= 0, . . . ,N and k =−n, . . . ,n. If we now restrict ourselves to normalized functions g(i)

(i.e.,
∫
S |g

(i)(η)|2dS(η) = ĝTĝ = 1), one obtains the simple expression λΓ(g(i)) = ĝTPĝ. Eventually, the maximization of the

energy ratio (8) leads to the eigenvalue problem

Pĝ = λĝ .20

The eigenvalues λ` are the possible energy ratios and the corresponding eigenvectors ĝ` contain the Fourier coefficients of

bandlimited functions g(i)

` attaining the energy ratio λ` = λΓ(g(i)

` ). The set of functions {g(i)

` }`=1,...,(N+1)2 is ordered such

that 1≥ λ1 ≥ λ2 ≥ . . .≥ λ(N+1)2 ≥ 0.

In typical scenarios, it turns out that the eigenvalues are clustered close to one and close to zero. Those eigenvalues λ1, . . . ,λL

which are closer to one determine the subset {g(i)

` }`=1,...,L of well-localized Slepian functions that should be used for approx-25

imation in Γ. The code for the generation of vectorial Slepian functions has been kindly supplied in Plattner and Simons

(2017b). For our situation, where Γ denotes the region of (a spherical) Earth which is covered by oceans, an illustration is

provided in Figure 2.
2typically, the order is (0,0),(1,−1),(1,0),(1,1),(2,−2), . . . such that the pair (n,k) is at position n2 +n+ k+1 in a row or column.
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Figure 2. Absolute value of the vectorial Slepian function g(3)

50 with 50th-best localization over the oceans (left) and g(3)

1630 with the 50th-worst

localization over the oceans (right), for bandlimit N = 40.

Figure 3. Absolute value of the trial function Bre
50 corresponding to u = g(3)

50 at time t= 0 (top left) and the trial function Bre
1630 correspond-

ing to u = g(3)

1630 at time t= 0 (top right). Bottom row: Models of surface shell conductance on Sa and absolute value of Bmain on Sa used

for the generation of the trial functions.

2.4 Physics Based Trial Functions

We start with the time-harmonic Maxwell equations as already indicated in (1). For simplicity, we assume a 1-D (only radially

varying) conductivity model for σ within the ball Ba and at the surface Sa we allow a laterally varying conductivity (cf. the

bottom left image in Figure 3 for an illustration). Further, the magnetic field Bmain is taken from the CHAOS-5 model (see

Finlay et al. (2015)) and u is supposed to denote a depth-integrated velocity field that is restricted to Sa (in fact, within the5

numerical framework of the X3DG solver, we assume a constant ocean depth of 1km, with u being tangential to the sphere and

independent of the depth). Since we are mainly interested in tidal velocity fields, it is a reasonable assumption that u is surface

divergence-free for most parts of the oceans. The latter means that u can be expanded in terms of vector spherical harmonics

or vectorial Slepian functions of type 3, i.e., y(3)

n,k or g(3)

` , respectively.

For the generation of the tailored trial functions {B`}`=1,...,L, we, therefore, substitute u by a set of surface divergence-free10

functions {u`}`=1,...,L that reflect spatial localization within the oceans. More precisely, we choose

u` = g(3)

` ,
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Figure 4. Accumulated energy for {u`}`=1,...,L (left) and {Bre
` ,B

im
` }`=1,...,L (right), with L= 1200.

where g(3)

` is the `-th best localized vectorial Slepian function of type 3. The corresponding solution Boc of (1) within this

setup then provides an auxiliary function B̃`. It should be noted that in order to obtain Maxwell’s equation in the time-harmonic

form (1), one has to apply a Fourier transform in time. Therefore, for the actual trial function B`, we have to invert the Fourier

transform and get

B`(x,t) = e−iωtB̃`(x), x ∈ R3, t ∈ R.5

For technical reasons, we choose to work in a real-valued framework, so that the real and imaginary part of B` each yield a

trial function

Bre
` (x,t) = cos(ωt)B̃re

` (x) + sin(ωt)B̃im
` (x), (9)

Bim
` (x,t) = sin(ωt)B̃re

` (x)− cos(ωt)B̃im
` (x). (10)

Thus, each choice of u` yields two functions Bre
` and Bim

` that reflect the temporal periodicity of the tidal magnetic field as10

well as the spatial localization of the sources within the oceans. An illustration for the M2 tide with ω = 2π
12.42h can be found

in Figure 3. For the computation of the B̃` as solutions of (1), we have used the X3DG solver from Kuvshinov (2008).

Figure 4 shows the accumulated energy
∑L
`=1 |u`(ξ)|2, for ξ ∈ S, of the underlying functions u` that describe the velocity

field and the accumulated energy
∑L
`=1 |Bre

` (x,t)|2 + |Bim
` (x,t)|2, for x ∈ Sr with r = a+ 300km and time t= 0, of the cor-

responding trial functions. In both cases, one can clearly see the spatial localization over the oceans. However, the accumulated15

energy of the trial functions additionally reflects the influence of the conductivity σ and the main/core magnetic field Bmain

indicated in Figure 3.

3 Examples

For our experiments we rely on the CM5 geomagnetic field model (cf. Sabaka et al. (2015)) and a forward model based on

the M2 depth-integrated tidal velocity field from TPXO8-ATLAS3 (cf. Egbert and Erofeeva (2002)) that has also been used in20

Kuvshinov (2008). The contribution of CM5 that is due to the oceanic M2 tide is given as an expansion in terms of spherical

harmonics up to degree 18, we denote it as BCM5
oc for the remainder of this section and sample it at M = 250,000 points which

3volkov.oce.orst.edu/tides/tpxo8_atlas.html
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Figure 5. Absolute value of the radial part of the tidal model BCM5
oc as well as the forward model BX3DG

oc at an altitude of 300 km above the

Earth’s surface.

are taken from actual Swarm satellite tracks. The forward model has been computed via the X3DG solver based on the surface

conductance and the main/core magnetic field model indicated in the bottom row of Figure 3 and a depth-integrated M2 tidal

velocity field from TPXO8-ATLAS. We denote it by BX3DG
oc and evaluate it on the same point grid as before. These samples are

used as input data b ∈ RM for the Regularized (Orthogonal) Functional Matching Pursuit, which works iteratively as indicated

in (2). In the following, we want to illustrate the influence of the choice of different function systems (i.e., the choice of5

different dictionaries D) on the approximation of BCM5
oc and BX3DG

oc . For that purpose, we choose three different dictionaries:

the spherical harmonic based

D1 = {cos(ωt)hn,k(x),sin(ωt)hn,k(x)}n=0,...,20,k=−n,...,n,

with ω = 2π
12.42h and the functions hn,k from (6); the Abel-Poisson kernel based

D2 = {cos(ωt)k(x,aηi),sin(ωt)k(x,aηi)}i=1,...,Mp ,10

where a= 6371.2km, {ηi}i=1,...,Mp is a Reuter grid on S with Mp = 6201 nearly equally distributed points (see, e.g., Michel

(2013), p. 137), and k given as in (7); and

D3 = {Bre
` (x,t),Bim

` (x,t)}`=1,...,1200,

with Bre
` and Bim

` the physics based trial functions from (9) and (10).

The actual signals that we want to approximate are indicated in Figure 5. The approximations B̄N of BCM5
oc together with the15

residuals |B̄N −BCM5
oc | for each of the three dictionaries above are shown in Figure 6. Whereas, the respective approximations

of BX3DG
oc and corresponding residuals |B̄N −BX3DG

oc | are displayed in Figure 7.

In the case of BCM5
oc as the underlying signal, it can be seen in Figure 6 that the dictionary D1 yields the overall best

approximation which, however, is not surprising since we try to fit a spherical harmonic based model with a spherical harmonic

based dictionary. The result for dictionary D2 shows a more localized pattern in the residual, as is expected for the use of20

Abel-Poisson kernels. However, the maxima in the residual are not correlated to specific continental or oceanic structures

but they mainly coincide with the maxima of the original signal BCM5
oc . The situation for dictionary D3 of physics based trial

functions is different. The agreement of the approximation with BCM5
oc is good over the oceans but significant deviations exist

9



Figure 6. Absolute value of the radial part of approximations of BCM5
oc based on dictionary D1 (top left), dictionary D2 (top center), and

dictionary D3 (top right), as well as the corresponding residuals with respect to BCM5
oc (bottom row). Note the different scales in the bottom

row which are chosen in order to emphasize the spatial distribution of the residuals.

over the continents. The latter could be an indication that the original model BCM5
oc contains contributions over the continents

whose physical origin is not due to induction by oceanic tides. Some smaller deviations over oceanic areas exist around

Southern Africa and East of Australia. Since we are dealing with the approximation of a low-degree (up to degree 18) spherical

harmonic based M2 tidal magnetic field model by localized trial functions, one cannot reliably say if the latter deviations are

artifacts from the approximation procedure or if they have a physical origin. However, those are areas with a shallower ocean5

topography, so that the assumption of surface divergence-free depth integrated tidal velocities (which we made for our choice

of the underlying u`) and the assumption of a constant ocean depth (we chose a depth of 1km for the generation of the B̃`

via the X3DG solver) might not be accurate in these areas. Nonetheless, the residuals over the continents show that the use of

the adapted trial functions might eventually deliver improved tidal magnetic field models that correct unrealistic continental

contributions without disregarding continental areas entirely.10

The residuals of the approximations of the forward model BX3DG
oc in Figure 7, on the other hand, indicate that the quality of

the approximations does not vary too much (at least on scales that are relevant for satellite data approximation) among the three

tested function systems. This is mainly due to the fact that the input model BX3DG
oc already reflects certain spatial localization

properties over the oceans. In such a scenario (if additionally solely interested in the approximation of the signal and not the

underlying velocity fields) it would, therefore, not be necessary to use the adapted trial functions that we have introduced. The15

crucial point, however, is that satellite data typically contains undesired contributions over the continents that are not due to

ocean tide generated magnetic fields. In order to illustrate this behavior, we use the follwoing additional example. We take

randomly distributed Fourier coefficients to construct a “noise” function e with a bandlimit of degree 40, i.e.

e =

40∑
n=1

n∑
k=−n

ê(n,k)y
(3)

n,k,

10



Figure 7. Absolute value of the radial part of approximations of BX3DG
oc based on dictionary D1 (top left), dictionary D2 (top center), and

dictionary D3 (top right), as well as the corresponding residuals with respect to BX3DG
oc (bottom row).

Figure 8. Absolute value of the radial part of BX3DG
oc (left), model of continental ’noise’ e (center) as well as superposition Be

oc of both of

the latter (right).

where the Fourier coefficients ê(n,k) are normally distributed with zero mean and a variance such that the amplitude of e is in

the range of the oceanic signal BX3DG
oc . This function e is then restricted to the continents and eventually superposed with the

forward model (cf. Figure 8). For the sake of clarity, we denote the approximations of the noisy data

Be
oc = BX3DG

oc + e

by B̄e
N instead of B̄N . The latter still represents the approximation of BX3DG

oc without extra continental noise e.5

In Figure 9 one can directly see the influence which the continental noise has on the approximation depending on the

various dictionaries (Figure 7 shows the same quantities for the approximations in the undisturbed setup). In the case of

dictionary D1, the spherical harmonics also approximate a part of the continental data which in turn also has some impact

on the approximation in oceanic areas. Due to the localization of the kernels contained in dictionary D2, the (undesired)

reconstruction of the continental noise is even more accurate while the reconstruction over the oceans only changes very10

slightly. With the proposed physics based functions in dictionary D3, however, the influence of the continental noise is much

less apparent. The maxima occur very close to the coast lines, which is most likely due to numerical issues stemming from

discontinueties of the data Be
oc in coastal areas. A closer look at the differences |B̄N − B̄e

N | between the approximations of

11



Figure 9. Absolute value of the radial part of approximations of superposition Be
oc based on dictionary D1 (top left), dictionary D2 (top

center), and dictionary D3 (top right), as well as the corresponding residuals with respect to original BX3DG
oc without the continental ’noise’

e (bottom row).

Figure 10. The difference between the approximations B̄N of the undisturbed BX3DG
oc (as shown in the top row of Figure 7) and the

approximations B̄e
N of the noisy Be

oc (as shown in the top row of Figure 9).

noisy and undisturbed data is given in Figure 10. This shows again that the inclusion of continental noise has a smaller effect on

the approximation via physics-based trial functions than on the approximations via the other tested trial functions. Moreover,

the corresponding root mean square errors of the approximations B̄N and B̄e
N , respectively, can be found in Table 1. In both

cases, we compared the approximations to the undisturbed data BX3DG
oc in order to emphasize the impact of continental noise

on the overall approximation. The errors over continental and oceanic regions are provided seperately.5

4 Conclusions

The main goal of this paper is to study the errors that are made by the approximation of tidal magnetic fields by use of different

sets of trial functions. While, e.g., Saynisch et al. (2018) compared forward models for the M2 tidal magnetic field based on

different tidal models, we aim at illustrating the effect of the involved trial functions on the possible extraction of the tidal
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∣∣B̄N −BX3DG
oc

∣∣ ∣∣B̄e
N −BX3DG

oc

∣∣ ∣∣B̄N − B̄e
N

∣∣
RMS D1 D2 D3 D1 D2 D3 D1 D2 D3

overall 0.060533 0.029952 0.064133 0.107972 0.128185 0.086386 0.089407 0.126170 0.057929

continents 0.045495 0.021553 0.055487 0.160529 0.237245 0.085791 0.153771 0.236059 0.067152

oceans 0.064366 0.032047 0.086563 0.086145 0.066827 0.086563 0.057396 0.062991 0.054858

Table 1. Root mean square (RMS) errors corresponding to the approximations of the undisturbed foward model BX3DG
oc as well as the noisy

model Be
oc = BX3DG

oc + e compared to the ’ground truth’ BX3DG
oc with the three different dictionaries. Left-hand columns show errors for

the approximation of BX3DG
oc (compare Figure 7), while center columns show errors for the approximation of Be

oc (compare Figure 9). The

right-hand columns display the RMS errors of the difference between the respective approximations (as shown in Figure 10).

magnetic field from satellite data in the first place. The indicated residuals for the synthetic examples show that the use of the

presented adapted physics based trial functions could have a detectable effect for the extraction of such signals in satellite data.

These trial functions reflect the underlying physics in the sense that they satisfy the time harmonic Maxwell equations and that

they include knowledge of the ambient core magnetic field and the Earth’s conductivity, but they are not designed to rely on

detailed oceanographic models. The latter can be advantageous since the extracted magnetic field induced by ocean tides might5

eventually be used to make inferences on such models.
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