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Abstract. It is well known that the magnetospheric response to the solar wind is nonlinear. Information theoretical tools such

as mutual information, transfer entropy, and cumulant based analysis are able to characterize the nonlinearities in the system.

Using cumulant based cost, we show that nonlinear significance of Dst peaks at 3−12 hours lags that can be attributed to

V Bs, which also exhibit similar behavior. However, the nonlinear significance that peaks at lags 25, 50, and 90 hours can be

attributed to internal dynamics, which may be related to the relaxation of the ring current. These peaks are absent in the linear5

and nonlinear self-significance of V Bs. Our analysis with mutual information and transfer entropy show that both methods can

establish that there are a strong correlation and transfer of information from Vsw to Dst at a time scale that is consistent with

that obtained from the cumulant based analysis. However, mutual information also shows that there is a strong correlation in

the backward direction, from Dst to Vsw, which is counterintuitive. In contrast, transfer entropy shows that there is no or little

transfer of information from Dst to Vsw, as expected because it is the solar wind that drives the magnetosphere, not the other10

way around. Our case study demonstrates that these information theoretical tools are quite useful for space physics studies

because these tools can uncover nonlinear dynamics that cannot be seen with the traditional analyses and models that assume

linear relationships.

Copyright statement. TEXT

1 Introduction15

One of the most practically important concepts in dynamical systems is the notion of causality. It is particularly useful to

organize observational datasets according to causal relationships in order to identify variables that drive the dynamics. Under-

standing causal dependencies can also help to simplify descriptions of highly complex physical processes because it constrains

the coupling functions between the dynamical variables. Analysis of those coupling functions can lead to simplification of the

underlying physical processes that are most important for driving the system. It is particularly useful from a practical stand-20

point to understand causal dependencies in systems involving natural hazards because monitoring of causal variables is closely

linked with warning.
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A common method to establish causal dependencies in a data stream of two variables, e.g., [a(t)] and [b(t)], is to apply

linear correlation studies such as Strangeway et al. (2005), which showed the relationship between downward Poynting flux

and ion ouflows. Causal relationships are typically identified by considering a time-shifted correlation function

λab(τ) ,
〈a(t)b(t+ τ)〉− 〈a〉〈b〉√
〈a2〉− 〈a〉2

√
〈b2〉− 〈b〉2

(1)

where 〈...〉 is an ensemble average obtained by drawing samples at a set of measurement times, {t0, t1, ..., tN}. For example,5

(Borovsky et al., 1998) used such a method to identify relationships between solar wind variables and plasma sheet variables.

The causal dependency that the plasma sheet responds to changes in the solar wind can be identified from the time-shift of

the peak of the cross correlation indicating a response time. From this type of analysis it can be found that the plasma sheet

generally responds from the tail to the inner magnetosphere consistent with the notion of earthward convection. Such analysis

has been particularly useful to help understand plasma sheet transport.10

However, the procedure of detecting causal relationships based on linear cross-correlation suffers from a number of limita-

tions. First it should be noted that the statistical accuracy of the correlation function is limited by the resolution and length of the

data stream. Second, the linear time series analysis ignores nonlinear correlations, which may be important for energy transfer

in the magnetospheric system. For example, substorms are believed to involve storage and release of energy in the magnetotail,

which is a highly nonlinear response. Similarly, magnetosphere-ionosphere coupling may also be highly nonlinear involving15

the nonlinear development of accelerating potentials along auroral field lines and nonlinear current-voltage relationships. Third,

the cross-correlation may not be a particularly clear measure when there are multiple peaks or if there is little or no asymmetry

in the forward [i.e., λab(τ)] and backward directions [i.e., λba(τ) = λab(−τ)]. Finally, the cross-correlation does not provide

any way to clearly distinguish between two variables that are passively correlated because of a common driver rather than

causally related.20

In the remainder of this paper, we will discuss other methods to identify causal relationships based on entropy based discrim-

inating statistics such as mutual information and transfer entropy. We will also discuss the cumulant-based method. We will

illustrate the shortcomings and strengths of the various methods for studying causality with examples from nonlinear dynamics

and space physics.

2 Linear vs Nonlinear Dependency25

It is well known that the magnetosphere responds to variation in the solar wind parameters (Clauer et al., 1981; Baker et al.,

1983; Crooker and Gringauz, 1993; Papitashvili et al., 2000; Wing and Johnson, 2015; Johnson and Wing, 2015; Wing et al.,

2016), and it has been established that the magnetosphere has a significant linear response to the solar wind. However, it

is also expected that the magnetosphere has a nonlinear response (Tsurutani et al., 1990; Vassiliadis et al., 1990; Klimas

et al., 1998; Valdivia et al., 2013; Balikhin et al., 2011). The nonlinear response may driven by internal dynamics rather than30

driven externally (Wing et al., 2005; Johnson and Wing, 2005). For example, the internal dynamics associated with loading and

unloading of magnetic energy associated with storms and substorms is nonlinear (e.g., Johnson and Wing, 2014, and references
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therein). Indeed, the data analysis of Bargatze et al. (1985) indicated that the dynamical response of the magnetosphere to solar

wind input could not be entirely understood using linear prediction filters.

Suppose that we consider a set of variables a and b which could be vectors of variables measured in time and we would like

to measure their dependency. Instead of considering the covariance matrix/correlation function, we consider a more general5

measure of dependency between an input and output is obtained by considering whether

P (a,b)
?
=P (a)P(b). (2)

where P (a,b) is the joint probability of input a and output b while P (a) and P (b) are the probability of a and b respectively.

If the relationship holds, then the variables a and b are independent. For all other cases, there is some measure of dependency.

In the case where the system output is completely known given the input, P (a,b) = P(a). The advantage of considering10

Equation 2 is that it is possible to detect the presence of higher order nonlinear dependencies between the input and output

even in the absence of linear dependencies (Gershenfeld, 1998).

2.1 Mutual Information and Cumulant based cost

Mutual information and cumulant-based cost are two useful measures that quantify Eq. 2. Mutual information has the advantage

that in the limit of Gaussian joint probability distributions, it may be simply related to the correlation coefficientCab(τ) defined15

in equation 1 (Li, 1990). Cumulants have the advantage of good statistics for limited datasets and noisy systems (Deco and

Schürmann, 2000). Moreover, for high-dimensional systems it is more efficient to compute moments of the data rather than try

to construct the probability density function.

Correlation studies also only detect linear correlations, so if the feedback involves nonlinear processes (highly likely in

this case) then their usefulness may be seriously limited. Alternatively, entropy-based measures such as mutual information20

(Prichard and Theiler, 1995; Materassi et al., 2011) and cumulants (Johnson and Wing, 2005) are useful for detecting linear as

well as nonlinear correlations. The mutual information is constructed from the probability distribution function of the variables

and may be computed using an quantization procedure where data is binned such that the samples [a(t)] are assigned discrete

values â ∈ {a1,a2, ...,an} of an alphabet ℵ1 and [b(t)] is assigned discrete values b̂ ∈ {b1, b2, ..., bm} of an alphabet ℵ2. The

ad hoc time-shifted mutual entropy25

Mab(τ) ,
∑

â∈ℵ1,b̂∈ℵ2

p(â(t+ τ), b̂(t)) log

(
p(â(t+ τ), b̂(t))

p(â)p(b̂)

)
(3)

has been used as an indicator of causality, but suffers from the same problems as time-shifted cross correlation when it has

multiple peaks and long range correlations.

Similarly, examination of time-shifted cumulants could be used as an indicator of causality in a nonlinear system. In this

case, we can define a discriminating statistic

DC =

∞∑
q=1

∑
i1,...,iq∈Πq

K2
1i2...iq (4)
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where
Ki = Ci = 〈zi〉 (4)

Kij = Cij −CiCj = 〈zizj〉− 〈zi〉〈zj〉
Kijk = Cijk −CijCk −CjkCi−CikCj + 2CiCjCk

Kijkl = Cijkl−CijkCl−CijlCk −CilkCj −CljkCi

−CijCkl−CilCkj −CikCjl + 2(CijCkCl

+CikCjCl +CilCjCk +CjkCiCl +CjlCiCk

+CklCiCj)− 6CiCjCkCl

are the cumulants5

Ci...j =

∫
dzP (z)zi...zj ≡ 〈zi...zj〉 (5)

of the joint probability distribution for variables z1, ...,zj .

With only two variables, a and b, defined above, we can consider the cost function

DC
a,b(τ) =DC(a(t), b(t+ τ)) (6)

The presence of nonlinear dependence has been identified by comparing the cumulant cost for a time series with the cumulant10

based cost of surrogate time series, which are constructed to have the same linear correlations as in (Johnson and Wing,

2005)). Significance measures the difference in the discriminating statistic from the mean of the discriminating statistic of the

surrogates in terms of the spread of the surrogates, σ.

In Section 3, we will show an application of cumulant based analysis to the disturbance storm-time index (Dst). In principle,

the cross-correlation, mutual information, and cumulant-based cost should be independent of the selection of measurement15

points if the system is stationary; therefore, time stationarity can be examined by comparing these discriminating statistics for

groups of measurements drawn from different windows of time as in (Johnson and Wing, 2005; Wing et al., 2016).

2.2 Transfer entropy

Another method for determining causality is the one-sided transfer entropy (Schreiber, 2000; De Michelis et al., 2011; Mat-

erassi et al., 2014; Wing et al., 2016, 2018), which is based upon the conditional mutual information20

MC(x,y|z) ,
∑
x∈ℵ1

∑
y∈ℵ2

∑
z∈ℵ3

p(x,y,z) log

(
p(x,y,z)p(z)

p(x,z)p(y,z)

)
(7)

The conditional mutual information measures the dependence of two variables, x and y, given a conditioner variable, z. If

either x or y are dependent on z the mutual information between x and y is reduced, and this reduction of information provides

a method to eliminate coincidental dependence, or conversely to identify causal dependence.

Transfer entropy considers the conditional mutual information between two variables using the past history of one of the

variables as the conditioner.

Ta→b(τ) =
∑
â∈ℵ1

∑
â(k)∈ℵ(k)

1

∑
b̂∈ℵ2

p(â(t+ τ), â(k)(t), b̂(t)) log

(
p(â(t+ τ)|â(k)(t), b̂(t))

p(â(t+ τ)|â(k)(t))

)
(8)
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where â(k)(t) = [â(t), â(t−∆), ..., â(t−(k−1)∆)]. The standard definition of transfer entropy takes k = 1 (no lag), but keeping5

a higher embedding dimension could in principle provide a more precise measure (for example, if a has periodicity a dimension

of 2 may provide better prediction of future values of a from its past time series and therefore lower the transfer entropy.

Transfer entropy as a discriminating statistic has the following advantages. First in the absence of information flow from a

to b (i.e., a(t+ τ) has no additional dependence from b(t) beyond what is known from the past history of a(k)(t)) p(â(t+

τ)|â(k)(t), b̂(t)) = p(â(t+ τ)|â(k)(t)) and the transfer entropy vanishes. The transfer entropy is also highly directional so that10

Ta→b 6= Tb→a. The advantage can be clearly seen for dynamical systems where variables are forward differenced and the

transfer entropy is clearly one-sided while mutual information and correlation functions can even be symmetric (Schreiber,

2000). This measure also accounts for static internal correlations, which can be used to determine whether two variables are

driven by a common driver or whether the variable b is causally driving the variable a.

Both mutual information and transfer entropy require binning of data. As mentioned in Wing et al. (2016), the number15

of bins (nb) needs to be chosen properly and there are some guidelines that can be followed. In general, we would like to

maximize the amount of information. Having too few bins would lump too many points into the same bin, leading to loss of

information. Conversely, having too many bins would leave many bins with 0 or a few number of points, which also would

lead to loss of information. Sturges (1926) proposed that for a normal distribution, optimal nb = log2(n) + 1 and bin width w

= range/nb, where n = number of points in the dataset, range = maximum value − minimum value of the points. In practice,20

there is usually a range of nb that would work.

3 Application to space weather: Dst analysis

Dst (disturbance storm time index) is an hourly index that gives a measure of the strength of the symmetric ring current that,

in turn, provides a measure of the dynamics of geomagnetic storms (Dessler and Parker, 1959). Because of its global nature,

Dst is often used as one of the several indices that represent the state of the magnetosphere. For example, Balasis et al. (2011)25

used the cumulative square amplitude of Dst time series as a proxy for energy dissipation rate in the magnetosphere and found

that it fits well a power law with log-periodic oscillations, which was interpreted as evidence for discrete scale invariance in

the Dst dynamics.

When plasma sheet ions are injected into the Earth inner magnetosphere, they drift westward around the Earth, forming the

ring current. Studies have shown that the substorm occurrence rate increases with solar wind velocity (high speed streams)30

(e.g., Kissinger et al., 2011; Newell et al., 2016). An increase in the solar wind electric field, V Bz , can increase the dawn-

dusk electric field in the magnetotail, which in turn determines the amount of plasma sheet particles that move to the inner

magnetosphere (e.g., Friedel et al., 2001). Studies have shown that the electric field, V Bs (Vsw × southward IMFBz) or V Bz ,

has a strong effect on the ring current dynamics (Burton et al., 1975; O’Brien and McPherron, 2000; McPherron and O’Brien,

2001; Weygand and McPherron, 2006).

For the present study, we examine the relationships between solar wind velocity (Vsw) and V Bs with Dst. We use Dst

records in the period 1974− 2001 obtained from Kyoto University World Data Center for Geomagnetism (http://swdcwww.kugi.kyoto-
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u.ac.jp/index.html). The corresponding solar wind data are obtained from IMP-8, ACE, WIND, ISEE1, and ISEE3 observa-5

tions. The ACE SWEPAM and MAG data; and the WIND MAG data are obtained from CDAWeb (http://cdaweb.gsfc.nasa.gov/).

The WIND 3DP data are obtained from the 3DP team directly. The ISEE1 and ISEE3 data are obtained from UCLA (these

datasets are also available at NASA NSSDC [http://nssdc.gsfc.nasa.gov/space/]). The IMP8 data come directly from the IMP

teams. The solar wind is propagated with minimum variance technique (Weimer et al., 2003) to GSM (X, Y, Z) = (17, 0, 0) RE

to produce 1-min files, from which hourly averaged solar wind parameters are constructed.10

3.1 Cumulant based analysis

Section 2.1 presents the method of cumulant based cost. Here, we show an application of cumulant based cost to detect

nonlinear dynamics in Dst. We consider the forward coupling between a solar wind variable such as V Bs and Dst, which

characterizes the ring current response to the solar wind driver. We therefore consider the nonlinear cross-correlations of the

vector15

c(t,τ) = {V Bs(t),Dst(t+ τ)}= {z1,z2} (9)

The generalization of cost is based on realizations of {z1,z2}. In this case, each variable is Gaussianized with unit variance to

eliminate static nonlinearities (i.e. higher order self-correlations in V Bs and Dst are eliminated so that the cost measures only

cross-dependence between V Bs and Dst). This procedure is explained in the next paragraph.

The distribution of Dst and V Bs are generally non-Gaussian. As such, the raw distributions (e.g., distribution of values20

of Dst) may have nonzero higher-order cumulants (e.g., they can have a skew and kurtosis). This property makes it more

difficult to interpret whether the higher order cumulants in the time evolution arise from the overall shape of the distribution

of data points or from the time-ordering of the data. To eliminate the inherent nonzero cumulants in the overall distribution of

data, we construct a rank-ordered map from the original dataset to a proxy dataset of the same length drawn from a Gaussian

distribution (Kennel and Isabelle, 1992; Schreiber and Schmitz, 1996; Deco and Schürmann, 2000). The distribution of the25

proxy dataset ensures that all cumulants of the distribution beyond second order should in principle vanish. However, the time-

ordering of the data can still lead to nonzero cumulants, because the joint probability distribution of Dst(t+ τ) and Dst(t)

may be non-Gaussian even if the distribution of Dst is Gaussian. Moreover, it is simple to construct surrogate data from the

Gaussianized data that shares the same autocorrelation by using the same power spectrum, but randomly shifting the phases of

the Fourier coefficients. The surrogate data therefore has the same autocorrelation as the original data. Any deviation from the30

linear statistic is apparent from comparison with the surrogate data, and we interpret these deviations as evidence of nonlinear

dependence because we have falsified the hypothesis that the data can be adequately described by linear statistics. This method

has been successfully employed in Johnson and Wing (2005) where Kp record was analyzed with mutual information and

cumulants.

In Figure 1 we plot the significance obtained from the year 1999 as a function of time delay, τ . Significance extracted from

{V Bs(t),Dst(t+ τ)} and {V Bs(t),V Bs(t+ τ)} for 1999 are plotted in panels (a) and (b), respectively. It should be noted

that there is a strong linear response at around 3 hour time delay. As shown in Figure 1a, there is a clear nonlinear response5
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with peaking around 3−10, 25, 50 and 90 hours lasting for approximately 1 week. In contrast, in Figure 1b, the nonlinearity

only has one broad peak around 3 − 12 hours in the self-significance for V Bs, suggesting that the nonlinear and linear peaks

at τ = 3−12 hours in in Figure 1a i may be associated with V Bs. We will revisit the solar wind causal relationship with Dst

using transfer entropy in Section 3.2.

The absence of the nonlinear peaks at τ = 25, 50, and 90 hours in the self-significance for V Bs (Figure 1b) suggest that these10

nonlinearities in {V Bs(t),Dst(t+ τ)} are related to internal magnetospheric dynamics. As the Dst index is thought to reflect

storm activity, it is reasonable that nonlinear significance would decay on the order of 1 week as storms commonly last around

that time. The strong nonlinear responses at τ = 25, 50, and 90 hours are likely related to multiple modes of relaxation of the

ring current following the commencement of storms. It should also be noted that other nonlinearities detected by even higher

order cumulants may also be present; however, the calculation demonstrates the nonlinear nature of the underlying dynamics.15

A common scenario for storm-ring current interaction is the following. A storm compresses the magnetosphere, intensifies

the magnetic field in the magnetosphere, and injects energetic particles into the ring current region. The ring current intensifies

during the main phase of the storm, which can last ∼ 6 hours (Weygand and McPherron, 2006). Once the injection stops,

the ring current begins to decay and the storm enters the recovery phase. Conservation of magnetic moment implies that

anisotropies develop in the ring current and plasma sheet. Anisotropy drives the ring current plasma unstable to ion cyclotron20

waves. The ion cyclotron waves scatter energetic ions into the loss cone so that they are lost from the ring current. Nonlinear

interaction between waves and particles keeps the plasma near marginal instability with a steady loss of energetic particles due

to wave-particle scattering. Other loss mechanisms include charge exchange, coulomb scattering, and convective of ions to the

front of the magnetopause. The ring current decay can have two stages (Kozyra et al., 2002). In the first stage, the ring current

decays rapidly and the loss mechanisms can be attributed to convective out flow, pitch-angle scattering in the ring current,25

and O+ charge exchange (e.g., Weygand and McPherron, 2006; Hamilton et al., 1988). The second stage may typically begin

about one day from the commencement of the storm (see, for example, Figure 7 of Kozyra et al. (2002)). In the second stage,

the decay rate is slower and is attributed mainly to H+ charge exchange (Hamilton et al., 1988) and can take several days to

deplete the ring current to the baseline level (Smith et al., 1976). We can speculate that the multiple nonlinear response lag

times that are detected with the cumulant-based approach are likely the relaxation of the ring current due to complex interplay30

of multiple loss processes.

3.2 Transfer entropy

As mentioned in Section 2.2, transfer entropy gives a measure of how much information is transfered from one variable to

another. We have applied transfer entropy and mutual information to the relationship between the Vsw and Dst for the period

1974 − 2001. The result is shown in Figure 2. Note that the mutual information measure suggests strong correlations between

prior values of Dst and Vsw. This finding suggests that Dst could be a driver of Vsw, which is counterintuitive. On the other

hand, the transfer entropy clearly shows that this information transfer in the backward direction (Dst → Vsw) does not rise

above the noise level (the horizontal blue lines indicate mean and standard deviation of 100 surrogate data sets where the data

was randomly reordered.) This result is expected because it is the solar wind that drives the magnetosphere, not the other way
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Figure 1. Significance extracted from (a) {V Bs(t),Dst(t− τ)} and (b) {V Bs(t),V Bs(t− τ)} for 1999. It should be noted that there is

a strong linear response at around 3 hour time delay. There is a clear nonlinear response with a strong peak around 50 hours lasting for

approximately 1 week. The longterm nonlinear response is absent in the solar wind data indicating that the longterm nonlinear correlations

between V Bs and Dst are the result of internal magnetospheric dynamics.

around. The transfer of information from Vsw to Dst peaks at τ = 8 − 11 hours. The cumulant based analysis in Section 3.1

shows that the response of Dst to V Bs has similar time scale. This time scale is consistent with the 4 to 15 hours transport5

time for the solar wind to reach the midnight and noon regions of the geosynchronous orbit, respectively, from the dayside
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Figure 2. Comparison of mutual information and transfer entropy measures to determine causal driving of the magnetosphere as characterized

by Dst. Note that causal driving appears to peak somewhat later (11 hours) than indicated by mutual information (2 hours) indicating that

internal dynamics likely are very important initially. The backward transfer entropy is below the noise level for all values indicating that Dst

in no way influences the upstream solar wind velocity. Such a conclusion could not be inferred from the mutual information measure.

magnetopause (Borovsky et al., 1998). The analysis presented here illustrates the power of the transfer entropy for accessing

causality.

4 Summary

We recently used mutual information, transfer entropy, and conditional mutual information to discover the solar wind drivers10

of the outer radiation belt electrons (Wing et al., 2016). Because Vsw anticorrelates with solar wind density (nsw), it is hard to

isolate the effects of Vsw on radiation belt electrons, given nsw and vice versa. However, using conditional mutual information,

we were able to determine the information transfer from nsw or any other solar wind parameters to radiation belt electrons,

given Vsw (or any other solar wind parameters). We also showed that the triangle distribution in the radiation belt electron vs.

solar wind velocity plot (Reeves et al., 2011) can be understood better when we consider that Vsw and nsw transfer information15

to radiation belt electrons with 2 days and 0 day (< 24 hr) lags, respectively. Also recently, we used transfer entropy to better

understand the causal parameters in the solar cycle and their response lag times (Wing et al., 2018).

As a follow up to Wing et al. (2016, 2018), the present study demonstrates further how information theoretical tools can be

useful for space physics and space weather studies. Cumulant based analysis can be used to distinguish internal vs. external

driving of the system. Both mutual information and transfer entropy give a measure of shared information between two vari-

ables (or vectors). However, unlike mutual information, transfer entropy is highly directional. To illustrate, we apply mutual

information, transfer entropy, and cumulant based analysis to investigate the dynamics of Dst index.
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Our analysis with mutual information and transfer entropy indicates that there are strong linear and nonlinear correlations and

transfer of information, respectively, in the forward direction between Vsw andDst (Vsw→Dst). However, mutual information5

indicates that there is also a strong correlation in the backward direction (Dst→ Vsw), which is puzzling and counterintuitive.

In contrast, the transfer entropy indicates that there is no information transfer in the backward direction (Dst → Vsw), as

expected because it is the solar wind that drives the magnetosphere, not the other way around. The transfer of information from

Vsw to Dst peaks at τ = 8 − 11 hours.

Using the cumulant-based significance, we have established that the underlying dynamics of Dst is in general nonlinear10

exhibiting a quasiperiodicity which is detectable only if nonlinear correlations are taken into account. The strong nonlinear

responses of Dst to V Bs at τ = 25, 50, and 90 hours are likely related to multiple modes of relaxation of the ring current from

multiple loss mechanisms following the commencement of storms. It is, of course, possible that these nonlinearities are caused

by solar wind drivers other than V Bs. However, the timing of these nonlinearities would put them well in the recovery phase

of a storm and previous studies suggested that the ring current decays in the recovery phase are strongly influenced by V Bs15

(Burton et al., 1975; O’Brien and McPherron, 2000; McPherron and O’Brien, 2001). The nonlinearities at τ = 3 − 12 hours

are not caused by internal dynamics but rather by the solar wind driver, which is similar with the time scale for the solar wind

transport time from the dayside magnetopause to the inner magnetosphere. This time scale is consistent with the time scale for

the information transfer from the solar wind to Dst obtained from transfer entropy analysis.

Although linear models are useful, our results indicate that these models have to be used with cautions because solar wind20

− magnetosphere system is inherently nonlinear. Hence, nonlinearities generally need to be taken into account in order to

describe the system accurately. Local-linear models (which include slow evolution of parameters) may be able to handle some

nonlinearities, but it is expected that these local-linear models would have difficulties if the dynamics suddenly and rapidly

change.
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