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Abstract. It is well known that the magnetospheric response to the so-9

lar wind is nonlinear. Information theoretical tools such as mutual informa-10

tion, transfer entropy, and cumulant based analysis are able to characterize11

the nonlinearities in the system. Using cumulant based cost, we show that12

nonlinear significance of Dst peaks at 3−12 hours lags that can be attributed13

to V Bs, which also exhibit similar behavior. However, the nonlinear signif-14

icance that peaks at lags 25, 50, and 90 hours can be attributed to internal15

dynamics, which may be related to the relaxation of the ring current. These16

peaks are absent in the linear and nonlinear self-significance of V Bs. Our17

analysis with mutual information and transfer entropy show that both meth-18

ods can establish that there are a strong correlation and transfer of infor-19

mation from Vsw to Dst at a time scale that is consistent with that obtained20

from the cumulant based analysis. However, mutual information also shows21

that there is a strong correlation in the backward direction, from Dst to Vsw,22

which is counterintuitive. In contrast, transfer entropy shows that there is23

no or little transfer of information from Dst to Vsw, as expected because it24

is the solar wind that drives the magnetosphere, not the other way around.25

Our case study demonstrates that these information theoretical tools are quite26

useful for space physics studies because these tools can uncover nonlinear27

dynamics that cannot be seen with the traditional analyses and models that28

assume linear relationships.29
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1. Introduction

One of the most practically important concepts in dynamical systems is the notion of30

causality. It is particularly useful to organize observational datasets according to causal31

relationships in order to identify variables that drive the dynamics. Understanding causal32

dependencies can also help to simplify descriptions of highly complex physical processes33

because it constrains the coupling functions between the dynamical variables. Analysis34

of those coupling functions can lead to simplification of the underlying physical processes35

that are most important for driving the system. It is particularly useful from a practi-36

cal standpoint to understand causal dependencies in systems involving natural hazards37

because monitoring of causal variables is closely linked with warning.38

A common method to establish causal dependencies in a data stream of two variables,

e.g., [a(t)] and [b(t)], is to apply linear correlation studies such as Strangeway et al. [2005],

which showed the relationship between downward Poynting flux and ion ouflows. Causal

relationships are typically identified by considering a time-shifted correlation function

λab(τ) ,
〈a(t)b(t+ τ)〉 − 〈a〉〈b〉√
〈a2〉 − 〈a〉2

√
〈b2〉 − 〈b〉2

(1)

where 〈...〉 is an ensemble average obtained by drawing samples at a set of measurement39

times, {t0, t1, ..., tN}. For example, [Borovsky et al., 1998] used such a method to iden-40

tify relationships between solar wind variables and plasma sheet variables. The causal41

dependency that the plasma sheet responds to changes in the solar wind can be identified42

from the time-shift of the peak of the cross correlation indicating a response time. From43

this type of analysis it can be found that the plasma sheet generally responds from the44
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tail to the inner magnetosphere consistent with the notion of earthward convection. Such45

analysis has been particularly useful to help understand plasma sheet transport.46

However, the procedure of detecting causal relationships based on linear cross-47

correlation suffers from a number of limitations. First it should be noted that the statisti-48

cal accuracy of the correlation function is limited by the resolution and length of the data49

stream. Second, the linear time series analysis ignores nonlinear correlations, which may50

be important for energy transfer in the magnetospheric system. For example, substorms51

are believed to involve storage and release of energy in the magnetotail, which is a highly52

nonlinear response. Similarly, magnetosphere-ionosphere coupling may also be highly non-53

linear involving the nonlinear development of accelerating potentials along auroral field54

lines and nonlinear current-voltage relationships. Third, the cross-correlation may not55

be a particularly clear measure when there are multiple peaks or if there is little or no56

asymmetry in the forward [i.e., λab(τ)] and backward directions [i.e., λba(τ) = λab(−τ)].57

Finally, the cross-correlation does not provide any way to clearly distinguish between two58

variables that are passively correlated because of a common driver rather than causally59

related.60

In the remainder of this paper, we will discuss other methods to identify causal rela-61

tionships based on entropy based discriminating statistics such as mutual information and62

transfer entropy. We will also discuss the cumulant-based method. We will illustrate the63

shortcomings and strengths of the various methods for studying causality with examples64

from nonlinear dynamics and space physics.65
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2. Linear vs Nonlinear Dependency

It is well known that the magnetosphere responds to variation in the solar wind param-66

eters [Clauer et al., 1981; Baker et al., 1983; Crooker and Gringauz , 1993; Papitashvili67

et al., 2000; Wing and Johnson, 2015; Johnson and Wing , 2015; Wing et al., 2016], and68

it has been established that the magnetosphere has a significant linear response to the69

solar wind. However, it is also expected that the magnetosphere has a nonlinear response70

[Tsurutani et al., 1990; Vassiliadis et al., 1990; Klimas et al., 1998; Valdivia et al., 2013;71

Balikhin et al., 2011]. The nonlinear response may driven by internal dynamics rather72

than driven externally [Wing et al., 2005; Johnson and Wing , 2005]. For example, the73

internal dynamics associated with loading and unloading of magnetic energy associated74

with storms and substorms is nonlinear [e.g., Johnson and Wing , 2014, and references75

therein]. Indeed, the data analysis of Bargatze et al. [1985] indicated that the dynamical76

response of the magnetosphere to solar wind input could not be entirely understood using77

linear prediction filters.78

Suppose that we consider a set of variables a and b which could be vectors of variables

measured in time and we would like to measure their dependency. Instead of consider-

ing the covariance matrix/correlation function, we consider a more general measure of

dependency between an input and output is obtained by considering whether

P (a,b)
?
=P (a)P(b). (2)

where P (a,b) is the joint probability of input a and output b while P (a) and P (b) are79

the probability of a and b respectively. If the relationship holds, then the variables a80

and b are independent. For all other cases, there is some measure of dependency. In the81

case where the system output is completely known given the input, P (a,b) = P(a). The82
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advantage of considering Equation 2 is that it is possible to detect the presence of higher83

order nonlinear dependencies between the input and output even in the absence of linear84

dependencies [Gershenfeld , 1998].85

2.1. Mutual Information and Cumulant based cost

Mutual information and cumulant-based cost are two useful measures that quantify86

Eq. 2. Mutual information has the advantage that in the limit of Gaussian joint proba-87

bility distributions, it may be simply related to the correlation coefficient Cab(τ) defined88

in equation 1 [Li , 1990]. Cumulants have the advantage of good statistics for limited89

datasets and noisy systems [Deco and Schürmann, 2000]. Moreover, for high-dimensional90

systems it is more efficient to compute moments of the data rather than try to construct91

the probability density function.92

Correlation studies also only detect linear correlations, so if the feedback involves non-

linear processes (highly likely in this case) then their usefulness may be seriously limited.

Alternatively, entropy-based measures such as mutual information [Prichard and Theiler ,

1995; Materassi et al., 2011] and cumulants [Johnson and Wing , 2005] are useful for de-

tecting linear as well as nonlinear correlations. The mutual information is constructed

from the probability distribution function of the variables and may be computed using

an quantization procedure where data is binned such that the samples [a(t)] are assigned

discrete values â ∈ {a1, a2, ..., an} of an alphabet ℵ1 and [b(t)] is assigned discrete values

b̂ ∈ {b1, b2, ..., bm} of an alphabet ℵ2. The ad hoc time-shifted mutual entropy

Mab(τ) ,
∑

â∈ℵ1,b̂∈ℵ2

p(â(t+ τ), b̂(t)) log

(
p(â(t+ τ), b̂(t))

p(â)p(b̂)

)
(3)
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has been used as an indicator of causality, but suffers from the same problems as time-93

shifted cross correlation when it has multiple peaks and long range correlations.94

Similarly, examination of time-shifted cumulants could be used as an indicator of causal-

ity in a nonlinear system. In this case, we can define a discriminating statistic

DC =
∞∑
q=1

∑
i1,...,iq∈Πq

K2
1i2...iq

(4)

where
Ki = Ci = 〈zi〉 (4)
Kij = Cij − CiCj = 〈zizj〉 − 〈zi〉〈zj〉
Kijk = Cijk − CijCk − CjkCi − CikCj + 2CiCjCk

Kijkl = Cijkl − CijkCl − CijlCk − CilkCj − CljkCi

−CijCkl − CilCkj − CikCjl + 2(CijCkCl

+CikCjCl + CilCjCk + CjkCiCl + CjlCiCk

+CklCiCj)− 6CiCjCkCl

are the cumulants

Ci...j =

∫
dzP (z)zi...zj ≡ 〈zi...zj〉 (5)

of the joint probability distribution for variables z1, ..., zj.95

With only two variables, a and b, defined above, we can consider the cost function

DC
a,b(τ) = DC(a(t), b(t+ τ)) (6)

The presence of nonlinear dependence has been identified by comparing the cumulant cost96

for a time series with the cumulant based cost of surrogate time series, which are con-97

structed to have the same linear correlations as in [Johnson and Wing , 2005]). Significance98

measures the difference in the discriminating statistic from the mean of the discriminating99

statistic of the surrogates in terms of the spread of the surrogates, σ.100

In Section 3, we will show an application of cumulant based analysis to the distur-101

bance storm-time index (Dst). In principle, the cross-correlation, mutual information,102

and cumulant-based cost should be independent of the selection of measurement points103
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if the system is stationary; therefore, time stationarity can be examined by comparing104

these discriminating statistics for groups of measurements drawn from different windows105

of time as in [Johnson and Wing , 2005; Wing et al., 2016].106

2.2. Transfer entropy

Another method for determining causality is the one-sided transfer entropy [Schreiber ,

2000; De Michelis et al., 2011; Materassi et al., 2014; Wing et al., 2016, 2018], which is

based upon the conditional mutual information

MC(x, y|z) ,
∑
x∈ℵ1

∑
y∈ℵ2

∑
z∈ℵ3

p(x, y, z) log

(
p(x, y, z)p(z)

p(x, z)p(y, z)

)
(7)

The conditional mutual information measures the dependence of two variables, x and y,107

given a conditioner variable, z. If either x or y are dependent on z the mutual information108

between x and y is reduced, and this reduction of information provides a method to109

eliminate coincidental dependence, or conversely to identify causal dependence.110

Transfer entropy considers the conditional mutual information between two variables

using the past history of one of the variables as the conditioner.

Ta→b(τ) =
∑
â∈ℵ1

∑
â(k)∈ℵ(k)

1

∑
b̂∈ℵ2

p(â(t+ τ), â(k)(t), b̂(t)) log

(
p(â(t+ τ)|â(k)(t), b̂(t))

p(â(t+ τ)|â(k)(t))

)
(8)

where â(k)(t) = [â(t), â(t − ∆), ..., â(t − (k − 1)∆)]. The standard definition of transfer111

entropy takes k = 1 (no lag), but keeping a higher embedding dimension could in prin-112

ciple provide a more precise measure (for example, if a has periodicity a dimension of 2113

may provide better prediction of future values of a from its past time series and therefore114

lower the transfer entropy. Transfer entropy as a discriminating statistic has the following115

advantages. First in the absence of information flow from a to b (i.e., a(t + τ) has no116

additional dependence from b(t) beyond what is known from the past history of a(k)(t))117
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p(â(t+ τ)|â(k)(t), b̂(t)) = p(â(t+ τ |â(k)(t)) and the transfer entropy vanishes. The transfer118

entropy is also highly directional so that Ta→b 6= Tb→a. The advantage can be clearly119

seen for dynamical systems where variables are forward differenced and the transfer en-120

tropy is clearly one-sided while mutual information and correlation functions can even be121

symmetric [Schreiber , 2000]. This measure also accounts for static internal correlations,122

which can be used to determine whether two variables are driven by a common driver or123

whether the variable b is causally driving the variable a.124

Both mutual information and transfer entropy require binning of data. As mentioned125

in Wing et al. [2016], the number of bins (nb) needs to be chosen properly and there are126

some guidelines that can be followed. In general, we would like to maximize the amount127

of information. Having too few bins would lump too many points into the same bin,128

leading to loss of information. Conversely, having too many bins would leave many bins129

with 0 or a few number of points, which also would lead to loss of information. Sturges130

[1926] proposed that for a normal distribution, optimal nb = log2(n) + 1 and bin width131

w = range/nb, where n = number of points in the dataset, range = maximum value −132

minimum value of the points. In practice, there is usually a range of nb that would work.133

3. Application to space weather: Dst analysis

Dst (disturbance storm time index) is an hourly index that gives a measure of the134

strength of the symmetric ring current that, in turn, provides a measure of the dynamics135

of geomagnetic storms [Dessler and Parker , 1959]. Because of its global nature, Dst is136

often used as one of the several indices that represent the state of the magnetosphere.137

For example, Balasis et al. [2011] used the cumulative square amplitude of Dst time series138

as a proxy for energy dissipation rate in the magnetosphere and found that it fits well139
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a power law with log-periodic oscillations, which was interpreted as evidence for discrete140

scale invariance in the Dst dynamics.141

When plasma sheet ions are injected into the Earth inner magnetosphere, they drift142

westward around the Earth, forming the ring current. Studies have shown that the143

substorm occurrence rate increases with solar wind velocity (high speed streams) [e.g.,144

Kissinger et al., 2011; Newell et al., 2016]. An increase in the solar wind electric field,145

V Bz, can increase the dawn-dusk electric field in the magnetotail, which in turn deter-146

mines the amount of plasma sheet particles that move to the inner magnetosphere [e.g.,147

Friedel et al., 2001]. Studies have shown that the electric field, V Bs (Vsw × southward148

IMF Bz) or V Bz, has a strong effect on the ring current dynamics [Burton et al., 1975;149

O’Brien and McPherron, 2000; McPherron and O’Brien, 2001; Weygand and McPherron,150

2006].151

For the present study, we examine the relationships between solar wind velocity (Vsw)152

and V Bs with Dst. We use Dst records in the period 1974 − 2001 obtained from153

Kyoto University World Data Center for Geomagnetism (http://swdcwww.kugi.kyoto-154

u.ac.jp/index.html). The corresponding solar wind data are obtained from IMP-8, ACE,155

WIND, ISEE1, and ISEE3 observations. The ACE SWEPAM and MAG data; and156

the WIND MAG data are obtained from CDAWeb (http://cdaweb.gsfc.nasa.gov/). The157

WIND 3DP data are obtained from the 3DP team directly. The ISEE1 and ISEE3158

data are obtained from UCLA (these datasets are also available at NASA NSSDC159

[http://nssdc.gsfc.nasa.gov/space/]). The IMP8 data come directly from the IMP teams.160

The solar wind is propagated with minimum variance technique [Weimer et al., 2003] to161
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GSM (X, Y, Z) = (17, 0, 0) RE to produce 1-min files, from which hourly averaged solar162

wind parameters are constructed.163

3.1. Cumulant based analysis

Section 2.1 presents the method of cumulant based cost. Here, we show an application

of cumulant based cost to detect nonlinear dynamics in Dst. We consider the forward

coupling between a solar wind variable such as V Bs and Dst, which characterizes the

ring current response to the solar wind driver. We therefore consider the nonlinear cross-

correlations of the vector

c(t, τ) = {V Bs(t), Dst(t+ τ)} = {z1, z2} (9)

The generalization of cost is based on realizations of {z1, z2}. In this case, each variable164

is Gaussianized with unit variance to eliminate static nonlinearities (i.e. higher order165

self-correlations in V Bs and Dst are eliminated so that the cost measures only cross-166

dependence between V Bs and Dst). This procedure is explained in the next paragraph.167

The distribution of Dst and V Bs are generally non-Gaussian. As such, the raw dis-168

tributions (e.g., distribution of values of Dst) may have nonzero higher-order cumulants169

(e.g., they can have a skew and kurtosis). This property makes it more difficult to in-170

terpret whether the higher order cumulants in the time evolution arise from the overall171

shape of the distribution of data points or from the time-ordering of the data. To elim-172

inate the inherent nonzero cumulants in the overall distribution of data, we construct a173

rank-ordered map from the original dataset to a proxy dataset of the same length drawn174

from a Gaussian distribution [Kennel and Isabelle, 1992; Schreiber and Schmitz , 1996;175

Deco and Schürmann, 2000]. The distribution of the proxy dataset ensures that all cu-176

D R A F T April 20, 2018, 10:38am D R A F T



X - 12 JOHNSON ET AL.: CAUSAL RELATIONSHIPS

mulants of the distribution beyond second order should in principle vanish. However, the177

time-ordering of the data can still lead to nonzero cumulants, because the joint probability178

distribution of Dst(t+τ) and Dst(t) may be non-Gaussian even if the distribution of Dst is179

Gaussian. Moreover, it is simple to construct surrogate data from the Gaussianized data180

that shares the same autocorrelation by using the same power spectrum, but randomly181

shifting the phases of the Fourier coefficients. The surrogate data therefore has the same182

autocorrelation as the original data. Any deviation from the linear statistic is apparent183

from comparison with the surrogate data, and we interpret these deviations as evidence184

of nonlinear dependence because we have falsified the hypothesis that the data can be185

adequately described by linear statistics. This method has been successfully employed in186

Johnson and Wing [2005] where Kp record was analyzed with mutual information and187

cumulants.188

In Figure 1 we plot the significance obtained from the year 1999 as a function of time189

delay, τ . Significance extracted from {V Bs(t), Dst(t + τ)} and {V Bs(t), V Bs(t + τ)}190

for 1999 are plotted in panels (a) and (b), respectively. It should be noted that there191

is a strong linear response at around 3 hour time delay. As shown in Figure 1a, there192

is a clear nonlinear response with peaking around 3−10, 25, 50 and 90 hours lasting for193

approximately 1 week. In contrast, in Figure 1b, the nonlinearity only has one broad peak194

around 3 − 12 hours in the self-significance for V Bs, suggesting that the nonlinear and195

linear peaks at τ = 3−12 hours in in Figure 1a i may be associated with V Bs. We will196

revisit the solar wind causal relationship with Dst using transfer entropy in Section 3.2.197

The absence of the nonlinear peaks at τ = 25, 50, and 90 hours in the self-significance198

for V Bs (Figure 1b) suggest that these nonlinearities in {V Bs(t), Dst(t+τ)} are related to199
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internal magnetospheric dynamics. As the Dst index is thought to reflect storm activity,200

it is reasonable that nonlinear significance would decay on the order of 1 week as storms201

commonly last around that time. The strong nonlinear responses at τ = 25, 50, and 90202

hours are likely related to multiple modes of relaxation of the ring current following the203

commencement of storms. It should also be noted that other nonlinearities detected by204

even higher order cumulants may also be present; however, the calculation demonstrates205

the nonlinear nature of the underlying dynamics.206

A common scenario for storm-ring current interaction is the following. A storm com-207

presses the magnetosphere, intensifies the magnetic field in the magnetosphere, and injects208

energetic particles into the ring current region. The ring current intensifies during the209

main phase of the storm, which can last ∼ 6 hours [Weygand and McPherron, 2006].210

Once the injection stops, the ring current begins to decay and the storm enters the re-211

covery phase. Conservation of magnetic moment implies that anisotropies develop in the212

ring current and plasma sheet. Anisotropy drives the ring current plasma unstable to ion213

cyclotron waves. The ion cyclotron waves scatter energetic ions into the loss cone so that214

they are lost from the ring current. Nonlinear interaction between waves and particles215

keeps the plasma near marginal instability with a steady loss of energetic particles due216

to wave-particle scattering. Other loss mechanisms include charge exchange, coulomb217

scattering, and convective of ions to the front of the magnetopause. The ring current218

decay can have two stages [Kozyra et al., 2002]. In the first stage, the ring current decays219

rapidly and the loss mechanisms can be attributed to convective out flow, pitch-angle220

scattering in the ring current, and O+ charge exchange [e.g., Weygand and McPherron,221

2006; Hamilton et al., 1988]. The second stage may typically begin about one day from222
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the commencement of the storm (see, for example, Figure 7 of Kozyra et al. [2002]). In223

the second stage, the decay rate is slower and is attributed mainly to H+ charge exchange224

[Hamilton et al., 1988] and can take several days to deplete the ring current to the baseline225

level [Smith et al., 1976]. We can speculate that the multiple nonlinear response lag times226

that are detected with the cumulant-based approach are likely the relaxation of the ring227

current due to complex interplay of multiple loss processes.228

3.2. Transfer entropy

As mentioned in Section 2.2, transfer entropy gives a measure of how much information229

is transfered from one variable to another. We have applied transfer entropy and mutual230

information to the relationship between the Vsw and Dst for the period 1974 − 2001. The231

result is shown in Figure 2. Note that the mutual information measure suggests strong232

correlations between prior values of Dst and Vsw. This finding suggests that Dst could be233

a driver of Vsw, which is counterintuitive. On the other hand, the transfer entropy clearly234

shows that this information transfer in the backward direction (Dst → Vsw) does not rise235

above the noise level (the horizontal blue lines indicate mean and standard deviation of236

100 surrogate data sets where the data was randomly reordered.) This result is expected237

because it is the solar wind that drives the magnetosphere, not the other way around.238

The transfer of information from Vsw to Dst peaks at τ = 8 − 11 hours. The cumulant239

based analysis in Section 3.1 shows that the response of Dst to V Bs has similar time scale.240

This time scale is consistent with the 4 to 15 hours transport time for the solar wind to241

reach the midnight and noon regions of the geosynchronous orbit, respectively, from the242

dayside magnetopause [Borovsky et al., 1998]. The analysis presented here illustrates the243

power of the transfer entropy for accessing causality.244
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4. Summary

We recently used mutual information, transfer entropy, and conditional mutual infor-245

mation to discover the solar wind drivers of the outer radiation belt electrons [Wing et al.,246

2016]. Because Vsw anticorrelates with solar wind density (nsw), it is hard to isolate the247

effects of Vsw on radiation belt electrons, given nsw and vice versa. However, using condi-248

tional mutual information, we were able to determine the information transfer from nsw249

or any other solar wind parameters to radiation belt electrons, given Vsw (or any other250

solar wind parameters). We also showed that the triangle distribution in the radiation251

belt electron vs. solar wind velocity plot [Reeves et al., 2011] can be understood better252

when we consider that Vsw and nsw transfer information to radiation belt electrons with253

2 days and 0 day (< 24 hr) lags, respectively. Also recently, we used transfer entropy to254

better understand the causal parameters in the solar cycle and their response lag times255

[Wing et al., 2018].256

As a follow up to Wing et al. [2016, 2018], the present study demonstrates further how257

information theoretical tools can be useful for space physics and space weather studies.258

Cumulant based analysis can be used to distinguish internal vs. external driving of the259

system. Both mutual information and transfer entropy give a measure of shared infor-260

mation between two variables (or vectors). However, unlike mutual information, transfer261

entropy is highly directional. To illustrate, we apply mutual information, transfer entropy,262

and cumulant based analysis to investigate the dynamics of Dst index.263

Our analysis with mutual information and transfer entropy indicates that there are264

strong linear and nonlinear correlations and transfer of information, respectively, in the265

forward direction between Vsw and Dst (Vsw → Dst). However, mutual information indi-266
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cates that there is also a strong correlation in the backward direction (Dst → Vsw), which267

is puzzling and counterintuitive. In contrast, the transfer entropy indicates that there is268

no information transfer in the backward direction (Dst → Vsw), as expected because it is269

the solar wind that drives the magnetosphere, not the other way around. The transfer of270

information from Vsw to Dst peaks at τ = 8 − 11 hours.271

Using the cumulant-based significance, we have established that the underlying dynam-272

ics of Dst is in general nonlinear exhibiting a quasiperiodicity which is detectable only if273

nonlinear correlations are taken into account. The strong nonlinear responses of Dst to274

V Bs at τ = 25, 50, and 90 hours are likely related to multiple modes of relaxation of the275

ring current from multiple loss mechanisms following the commencement of storms. It is,276

of course, possible that these nonlinearities are caused by solar wind drivers other than277

V Bs. However, the timing of these nonlinearities would put them well in the recovery278

phase of a storm and previous studies suggested that the ring current decays in the recov-279

ery phase are strongly influenced by V Bs [Burton et al., 1975; O’Brien and McPherron,280

2000; McPherron and O’Brien, 2001]. The nonlinearities at τ = 3 − 12 hours are not281

caused by internal dynamics but rather by the solar wind driver, which is similar with282

the time scale for the solar wind transport time from the dayside magnetopause to the283

inner magnetosphere. This time scale is consistent with the time scale for the information284

transfer from the solar wind to Dst obtained from transfer entropy analysis.285

Although linear models are useful, our results indicate that these models have to be286

used with cautions because solar wind − magnetosphere system is inherently nonlinear.287

Hence, nonlinearities generally need to be taken into account in order to describe the288

system accurately. Local-linear models (which include slow evolution of parameters) may289
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be able to handle some nonlinearities, but it is expected that these local-linear models290

would have difficulties if the dynamics suddenly and rapidly change.291
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Figure 1. Significance extracted from (a) {V Bs(t), Dst(t−τ)} and (b) {V Bs(t), V Bs(t−

τ)} for 1999. It should be noted that there is a strong linear response at around 3 hour

time delay. There is a clear nonlinear response with a strong peak around 50 hours lasting

for approximately 1 week. The longterm nonlinear response is absent in the solar wind

data indicating that the longterm nonlinear correlations between V Bs and Dst are the

result of internal magnetospheric dynamics.
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Figure 2. Comparison of mutual information and transfer entropy measures to de-

termine causal driving of the magnetosphere as characterized by Dst. Note that causal

driving appears to peak somewhat later (11 hours) than indicated by mutual information

(2 hours) indicating that internal dynamics likely are very important initially. The back-

ward transfer entropy is below the noise level for all values indicating that Dst in no way

influences the upstream solar wind velocity. Such a conclusion could not be inferred from

the mutual information measure.
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