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Author Response to the Comments of Reviewer 2: 

 “Dependence of the critical Richardson number on the temperature gradient in the mesosphere” 

 

Michael N. Vlasov and Michael C. Kelley 

 

 

Reviewer comment: 

Regarding the title, I completely do not get the relationship to the mesosphere, besides the fact 

that the authors also consider situations with negative vertical gradient of temperature.  

 

Author response: 

The object of our study is turbulence in the mesosphere as the region of the upper atmosphere that 

includes the stratosphere, mesosphere, and thermosphere. The most import feature of the 

stratosphere and thermosphere is the positive gradient of the temperature. The mesosphere is the 

only region in the upper atmosphere that is characterized by the temperature negative gradient. 

The other main features of the mesosphere are the turbulence peak in the upper mesosphere and 

the wind shear maximum in this region. The negative gradient of the background temperature and 

the wind shear (Larsen, 2002) (page 5, lines 95-97) in this region provide sufficient and essential 

conditions for the development of dynamic instability. Turbulence and wind shear are not observed 

in the thermosphere. According to the observations (for example, Haack et al. (2014)), the very 

narrow layers of turbulence (localized turbulence) take place in the stratosphere. According to Fig. 

9 in Haack et al. (2014), a very large buoyancy frequency and a very small wind shear are observed 

in these turbulent layers. This indicates the complicated structure of the wind shear (see, for 

example, Galperin et al. (2007)). Our assumption cannot be applied in this case because of the 

problem with determining the acceleration of this wind shear.  

 

Revision in the paper:  

no changes 

 

 

Reviewer comment: 

Ref#1 also raised this issue and in the AC comment the authors contradict themselves by arguing 

(on three full pages) that the other studies (like Obukhov (1971)) are not applicable for the 

mesosphere, but then surprisingly in the final paragraph they write:" ...Ric dependence...is 

obtained by us without using density, neutral composition, and other parameters of the 

mesosphere." With some weird remark that the applicability is linked with the uniform turbulence. 

The connection of the study under review with the mesosphere is demonstrated by the figures, 

where the x axis shows height about 90 km. But, this is just due to the author arbitrariness 

connected probably with the choice of temperature values they used for evaluations. 
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Author response: 

Obukhov considers the turbulence in the surface layer. He notes that, “Since the height of the 

surface layer is not great (on the order of a few tens of meters), the changes of absolute density 

and temperature within the layer are small and can be considered negligible”. This means 

neglecting the term (p0/p)ξ with altitude in the formula 0( / )T p p    and using the formulas 

p

T g

z z C

  
     

      

2
g v

Ri
T z z




  
  

  
. 

This approach and these formulas cannot be used for the mesosphere. The thickness of the surface 

layer considered in the paper is less by a factor of 80 than the scale height of the atmosphere (about 

8 km) and this condition is very different from the mesospheric conditions where the scale heights 

of 4 – 6 km and the thickness of the turbulent layers may be larger than 1 km and the turbulence 

occupies a region of 40 km. Also, there are other important distinctions between the surface layer 

in the lower troposphere and the mesosphere. Apparently, the reviewer does not know the principal 

distinctions between the surface layers in the lower troposphere and the mesosphere.  

 

Revision in the paper:   

no changes 

 

 

Reviewer comment: 

Btw. the study of Obukhov (1971) gives a rigorous summary of the Ri and Ric dependence on the 

temperature gradient and the authors need to explicitly cite this study and show where they give 

superior scientific information. 

 

Author response: 

This reviewer’s statement is wrong. There is only one sentence on estimating the Ricr value in the 

paper (page 15): “Corresponding processing of Sverdrup’s data leads to Ricr = 1/11, which is used 

later in numerical calculations” and then the author states that, “The determination of the critical 

Ri number is an important problem for atmospheric physics and may be solved only experimentally 

on the basis of processing reliable data for simultaneous measurements of wind and temperature 

distributions in the lower layer of the atmosphere”.  

 

Thus, Obukhov uses the experimentally determined value (the only value) of Ric for a very rough 

estimate of the temperature gradient according to his statement (page 21): “Thus, the order of 

magnitude of the temperature gradient calculated according to K∞ agrees with the observations. In 

accordance with Sverdrup’s observations, the value Ric = 1/11 was used during calculations of the 

gradient”. It is necessary to emphasize that no dependence of the Ric value on the temperature 

gradient is presented because the author used the only value of Ric = 1/11 that was experimentally 

determined. This is exactly the opposite of what we have done in our paper. We theoretically define 
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the Ric value and calculate the different Ric values for the different temperature gradients (see Figs. 

3b and 4). 

 

It is necessary to emphasize that Obukhov’s result with a huge uncertainty in the temperature 

gradient calculated for the Ric fixed value strongly contradicts the direct and unique dependence 

of the Ric value on the temperature gradient presented in our paper. This contradiction and other 

problems with estimates using some formulas presented in the paper are explained in the paper by 

A.S. Monin and A.M. Obukhov, “Turbulent mixing in the atmospheric surface layer” (Trudy 

Geophys. Inst., 1954, No24, 151 and “Turbulence and atmospheric dynamics”, ed. J.L. Lumley, 

NASA, CTR Monograph, November 2001, p. 164). The authors of this paper state that “Obukhov 

used some insufficiently reliable data (the critical Richardson number was erroneously taken to be 

1/11 on the basis of Sverdrup’s results) and therefore we could not directly apply his formulas for 

the practical calculations”. This statement is in good agreement with our attempt to use some of 

the formulas given in Obukhov’s paper.  

 

We are very confused by the reviewer’s recommendation of this paper, which, according to the 

author’s statement in his next paper, presents the wrong Ric value and the wrong formulas are used.  

 

It should be noted that Obukhov’s paper was published in 1946 by the journal Trudy Inst Teor. 

Geophys, vol. 1, 95–115. However, this publication was really inaccessible outside of the USSR. 

The reference given by reviewer 2 corresponds to a translation of this paper published by the 

journal Boundary-Layer Meteorol, 1971, 2, 7-29. In the introduction to this publication, J. A. 

Businger and A.M. Yaglom explain the reason for this publication: “Probably the major 

contribution of the paper is the introduction of the 'length scale of the dynamic turbulence 

sublayer', L. This length scale was later introduced independently by Lettau (1949), and at present, 

it is commonly known as the Monin-Obukhov length. Its fundamental role in the whole field of 

boundary-layer meteorology was most clearly explained in the well-known paper by Monin and 

Obukhov (1954)”. The authors of the introduction do not mention the problem with the Richardson 

number in Obukhov’s paper because of the comments in Monin and Obukhov (1954) discussed 

above.  

 

Revision in the paper:  

no changes 

 

 

Reviewer comment: 

A) Most importantly, I have serious concern about the validity of the methodology and flawlessness 

of the analytical derivations in this paper: The crucial point of this study is that the authors assume 

adiabatic expansion. While this can be a good assumption for the GW induced perturbations, it is 

completely irrelevant for the background, where e.g., the solar tides govern a significant part of 

the mesospheric variability. Also, the authors use this assumption to connect the vertical gradient 
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of full (background + disturbed) density distribution to the full temperature and its gradient and 

wind shear (Eqs. 6,7,8,9, 10). Also in the light of tides, this assumption crucial for the paper needs 

to be properly justified, ideally by referencing observational studies. 

 

Author response: 

“Turbulence is generated by waves breaking in the MLT through mechanisms such as convective 

and dynamic instabilities (e.g., Hodges, 1969; Lindzen, 1981; Zhao et al., 2003; Liu et al., 2004; 

Williams et al., 2006; Hecht et al., 2014)”. Hecht, J. H., K. Wan, L. J. Gelinas, D. C. Fritts, R. L. 

Walterscheid, R. J. Rudy, A. Z. Liu, S. J. Franke, F. A. Vargas, P. D. Pautet, M. J. Taylor, and G. 

R. Swenson ((2014); The life cycle of instability features measured from the Andes Lidar 

Observatory over Cerro Pachón on 24 March 2012, J. Geophys. Res. Atmos., 119, 8872–8898, 

doi:10.1002/2014JD021726”. (Guo, Y., A. Z. Liu, and C. S. Gardner (2017), Geophys. Res. Lett., 

44, 5782–5790,doi:10.1002/2017GL073807.) 

 

Hodges (J. Geophys. Res., 72, 3455-3458, 1967) pointed out that it is unlikely to have conditions 

for dynamic instability without gravity waves. Tides alone are not sufficient to induce dynamic or 

convective instabilities, but the tides can influence the conditions for dissipation of the gravity 

waves and the development of dynamic instability due to change in the temperature gradient. In 

any case, adiabatic expansion is a fundamental process for dynamic instability and the adiabatic 

lapse rate is a very important parameter. This assumption is used to derive the buoyancy frequency 

formula (see, for example, Peixoto, J. P., and Oort, A. H.: Physics of Climate. New York: Springer-

Verlag, 1992), which is included in the chain of equations (6)–(10). The Richardson number 

depends directly on the adiabatic lapse. Unfortunately, the reviewer does not explain why adiabatic 

expansion cannot exist for the tides. We do not consider the mesospheric background parameters’ 

variability induced by the different processes. We only consider the dependence of dynamic 

instability on the temperature gradients in the mesosphere. Unfortunately, the reviewer does not 

explain what kind of observational studies he means. In our paper, the results of the experimental 

data (Bishop et al., 2004; Kelley et al., 2003; Larsen, 2002; Lubken, 1997) are used.  

 

Revision in the paper:  

no changes 

 

 

Reviewer comment: 

But more than just general doubts about the validity of this assumption, the authors make errors 

also in analytical description, where in eq. 8, which shows partial derivative of T with altitude 

they refer to it as (P4L81) "temperature gradient in the parcel (sic) with upward motion and 

adiabatic expansion" - but for this, total derivative would have to be shown.  
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Author response: 

We are very surprised by this comment. Eq. 8 is the result of the simple combination of generally 

accepted Eqs. 2, 6, and 7 with partial derivatives and it is impossible to obtain this formula with 

total derivatives in only one equation in this combination. Eq. 6 is the key formula and presents 

the temperature gradient corresponding to adiabatic expansion due to upward parcel displacement. 

This result does not depend on the kinetics of parcel motion. This is the generally accepted 

approach for estimating the effect of parcel displacement on the temperature for adiabatic 

expansion/compression. Unfortunately, the reviewer’s statement is too general without an 

explanation or a reference.  

 

Revision in the paper:  

no changes 

 

 

Reviewer comment: 

Most importantly, on their way from eq. 6 to 10 they use in P4L80 an equation for Ri based on 

different assumption (they don’t tell anything about this formula, which is crucial) and then they 

consider this Ri (general?) to be equal to the Ri in eq. 7 (adiabatic expansion) for deriving eq. 

(10).  

 

Author response: 

The derivation of Eq. 6 was given in Appendix 1. Taking this comment into account, an additional 

explanation is included in the text (page 3) and Appendix 1. The main point is that Eq. 4 

corresponds to incompressible fluid and ωB
2=(-g/ρ0)∂ρ0/∂z, but Eq. 6 corresponds to compressible 

fluid (adiabatic expansion) and ωB
2 = (g/T)(∂T/∂z + g/Cp) should be used, so in this case, Eq. 7 

and Eq. 8 must correspond to compressible fluid.  

 

Revision in the paper:  

page 3, lines – 57, 59, 63 

page 4, lines 72, 73, 80, 81, 83, 90 

page 16, lines – 262, 263, 264, 266 

 

 

Reviewer comment: 

A similar situation takes place in section 3, where they give equation 13b (P6L110) without 

properly discussing how they derived this equation and the underlying assumptions (polytropic 

atmosphere?). This formula (13b) and the formula for wind shear (eq. 10) are the crucial parts of 

the paper, because every other result then presented is only a trivial evaluation of Ri based on 

those formulas.  

 



6 
 

Author response: 

We did not show the derivation of formula (13b) because this formula is the same as the well-

known and commonly used formula (Banks and Kockarts, 1973, part A, page 36, 1973): 

 
(1 )/

0 / oH H
 

 
 

   (A1) 

where H =κT/mg, α = β = ∂H/∂z = (κ/mg)∂T/∂z, and n = ρ/m. 

 

The derivation of eq. 13b is now given in Appendix 4.  

 

Revision in the paper:  

Page 19, lines 322-340. 

 

 

Reviewer comment: 

The authors need to carefully rewrite all of their analytical derivations, distinguish properly 

between local and total derivatives, list the assumptions made an ensure consistency between the 

assumptions and also distinguish in their formulas between constants and functions of altitude 

(f(z)). Without this it doesn’t make sense to discuss any results given later in the text (poor 

evaluation of the derived formulas), because my personal opinion (the authors are welcomed to 

prove otherwise) is that the results are dominated by flaws in their analytical construct. 

 

Author comment: 

The reviewer's negative comments are too general without any evidence, examples, or references. 

For instance, the reviewer says that "the results are dominated by flaws" but does not prove his/her 

mere allegations. Moreover, the reviewer has stated (in two separate instances) that the 

assumptions have not been explicitly listed in the paper, whereas in fact, they were provided on 

pages P2L27,28; P3L58-64; P4L72,73; P5L96,97; P6L 111-113; P7L114,115 and L126,127; and 

P13L204-206 of the submitted manuscript. Also, it is totally unclear why the reviewer insists on 

using "total derivatives" while all the well-known formulas are customarily defined in terms of 

partial derivatives. 

 

Revision in the paper:  

no changes 

 

 

Reviewer comment: 

Language: Non-scientific language is used frequently, with weird phrases like: we could find just 

one paper… or acceleration in wind shear the authors write that some study is wrong, but do not 

prove it. Just to list: What is the? P5L92 Does wind shear really induce vertical accelerations? 

(no, you have to replace the word induce by e.g., support) Page 3, L 67 not wind shear nor stability 
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are forces. Those were the most striking ones. I am not listing all the typos made in the manuscript 

because I expect major changes before it can be assessed for publication. 

 

Author response: 

Note that reviewer 1 did not have a problem with the language used in our paper. We made a few 

language corrections to the text. The reviewer’s statement, “the authors write that some study is 

wrong, but do not prove it,” is incorrect. The explanation was presented in detail in Appendix 3. 

Note that this reviewer’s statement does not demonstrate a language problem. Our paper stated, 

“The goal of this paper is to estimate the critical Richardson number, 𝑅𝑖𝑐, corresponding to the 

equilibrium between the buoyancy force and the force induced by wind shear in the mesosphere. 

Dynamic instability is developed for 𝑅𝑖 < 𝑅𝑖𝑐. Our approach considers the acceleration 

corresponding to both forces, taking into account the mesospheric temperature height 

distributions”. It is not clear why the reviewer objects to the word “force”. Again, note that 

reviewer 1 did not have a problem with the language used in our paper. 

 

In general, reviewer 2’s apparent lack of understanding concerning the distinction between the 

surface layer in the troposphere and the mesosphere, the unproven statements about the important 

role of tides for dynamic instability development, the use of total derivatives in commonly used 

formulas, and his/her request to present the derivation of the well-known and commonly used 

formula of density distribution in the upper atmosphere clearly demonstrate that the reviewer is 

not adequately familiar with the physics of the upper atmosphere and dynamic instability. One 

obvious evidence of this is the reviewer’s persistent recommendation of a paper that, according to 

the author’s statement in his next paper, presents the wrong Ric value and uses the wrong formulas. 

 

Revision in the paper:  

Changes were made, including on page 3. 
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 6 

Abstract 7 

Maximum upper atmospheric turbulence results in the mesosphere from convective and/or 8 

dynamic instabilities induced by gravity waves. For the first time, by comparing the vertical 9 

accelerations induced by wind shear and the buoyancy force, it is shown that the critical 10 

Richardson number 𝑅𝑖𝑐 can be estimated. Dynamic instability is developed for 𝑅𝑖 < 𝑅𝑖𝑐. This 11 

new approach, for the first time, makes it is possible to establish and estimate the temperature 12 

gradient impact on dynamic instability development. Regarding our results, 𝑅𝑖𝑐 increases from 13 

0.25 to 0.38 as the negative temperature vertical gradient increases from ∂T/∂z = 0 to ∂T/∂z ≤ -9 14 

K/km. However, 𝑅𝑖𝑐 for the temperature, independent of altitude, is 0.25, coinciding exactly with 15 

the 𝑅𝑖𝑐 commonly used and estimated in classical studies (Miles, 1961; Howard, 1961) and 16 

subsequent papers without the temperature impact. The increase in the 𝑅𝑖𝑐 value strongly 17 

influences cooling, inducing the cooling rate increase. Also, our results show that criterion 𝑅𝑖𝑐 <18 

0.25 can only be used for the turbulent diffusion, which is characterized by eddies with sizes much 19 

smaller than the scale height of the atmosphere. The 𝑅𝑖𝑐 value increases with the increasing size 20 

of the eddies, but the term “eddy diffusion” cannot be applied to transport due to the large-scale 21 

eddies (Vlasov and Kelley, 2015).  22 

 23 
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Key Words: Richardson number, dynamic instability, turbulent cooling, mesosphere 24 

 25 

1. Introduction  26 

In general, the Richardson number 𝑅𝑖 can be defined as the ratio of the destruction of turbulent 27 

kinetic energy by buoyancy forces and the production of turbulent energy by the wind shear flow. 28 

This determination leads to the relation  29 

𝑅𝑖 = 𝜔𝐵
2/𝑆2 ,                                                            (1) 30 

where 𝜔𝐵 is the buoyancy frequency, 31 

𝜔𝐵
2 =

𝑔

𝑇
(
𝜕𝑇

𝜕𝑧
+ 𝑔/𝐶𝑝) ,                                                       (2) 32 

and T is the temperature, g is the acceleration of gravity, 𝐶𝑝 is the heat capacity at constant pressure, 33 

and  34 

𝑆 =
𝜕𝑉

𝜕𝑧
                                                                     (3) 35 

is the vertical shear of the horizontal wind with the velocity V(z) height profile. It is generally 36 

accepted that a dynamic instability develops when the Richardson number is less than ¼, i.e., the 37 

parcel’s vertical motion induced by wind shear dominates the motion induced by the buoyancy 38 

force. The former creates and the latter destroys these perturbations. Most authors use the critical 39 

Richardson number  𝑅𝑖𝑐 < ¼ without references. Some authors refer to Miles (1961) and Howard 40 

(1961). They consider the stable-stratified, horizontal shear flows of an ideal fluid. A set of studies 41 

takes into account the time-dependent shear flow and the results of laboratory experiments 42 

(Peixoto and Oort, 1992; Galperin et al., 2007). However, we could not find papers on the critical 43 

Richardson number that take the mesospheric conditions into account. Miles and other authors 44 

(Abarbanel et al., 1984; Ligniéres et al., 1999; Galperin et al., 2007) did not consider the 45 

temperature’s influence on the 𝑅𝑖𝑐 value. However, the eddy turbulence peak is observed in the 46 



3 

 

mesosphere or the lower thermosphere where the large negative and positive gradients of the 47 

temperature occur. We could find just one paper [Hysell et al., 2012] on the estimate of the 𝑅𝑖𝑐 48 

value in the lower thermosphere. Using the data on observations of the sporadic E layer, Hysell et 49 

al. (2012) inferred the parameters of wind shear corresponding to the irregularities observed in the 50 

layer and estimated the 𝑅𝑖𝑐 value of 0.75. However, the authors used the wrong formula for the 51 

background density, resulting in densities much larger than the observed atmospheric density 52 

corresponding to the hydrostatic equilibrium. It is shown in Appendix 3 how 0.7 < 𝑅𝑖𝑐< 0.8 can 53 

be found due to the background density used by Hysell et al. (2012).  54 

The principal measure of stability regarding the buoyancy effects of the density gradient for 55 

overriding its inertial effects in the incompressible fluid is the Richardson number given by 56 

formula (1) in Miles (1961), which can be written as 57 

         

2

0
0/

V
Ri g

z z




    
        

                                        (4) 58 

where ρ0 is the density  and V is the horizontal wind velocity. This formula can be rewritten as  59 

(
𝜕𝑉

𝜕𝑧
)
2

= −
𝑔

𝑅𝑖

1

𝜌

𝜕𝜌

𝜕𝑧
  .                                                         (5) 60 

This will be used here to estimate the accelerations due to wind shear and the buoyancy force in 61 

compressible fluid under mesospheric conditions.  62 

The goal of this paper is to estimate the critical Richardson number, 𝑅𝑖𝑐, corresponding to the 63 

equilibrium between the buoyant force and the force supported by wind shear in the mesosphere.  64 

Dynamic instability is developed for 𝑅𝑖 < 𝑅𝑖𝑐. Our approach considers the acceleration 65 

corresponding to both forces, taking into account the mesospheric temperature height distributions.  66 

 67 

2. Acceleration Induced by Wind Shear  68 
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We start from formula (5) corresponding to compressible fluid, and adiabatic expansion 69 

should be taken into account in the mesosphere. Differentiating the adiabatic relation 70 

𝑝𝑇−𝛾/(𝛾−1) = 𝑐𝑜𝑛𝑠𝑡 corresponding to Poisson’s equation where 𝑝 = 𝜌𝑇/𝑚 and p is the pressure; 71 

m is the mean molecular mass; 𝛾 = 𝐶𝑝/𝐶; 𝐶𝑝 and 𝐶 are the heat capacities at constant pressure 72 

and volume; 𝛾/(𝛾 − 1) = 1 + 𝑁/2;𝑁 = 5 is the number of degrees of freedom for diatomic gas; 73 

and κ is the Boltzmann’s constant, it is possible to get the adiabatic expansion equation  74 

1

𝜌

𝜕𝜌

𝜕𝑧
=

𝑁

2

1

𝑇

𝜕𝑇

𝜕𝑧
                                                               (6) 75 

(see the derivation of this formula in Appendix 1). It is necessary to note that formula (6) 76 

corresponds to compressible fluid and, according to (5): 77 

(
𝜕𝑉

𝜕𝑧
)
2

= −
𝑔

𝑅𝑖

𝑁

2𝑇

𝜕𝑇

𝜕𝑧
  .                                                      (7) 78 

This formula corresponds to compression fluid. Taking into account 𝑅𝑖(𝜕𝑉/𝜕𝑧)2 = 𝜔𝐵
2 =79 

(𝑔/𝑇)(𝜕𝑇/𝜕𝑧 + 𝑔/𝐶𝑝) and using formula (6), the temperature gradient in the parcel with upward 80 

motion and adiabatic expansion can be given by the equation  81 

  
𝜕𝑇

𝜕𝑧
= −

𝑔

(1+𝑁/2)𝐶𝑝
                                                          (8) 82 

and 83 

𝑇 = 𝑇0 −
𝑔

(1+
𝑁

2
)𝐶𝑝

(𝑧 − 𝑧0) .                                                    (9) 84 

 85 

Note that ωB
2 = (-g/ρ0)∂ρ0/∂z corresponds to incompressible fluid (see Appendix 3 for 86 

details). By substituting formulas (8) and (9) in formula (7) multiplied by (𝑧 − 𝑧0), it is possible 87 

to obtain the formula  88 

𝑎𝑤𝑠 =
𝑔2𝑁(𝑧−𝑧0)

2𝑅𝑖[𝑇0𝐶𝑝(1+𝑁/2)−𝑔(𝑧−𝑧0)]
                                              (10) 89 



5 

 

where  90 

𝑎𝑤𝑠 = (
𝜕𝑉

𝜕𝑧
)
2
(𝑧 − 𝑧0)                                                    (11) 91 

is the acceleration in wind shear. As can be seen from Fig. 1, this acceleration increases with the 92 

increase of the vertical size of the wind shear layer. Note that this size cannot exceed 1–2 km 93 

according to the experimental data (Larsen, 2002). The 𝑎𝑤𝑠 dependence on the altitude is linear 94 

because  𝑔(𝑧 − 𝑧0) ≪ 𝑇0𝐶𝑝(1 + 𝑁/2) for −𝑧0 < 2 km.  95 

 96 

 97 

Figure 1. The height profiles of the wind shear 𝑎𝑤𝑠 > 0 and buoyant 𝑎𝐵 < 0 accelerations calculated 98 

by formulas (11) and (15), respectively, with 𝑇0 = 140 K and 𝑅𝑖𝑐 = 0.25 (solid curves), with 𝑇0 = 99 

140 K and 𝑅𝑖𝑐  = 𝑅/𝐶𝑝= 0.286 (dashed-dotted curves), and with 𝑇0 = 200 K and 𝑅𝑖𝑐 = 0.286 100 

(dotted curves).  101 



6 

 

 102 

3. Acceleration Induced by the Buoyancy Force  103 

The buoyancy force is 𝐹𝐵 = 𝑔(𝜌𝐴 − 𝜌𝐷) where 𝜌𝐴 and 𝜌𝐷 are the background atmospheric 104 

density and the disturbed density, respectively. The acceleration is given by  105 

𝑎𝐵 = 𝑔[(𝜌𝐴 − 𝜌𝐷)𝜌𝐷] .                                                    (12) 106 

The atmospheric density distribution can be given by  107 

𝜌𝐴 = 𝜌𝐴0𝑒𝑥𝑝[−(𝑧 − 𝑧0)/𝐻𝐴]                                              (13a) 108 

for 𝑑𝑇𝐴/𝑑𝑧 = 0 in the mesopause and the formula  109 

𝜌𝐴 = 𝜌𝐴0{[𝑇𝐴0 − 𝐺(𝑧 − 𝑧0 ) ]/𝑇𝐴0}
(𝑚𝑔/𝐺−1)                              (13b) 110 

for 𝑑𝑇𝐴/𝑑𝑧 = 𝐺 < 0  below the mesopause, and 𝐻𝐴 = 𝑇𝐴0/mg is the scale height of the 111 

atmospheric gas. By integrating equation (6) with the temperature and temperature gradient given 112 

by formulas (8) and (9), it is possible to get the disturbed density distribution (𝑇0 = 𝑇𝐴0), 113 

   𝜌𝐷 = 𝜌𝐴0 [
𝑇0−

𝐺(𝑧−𝑧0 )

𝐶𝑝(1+𝑁/2)
 

𝑇0
]

𝑁/2

 ,                                                   (14) 114 

and the acceleration corresponding to the buoyancy force can be written as 115 

       𝑎𝑩 = 𝑔 [(
𝜌𝐴

𝜌𝐷
) − 1] = 𝑔

𝜌𝐴0𝑒
−

(𝑧−𝑧0)
𝐻𝐴

𝜌𝐴0

[
 
 
 
 𝑇0−

𝑔(𝑧−𝑧0 )

𝐶𝑝(1+
𝑁
2

)
 

𝑇0

]
 
 
 
 

𝑁
2

− 𝑔                                      (15) 116 

for 𝑑𝑇𝐴/𝑑𝑧 = 0. As seen from Fig. 1, there is very good agreement between the 𝑎𝑤𝑠 and 𝑎𝐵 117 

absolute values for 𝑅𝑖𝑐 = 0.25, and 𝑇0 = 140 K and 𝑇0 = 200 K for the vertical size of a stable wind 118 

shear layer that is less than 400 m. The 𝑎𝑤𝑠 value becomes larger than the 𝑎𝐵 value for 𝑧 − 𝑧0 >119 

400 m, which means that the 𝑅𝑖𝑐 value should be increased. The turbulence develops if 𝛼𝑤𝑠 is 120 

larger than the 𝛼𝐵 that corresponds to 𝑅𝑖 < 𝑅𝑖𝑐. We emphasize that the perturbation scale sizes 121 
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induced by wind shear do not exceed 1-2 km, according to the observations (see Lübken (1997)). 122 

Note that formula (13b) should be used instead of formula (13a) in the nominator of formula (15) 123 

for atmospheric temperature distribution with 
𝑑𝑇𝐴

𝑑𝑧
< 0. As can be seen from Fig. 2, the 𝑎𝐵 values 124 

significantly decrease in this case, since the atmospheric density given by formula (13b) is larger 125 

and the density gradient is less than the density and gradient corresponding to formula (13a). The 126 

small buoyancy force corresponds to the small density gradient. This dependence explains the 𝑎𝐵 127 

reduction with the 𝑇𝐴 decrease.  128 

 129 

 130 

Figure 2. The height profiles of the acceleration of the buoyancy force calculated by formula (15) 131 

with the nominator 𝜌𝐴0{[𝑇𝐴0 − 𝐺(𝑧 − 𝑧0)]/𝑇𝐴0}
(𝑚𝑔/𝐺−1) for 𝑇0= 𝑇𝐴0 = 140 K and 200 K (thick 132 

and thin curves, respectively) and G = 1, 2.8, and 5 K/km (dashed, dotted and dashed-dotted curves, 133 

respectively), and calculated by formula (15) (solid curves).  134 
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 135 

4. Estimating the Richardson Number  136 

Using formulas (11) and (15) in the equation 𝑎𝑤𝑠 + 𝑎𝐵 = 0, the formula for 𝑅𝑖𝑐 can be inferred: 137 

𝑅𝑖𝒄 =

[1−
𝑔(𝑧−𝑧0)

𝑇0𝐶𝑝(1+𝑁/2)
]
𝑁/2

𝑔𝑁(𝑧−𝑧0)

2𝐶𝑝(1+𝑁/2)[𝑇0−
𝑔(𝑧−𝑧0)

𝐶𝑝(1+𝑁/2)
]

[1−
𝑔(𝑧−𝑧0)

𝑇0𝐶𝑝(1+𝑁/2)
]
𝑁/2

−𝑒𝑥𝑝[−
(𝑧−𝑧0)

𝐻𝐴
]

  .                                     (16) 138 

The 𝑅𝑖𝑐 values calculated by formula (16) and this formula with {[𝑇0 − 𝐺(𝑧 − 𝑧0)]/𝑇0}
(𝑚𝑔/𝐺−1) 139 

(see formula (13b) instead of the exponential term) are shown in Figs. 3a and 3b. The 𝑅𝑖𝑐 values 140 

increase with increasing altitude, corresponding to the vertical expansion of the region of the stable 141 

wind shear. However, according to the experimental data (Larsen, 2002; Kelley et al., 2003; 142 

Bishop et al., 2004), the wind shears are very unstable. As mentioned above, the size scales of the 143 

density perturbations do not exceed 1 – 2 km, according to the observations. A more accurate 144 

consideration of eddy turbulence (Vlasov and Kelley, 2015) concludes that the scale size of density 145 

perturbations l should be much less than the scale height of atmospheric gas, l << HA and l << 4 146 

km for 𝑇𝐴 = 𝑇0 = 140 K and l << 5.7 km for 𝑇𝐴 = 𝑇0 = 200 K. However, this restriction can only 147 

apply to turbulence corresponding to the eddy diffusion approximation (Vlasov and Kelley, 2015). 148 

As seen from Fig. 3a, the 𝑅𝑖𝑐 value of 0.25 corresponds to perturbations with scales less than 10 149 

m, and the 𝑅𝑖𝑐 values reach 0.256 and 0.263 for l = 200 m and 400 m and for 𝑇𝐴0 = 140 K and 150 

0.254 and 0.257 for 𝑇0 =  200 K, respectively. The 𝑅𝑖𝑐 value of 0.25 corresponds to the mean 151 

value l = 27.3 m obtained by Lübkin (1997), using the measured spectrum of the density 152 

fluctuation. Vlasov and Kelley (2015) reconsidered the results of Kelley et al. (2003) and found 153 

that the spectrum scale fluctuations inferred from the meteor train turbulence observations can be 154 

approximated by Heisenberg’s formula with l = 119 m, and eddies with very large scales may 155 
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occur in the narrow layer of localized turbulence. As can be seen from Fig. 3b, the 𝑅𝑖𝑐 values 156 

increase with the increase in the negative gradient of the temperature and can reach almost 0.36. 157 

 158 

 159 

Figure 3a. The height profiles of the critical Richardson number calculated by formula (16) with 160 

𝑇0 = 140 K and 200 K (dashed and solid lines, respectively).  161 

 162 
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 163 

Figure 3b. The height profiles of the critical Richardson number calculated by formula (16) with 164 

{[𝑻𝟎 − 𝑮(𝒛 − 𝒛𝟎)]/𝑻𝟎}
(𝒎𝒈/𝑮−𝟏) instead of the exponential term for the 𝑇0 = 140 K with 𝑑𝑇/𝑑𝑧 = 165 

G < 0 with ǀGǀ = 0.2, 1, 3, and 5 K/km (dashed thin, dotted, dashed-dotted and dashed thick curves, 166 

respectively) and calculated by formula (16) (solid thick curve).  167 

 168 

Thus, turbulence can develop with 𝑅𝑖𝑐 > 0.25 for wind shears with a vertical size of 1–2 km, 169 

but this turbulence may not correspond to eddy diffusion. The scales of the density fluctuations 170 

are very small (for example, see Lübken (1997)) that correspond to z → z0. However, the 𝑅𝑖𝑐 value 171 

estimation for z → z0 is problematic because, in this case, the numerator and denominator in 172 

formula (16) try to attain zero. This uncertainty can be solved using L'Hospital's rule, leading to 173 

the formula (see Appendix 2) 174 
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      𝑅𝑖𝑐 =
0.5𝑔𝑁

𝑔(1+𝑁/2)2−0.5𝑔𝑁−𝐺𝐶𝑝(1+𝑁/2)
     (17) 175 

for the 𝑹𝒊𝒄 limit value for 𝒛 → 𝒛𝟎. This formula corresponds to the limit value formula (16) with 176 

the term {[𝑻𝟎 − 𝑮(𝒛 − 𝒛𝟎)]/𝑻𝟎}
(𝒎𝒈/𝑮−𝟏) instead of the term 𝑒𝑥𝑝[−(𝑧 − 𝑧0)/𝐻𝐴]. The 𝑅𝑖𝑐 177 

dependence on the negative temperature gradient, given by formula (17), is shown in Fig. 4. The 178 

G increase improves the conditions for the dynamic instability development. Note that the 𝑹𝒊𝒄 179 

value for G = 0 coincides with the results of Miles (1961) and the commonly used value of 𝑹𝒊𝒄.  180 

 181 

 182 

Figure 4. The dependence of the Richardson number 𝑹𝒊𝒄 on the temperature negative gradient 183 

calculated by formula (17).  184 

 185 

5. The Influence of  𝑹𝒊𝒄 Dependence on G on Cooling in the Mesosphere 186 
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The eddy turbulence heating/cooling rate can be given by the equation (Vlasov and Kelley, 187 

2010) 188 

𝑄𝑒𝑑 =
𝜕

𝜕𝑧
[𝐾𝑒ℎ𝐶𝑝𝜌 (

𝜕𝑇

𝜕𝑧
+

𝑔

𝐶𝑝
)] + 𝐾𝑒ℎ𝜌

𝑔

𝑇𝑏
(
𝜕𝑇

𝜕𝑧
+

𝑔

𝐶𝑝
) ,                             (18) 189 

where ehK  is the coefficient of the eddy heat transport, ρ is the undisturbed gas density, and b is a 190 

dimensionless constant given by the relation obtained using the results of Gordiets et al. (1982),  191 

 𝑏 = 𝑅𝑖𝑐/(𝑃 − 𝑅𝑖𝑐)      (19) 192 

where P is the turbulent Prandtl number. According to equation (18), the Qed value is given in units 193 

erg×cm-3×s-1. The 𝐾𝑒ℎ value is given by  194 

      𝐾𝑒ℎ = 𝑏𝜀/𝜔𝐵
2 ,         (20) 195 

where ε is the energy dissipation rate, and b can be given by formula (19). The vertical distribution 196 

of the ε value in the turbulent layer can be approximated by the Gaussian function 197 

 𝜀 = 𝜀𝑚𝑒𝑥𝑝[−(𝑧 − 𝑧𝑚)2/ℎ2] ,     (21) 198 

where h is half of the layer thickness and 𝜀𝑚 is the ε value at the altitude of the layer peak 𝑧𝑚. 199 

Using this approximation, dividing equation (18) by ρCp and substituting formula (20) with 𝑏 =200 

𝑅𝑖/(𝑃 − 𝑅𝑖) and 𝑇 = 𝑇0 + 𝐺(𝑧 − 𝑧0), equation (18) can be written in units K/s as  201 

   𝑄𝑒𝑑 = 𝜀𝑚𝑒𝑥𝑝 [−
(𝑧−𝑧𝑚)2

ℎ2
] {

[𝑇0+𝐺(𝑧−𝑧0)]

𝑔(
𝑃

𝑅𝑖𝑐
−1)

[−
2(𝑧−𝑧𝑚)

ℎ2
−

𝑚𝑔



𝑇0+𝐺(𝑧−𝑧0)
] +

1

𝐶𝑝
}.  (22) 202 

Using the 𝑅𝑖𝑐 dependence on the temperature gradient given by formula (17), the impact of the 203 

Richardson number on the cooling rates can be estimated. According to the results in Fig. 5, the 204 

cooling rates increase by a factor of 2.2 for 0.25 < 𝑅𝑖𝑐 < 0.38 corresponding to 0 ≤ G ≤ -9 K/km, 205 

but the G value influence on the cooling for 𝑅𝑖𝑐 = const = 0.25 is very small (curves near the thick 206 

solid curve). Note that the turbulence induced by the large wind shear may not correspond to the 207 
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eddy diffusion heat transport. The values of 𝜀𝑚, 𝑧𝑚, and h correspond to the experimental data 208 

(Lübken, 1997). 209 

 210 

 211 

Figure 5. The cooling rates calculated by equation (22) with G = 0 K/km – Ri = 0.25, G = -3K/km 212 

– Ri = 0.286, G = -5 K/km – Ri = 0.31, G = -7 K/km – Ri = 0.34, G = -8 K/km – Ri = 0.36, G = -9 213 

K/km – Ri = 0.38 (thick solid, dashed and dashed-dotted curves and thin dotted, solid curves and 214 

thick dotted curve, respectively) and the 𝑄𝑒𝑑 values calculated with Ri = 0.25 and the G values 215 

from -3 K/km to -9 K/km are shown by curves near the thick solid curve.  216 

 217 

6. Conclusions 218 

For the first time, by comparing the accelerations in wind shear and the buoyancy force, it is 219 

shown that the critical Richardson number, corresponding to the equilibrium of these forces, can 220 
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be estimated and the dynamic instability developed for 𝑅𝑖 < 𝑅𝑖𝑐. This new approach is very 221 

different from the approach used in classical studies (Miles, 1961) and subsequent papers. Note 222 

that Miles and the other authors did not consider the temperature’s influence on dynamic instability 223 

development. However, the mesosphere is characterized by the negative temperature gradient, and 224 

the turbulence peak is observed in this region. For the first time, it has been estimated and 225 

established that the 𝑅𝑖𝑐 value depends on the temperature gradient. The 𝑅𝑖𝑐 value increases with 226 

the negative mesospheric temperature gradient increase. It should be emphasized that our 227 

estimated  𝑅𝑖𝑐 value is exactly the same as the 𝑅𝑖𝑐 value of 0.25 estimated by Miles (1961) and 228 

other authors and does not depend on the temperature for 𝑑𝑇/𝑑𝑧 = 0.  229 

The Richardson number dependence on the temperature gradient influences the cooling rates 230 

induced by eddy turbulence. These rates significantly increase with an increasing 𝑅𝑖𝑐, but the 231 

influence of the negative temperature gradient on the cooling for 𝑅𝑖𝑐 = 𝑐𝑜𝑛𝑠𝑡 = 0.25 is very 232 

small.  233 

Also, our results show that criterion 𝑅𝑖𝑐 = 0.25 can be used for turbulent diffusion that is 234 

characterized by eddies with a size that is much less than the scale height of the atmosphere. The 235 

𝑅𝑖𝑐 value increases with the increase in the vertical size of the wind shear (see Fig. 3a), but there 236 

is a problem with applying the term “eddy diffusion” to momentum and heat transport because of 237 

the large-scale eddies in this case (Vlasov and Kelley, 2015).  238 

In general, our results show that the criterion 𝑅𝑖𝑐 = 0.25 can only be applied to turbulence with 239 

small scales corresponding to the eddy diffusion. This diffusion provides the mixing of neutral 240 

constituents and their diffusive separation as a result of the competition between eddy and 241 

molecular diffusion. In this case, the criterion 𝑅𝑖𝑐 = 0.25 is necessary and sufficient, but not for 242 

the more complicated shears mentioned above and observed in the lower thermosphere.  243 
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 244 

Appendix 1 245 

Derivation of formula (6) in the paper. We start by using the adiabatic equation 𝑝𝑇−𝛾/(𝛾−1) =246 

𝑐𝑜𝑛𝑠𝑡: 247 

𝜕

𝜕𝑧
[𝑝𝑇−𝛾/(𝛾−1)] = 0                                                        (A1) 248 

𝑝 = 𝜌𝑅𝑇                                                                  (A2) 249 

𝛾 = 𝐶𝑝/𝐶𝑣 = 1 + 2/𝑁                                                     (A3) 250 

𝛾/(𝛾 − 1) = 1 + 𝑁/2                                                      (A4) 251 

𝜕

𝜕𝑧
[𝑅𝜌𝑇 × 𝑇−1−𝑁/2] = 𝑅 [

𝜕𝜌

𝜕𝑧
𝑇−𝑁/2 − 𝜌

𝑁

2
𝑇−1−𝑁/2 𝜕𝑇

𝜕𝑧
] = 0 .                     (A5) 252 

Dividing this equation by ρ and multiplying by 𝑇−𝑁/2, it is possible to obtain the adiabatic 253 

expansion equation  254 

1

𝜌

𝜕𝜌

𝜕𝑧
=

𝑁

2

1

𝑇

𝜕𝑇

𝜕𝑧
 .                                                            (A6) 255 

Using formula (5) in the text and combining formula (2) in the text corresponding to the 256 

compressible fluid with equation (6), it is possible to obtain the equation  257 

 258 

                                                (7) 259 

and the temperature gradient in the parcel with adiabatic expansion can be found to be  260 

  
𝝏𝑻

𝝏𝒛
= −

𝒈

(𝟏+𝑵/𝟐)𝑪𝒑
 .                                                              (8) 261 

 262 

Appendix 2 263 

Derivation of formula (17) for 𝜕𝑇/𝜕𝑧 = 𝐺 = 0: 264 

1 1

2 p

N T T g

T z T z TC

 
  

 
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𝑅𝑖𝑐 =
[1−

𝑔(𝑧−𝑧0)

𝐵
]
𝑁/2

[1−
𝑔(𝑧−𝑧0)

𝐵
]
𝑁/2

−𝑒𝑥𝑝[−
(𝑧−𝑧0)

𝐻𝐴
]

0.5𝑔𝑁(𝑧−𝑧0)

𝐵−𝑔(𝑧−𝑧0)
=

𝐹(𝑧)

𝜑(𝑧)
                                  (A1) 265 

where 𝐵 = 𝑇0𝐶𝑝(1 + 𝑁/2) and 266 

𝜕𝐹

𝜕𝑧
= −

𝑁𝑔

2𝐵
[1 −

𝑔(𝑧−𝑧0)

𝐵
]
𝑁/2−1 0.5𝑔𝑁(𝑧−𝑧0)

𝐵−𝑔(𝑧−𝑧0)
+ [1 −

𝑔(𝑧−𝑧0)

𝐵
]
𝑁/2 0.5𝑔𝑁[𝐵−𝑔(𝑧−𝑧_0 )]+0.5𝑔𝑁(𝑧−𝑧0)𝑔

[𝐵−𝑔(𝑧−𝑧0)]2
 . 267 

 (A2) 268 

For 𝑧 = 𝑧0, 269 

𝜕𝐹

𝜕𝑧
=

0.5𝑔𝑁𝐵

𝐵2 =
0.5𝑔𝑁

𝐵
                                                      (A3) 270 

𝜕∅

𝜕𝑧
= −

𝑁𝑔

2𝐵
[1 −

𝑔(𝑧−𝑧0)

𝐵
]
𝑁/2−1

+
1

𝐻𝐴
𝑒𝑥𝑝 [−

(𝑧−𝑧0)

𝐻𝐴
] .                             (A4) 271 

For 𝑧 = 𝑧0, 272 

𝜕∅

𝜕𝑧
= −

𝑁𝑔

2𝐵
+

1

𝐻𝐴
 .                                                      (A5) 273 

Finally, we have a very simple formula:  274 

𝑅𝑖 =
0.5𝑔𝑁

𝐵
𝑚𝑔

𝑇0
−0.5𝑔𝑁

=
0.5𝑁

(1+
𝑁

2
)
2
−0.5𝑁

= 0.256 for 𝑁 = 5, 𝐺 = 0                           (A6) 275 

and for G< 0, 276 

 
𝜕∅

𝜕𝑧
= −

0.5𝑁𝑔

𝐵
−

𝜕

𝜕𝑧
{
[𝑇0−𝐺(𝑧−𝑧0)]

𝑇0
}

𝑚𝑔

𝐺
−1

= −
0.5𝑁𝑔

𝐵
− (

𝑚𝑔

𝐺
− 1) (

−𝐺

𝑇0
) for 𝑧 = 𝑧0          (A7) 277 

(
𝜕𝐹

𝜕𝑧
)

(
𝜕∅

𝜕𝑧
)
=

0.5𝑔𝑁

𝐵[−
0.5𝑔𝑁

𝐵
+

𝑚𝑔

𝑇0
−

𝐺

𝑇0
]
= −

0.5𝑔𝑁

−0.5𝑔𝑁+𝑔(1+
𝑁

2
)
2
−

𝐺𝐵

𝑇0

=
0.5𝑔𝑁

(1+
𝑁

2
)
2
𝑔−0.5𝑁𝑔−𝐺𝐶𝑝(1+𝑁/2)

 . (A8) 278 

 279 

Appendix 3 280 

The equation used by Hysell et al. (2009, 2012) is 281 

𝑁2 = −
𝑔

𝜌0

𝜕𝜌0

𝜕𝑧
=

𝑔

𝑇
(
𝜕𝑇

𝜕𝑧
+

𝑔

𝐶𝑝
).                                                 (A1) 282 
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Here, 𝑁2 is the buoyancy frequency square and 𝜌0 is the background density. This equation is 283 

incorrect because first, the buoyancy frequency for incompressible fluid is not equal to the  284 

buoyancy frequency for compressible fluid, and second, the background density given by the 285 

equation  286 

1

𝜌0

𝜕𝜌0

𝜕𝑧
= −

1

𝑇
(

𝜕𝑇

𝜕𝑧
+

𝑔

𝐶𝑝
)                                                    (A2) 287 

is much larger than the density given by the equation  288 

1

𝜌𝐴

𝜕𝜌𝐴

𝜕𝑧
= −

1

𝑇
(
𝜕𝑇

𝜕𝑧
+

𝑔

𝑅
)                                                    (A3) 289 

for hydrostatic equilibrium corresponding to real atmospheric conditions. For example, the scale 290 

height of the density is 𝐻 = 𝑇(1 + 𝑁/2)/𝑚𝑔 corresponding to equation (A2) where 𝜕𝑇/𝜕𝑧 = 0 291 

is larger by a factor of 3.5 than the scale height of the background atmospheric density 𝐻 =292 

𝑇/𝑚𝑔 corresponding to equation (A3). The atmospheric density inferred from equation (A2) 293 

with  𝜕𝑇/𝜕𝑧 = 𝐺 is given by the formula  294 

𝜌𝐴 = 𝜌𝐴0{[𝑇𝐴0 + 𝐺(𝑧 − 𝑧0 ) ]/𝑇𝐴0}
(−𝑚𝑔/𝐺(1+0.5𝑁)−1) .                           (A4) 295 

This formula is similar to formula (13b) but with G > 0 and −𝑚𝑔/𝐺(1 + 0.5𝑁) instead of 296 

−𝑚𝑔/𝐺. The density given by formula (A4) is much larger than the density given by formula 297 

(13b) for G > 0. Substituting formula (A4) instead of the exponential term in equation (16) and 298 

using L’Hospital’s rule, it is possible to get the equation  299 

𝑅𝑖𝑐 =
0.5𝑔𝑁

𝑔(1+0.5𝑁)−0.5𝑔𝑁+𝐺𝐶𝑝(1+0.5𝑁)
=

0.5𝑔𝑁

𝑔+𝐺𝐶𝑝(1+0.5𝑁)
                               (A5) 300 

instead of equation (17).  301 

According to Fig. 2 in Hysell et al. (2012), a sporadic E layer with significant irregularities was 302 

observed by Arecibo INR at a height of around 110 km at 19:30 – 20:30 LT on July 2, 2010 in the 303 

lower thermosphere. The authors used the data on this layer to infer the parameters of the wind 304 
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shear and then, using a numerical model, they estimated the Ric value of 0.75 for the dynamic 305 

instability corresponding to the observed irregularities in this region. According to the data shown 306 

in Fig. 2 (Hysell et al., 2012), the temperature gradient in the instability at around 110 km is G = 307 

6-8 K/km and the  𝑅𝑖𝑐 value can be found to be 0.8 – 0.65, respectively, according to equation 308 

(A5). It follows that the large  𝑅𝑖𝑐 value of 0.75 estimated by the numerical model of Hysell et al. 309 

(2012) can only result from the large density used instead of the correct background density. In 310 

this case, the 𝑅𝑖𝑐 value does not depend on the specific features of wind shear inferred by the 311 

authors and used in the numerical model. According to equation (17) with G > 0 and the 312 

background density given by formula (13b) with G > 0, the 𝑅𝑖𝑐 value decreases from 0.25 to 0.2 313 

with G increasing from 0 to 8 K/km.  314 

 315 

Appendix 4 316 

Formula (13b) is the same as the well-know and commonly used formula [Banks and Kockarts, 317 

Aeronomy, part A, page 36, Academic Press, 1973]: 318 

 
(1 )/

0 / oH H
 

 
 

   (A1) 319 

or [Whitten and Poppoff, Fundamentals of Aeronomy, page 71, John Wiley and Sons, Inc., 1971] 320 

(1 )/

0

0

1n n
H

 


 


  

 
 (A2) 321 

where H =κT/mg, α = β = ∂H/∂z = (κ/mg)∂T/∂z and n = ρ/m. By substituting these relations in 322 

formulas (A1) or (A2), formula (13b) can be obtained.   323 

 324 

Derivation of formula (13b) 325 

Substituting P = ρκT/m in the hydrostatic equation  326 
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∂p/∂z =-ρg  ,                            (A3) 327 

this equation can be written as  328 

T T
g

m z m z

  
 

 
  

 
.     (A4) 329 

Dividing equation (A4) by ρκT/m yields 330 

1 1 T mg

z T z T



 

 
  

 
     (A5) 331 

and this equation with T = T0 – Gz can be written as 332 

0 0

1

( )

G mg

z T Gz T Gz



 


 

  
  (A6) 333 

where G = ∂T/∂z. The solution of this equation is 334 

/ 1

0
0

0

mg G

T Gz

T



 



 
 

 
  (A7) 335 

and is the same as formula (13b) in the text. 336 

 337 
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