

Anonymous Referee #1

Received and published: 11 July 2018

[GENERAL COMMENTS]

This paper presents the equatorial plasma pressure distributions obtained by the TWINS observation and by the drift kinetic simulation CIMI for the moderate storms of 7-10 September 2015. The general features of the plasma pressure in the inner mag- netosphere are similar to each other, whereas some differences are found in terms of peak location, anisotropy, and spatial distribution. The authors attributed the differences to the shielding effect and spatially-localized, short-duration injections of hot plasma.

The direct comparison between a sophisticated observation and an advanced drift kinetic equation is highly valuable, and is promising to overcome the difficulties arising from in-situ satellite observations. The provided data is basically very interesting, and I admire the authors' efforts to derive the pressure and anisotropy.

The authors thank the referee for the thoughtful and helpful comments. We respond positively below to each question and comment individually. Nevertheless, we cannot answer every question posed by referee with a full, unambiguous explanation. Such requires extensive investigations that are underway but are beyond the scope of this paper. We believe what many have said, i.e., good research raises at least as many questions as it answers.

Our responses are shown in bold font for ease of distinguishing our responses and the referee's comments.

However, I have 3 major concerns as follows:
C3

First, the physical interpretations made by the authors are unclear. Because of the lack of proper interpretations, I cannot catch new scientific knowledge or insights in the current version of the manuscript.

We certainly hope that our specific responses allow the referee and other readers to “catch new scientific knowledge or insights. . . “

Secondly, the reliability of the plasma pressure obtained by TWINS is also unclear. The spectral shape of the ion flux is almost the same at 4 different points, which seems unlikely to occur.

The intent of showing the spectral shapes in Figure 10 was not to present an extended discussion of the spectra but rather to indicate that there were two peaks, one at low energy, i.e., below 20 keV, and a second near 40 keV and to illustrate why the paths of 40 keV particles are shown. We are not sure that this is unlikely to occur. Details of the magnitude and shape of the energy spectra will be addressed in an extensive study that is underway.

As to the overall reliability of the plasma pressure, that is a difficult question to answer definitively and quantitatively. In the description of the methodology used to obtain the ion pressure from the TWINS ENA images, we have referenced the extensive testing of the ion distributions obtained from

the TWINS ENA images. (See Section 2.2, lines 190 ff in the version of the paper where corrections are accepted and lines 194 ff in the version of the paper where corrections are marked.)

Thirdly, the plasma pressure mentioned in this paper is "partial" so that the "true" distribution of the plasma pressure would be different. Careful description is needed when the authors intend to say the distribution of the pressure.

The referee is correct. What we show in this paper are "partial" pressures. The intent is to have the TWINS and CIMI results consider as nearly as possible a similar energy range. In the revised paper, all references to the particular pressures from TWINS and CIMI are now designated as partial pressure.

[SPECIFIC COMMENTS]

1. On the interpretations. The authors concluded that the difference between the observation and the simulation can be best explained by enhanced electric and magnetic shielding and/or spatially-localized, short-duration injections. First of all, please explain the meaning of the electric and magnetic shielding in more detail. Most of the readers may not understand the meaning of it. The electric shielding is supposed to result from the ionospheric electric field redistributed by the Region 2 field-aligned current.

Excellent suggestion. We include in the revised version an explanation as to what we mean by electric shielding. [See Lines 436-445]

What is the magnetic shielding?

"magnetic shielding" was an improper term. Better to say enhanced electric field shielding and/or induction electric fields caused by spatially-localized, short duration injections. The term is omitted in the revised version.

What is the expected effect of the shielding on the pressure distribution and pressure anisotropy?

It has been demonstrated that the electric shielding can affect the ring current morphology. [See Lines 90-94 in the revised document.] The purpose of this paper is to show much more explicitly what are the expected effects. We are currently undertaking a project to couple the CIMI code in the inner magnetosphere with a 3D hybrid code that simulates the rest of the magnetosphere. We expect the results to address these issues in even greater detail.

CIMI/RCM takes into account the shielding. What physical processes or parameters does CIMI/RCM need to consider properly to explain the observations?

The CIMI simulations presented in this paper do not have localized injections into the inner magnetosphere. This has been demonstrated to have an effect on the pressure distributions. [See Lines 524-526 in the revised document.] While the CIMI simulations in this paper do include some contributions from induction electric fields, the Tsyganenko magnetic field is not updated on short enough time scale to capture all of the induction electric fields. We, of course, do not know whether the steps we are taking to provide localized and short term injection effects will answer all the questions.

Have the authors tested CIMI/RCM with different conditions/parameters to explain the observations?

There have been investigations that demonstrate that changing the input at the boundary of the CIMI simulations does impact the ring current morphology. Also it has been shown that injecting non-isotropic pitch angle distributions impacts the parameter of the ring current. [See Lines 507-509 in the revised document] The authors have not tried, however, to reverse engineer the input to the CIMI simulations presented in this paper to attempt to match the data.

(1) On reliability of the plasma pressure. In Figure 10, the differential fluxes of the ions are shown as a function of energy at 4 points. The intensity of the flux is different but the spectral shape is almost the same with each other. Why is the spectral shape of the flux almost the same at the 4 points? According to in-situ observations, the spectral shape of the flux depends on L-value and magnetic local time (e.g., Milillo et al., 2001, 10.1029/2000JA900158), so that it seems quite unlikely to be the same spectral shape at 4 points. Please explain the validity of the spectral shape of the flux and the plasma pressure distribution presented in this paper.

We reference the published examples of validation of all the features of the ion distributions through comparisons with in-situ measurements. [See Lines 191-202.] These examples were chosen because the satellites happen to be in the right place at the right time to see the features of interest. It is true, of course, that such comparisons do not guarantee the complete validity of the current results.

The main reason for showing the measured energy spectra was to show why the paths of 46 keV ions were used to display the location and time of the injections of the ions that had 46 keV energy at the peaks. What the authors think has the relevant validity in this case is the high energy a low energy peaks in the spectra.

The outstanding work by Millillo et al , 2001 will make an important contribution to our current investigation into the details of the energy spectra during geomagnetic storms during the TWINS mission. The fact that the average results presented in their paper is for $AE < 100$ nT does not directly invalidate the results presented here.

Finally, as was stated above, the focus of this paper is not the details of the energy spectra. If the referee would prefer, we could remove them from Figure 10.

Secondly, please explain the expected effect of spatially-localized, short-duration injections on the pressure and anisotropy.

As described above and is illustrated to some extent in previously referenced work, the authors expect that spatially-localized, short-duration injections will impact the spatial and temporal locations of the pressure peaks. We also expect it to be a key factor in explaining the observation of multiple peaks in the ring current.

Have the authors modeled spatially-localized, short-duration injections to explain the observations?

As stated above, it has been demonstrated that spatially localized injections can affect the ring current morphology, but we have not tried to match the observations for this particular storm without some experimental or theoretical guidance. There is an ongoing investigation to couple CIMI with a 3D hybrid simulation of the injections from the tail explicitly intended to address this question.

Thirdly, please explain the reason why the CIMI result always shows parallel anisotropy of the plasma pressure in the dawn-midnight-dusk region. The pressure anisotropy is largely different from the observations. Detailed explanation is needed.

An explanation is given in the revised paper. [See Lines 490-496 in the revised document.] Whether this is the complete explanation is uncertain at this time. The authors expect to develop a more definitive explanation as part of an ongoing investigation to couple CIMI with a 3D hybrid simulation of the injections from the tail.

(2) On the plasma pressure. I suppose that the plasma pressure was calculated from integration of the differential flux over the energy range from 2.5 keV to 97.5 keV. The energy range is probably insufficient to cover all the ions trapped in the inner mag- netosphere because the ions with energy greater than 100 keV is also known to contribute to the plasma pressure (energy density) largely (e.g., Smith and Hoffman, 1973, 10.1029/JA078i022p04731; Williams, 1983, 10.1016/0032-0633(81)90124-0). If the high energy ions remained during these storms, there would be another peak of the pressure, which may stay at L 2.5 – 3.0. I recommend discussing possible impacts of the high energy ions (>100 keV) on the conclusion. I also recommend emphasizing that the plasma pressure distribution is "partial" so that the pressure distribution is incomplete.

The referee is correct, the plasma pressure presented in this paper should be referred to as partial pressure because it was calculated by integrating from 2.5 to 97.5 keV. The paper by Smith and Hoffman, 1973 certainly shows that higher energies can make significant contributions to the energy density (pressure). It is to be noted, however, that they say

"To contrast the development of the ring current for the two storms, we now consider those protons (1- to 138-kev protons were used) which contribute substantially to the storm-time ring current. While protons in this energy regime contribute only 20% or less to the total energy density out to L = 4 during magnetically quiet periods, their enhancement during magnetic storms, combined with a depletion of protons with energies greater than about 170 kev, make them the dominant (greater than 90%) contributors to the storm-time energy densities."

The paper is referenced. [See Line 179 in revised document.]

The paper by William, 1983, describes the state of observations at that time with the conclusion, "It is found that the ring current energy density composition still has not been observed."

The authors wholeheartedly agree with the recommendations of the referee.

[MINOR COMMENTS]

Introduction: I recommend citing papers related to plasma pressure distribution and anisotropy observed by satellites, for example, De Michelis et al. (1999, 10.1029/1999JA900310), Ebihara et al. (2002, 10.1029/2002GL015430), and Lui (2003, 10.1029/2003GL017596).

Definitely. The authors apologize for not recognizing these papers. [See Lines 65, 70, 72 in revised document.]

Line 47-57: Simulation results with different electric field and/or magnetic field models have been conducted by Angelopoulos et al. (2002, 10.1029/2001JA900174) and Ebihara et al. (2004, 10.5194/angeo-22-1297-2004).

Most definitely. The authors thank the referee for pointing us to these papers. [See Lines 55, 61 in revised document.]

Line58-63: This paragraph seems not to provide information. What key spatial features do Wang et al. (2011) find?

The authors think it is somewhat harsh to say that the paragraph [Lines 65- does not provide any information. In particular reference to the Wang et al. (2011) paper, the paper presents extensive data and comparisons with RCM modeling, but they are based upon statistical averages of events. The result from Wang et al (2011) that is relevant to this paper is what is stated in the last sentence of this paragraph. It is based upon the last sentence of the Abstract and the first sentence of the Summary.

Line 311: The equatorial pressure p_{eq} is difficult to understand. Please explain how to derive p_{eq} .

The authors are not sure why p_{eq} is difficult to understand. It is pressure at the equator as a function of position and pitch angle. It is the standard definition of pressure, i.e., the energy density of the ions, the integral of the distribution function times the velocity squared.

What follows is an exchange between the referee and the authors that clarified the original equations. The referee's comments are shown in different colors reflecting the order in which they entered the discussion. The authors responses are in bold black. The paragraph now reads as shown in Lines 333-340 of the revised document.

The authors answered my comments properly except for one thing on the equatorial pressure (Line 311 in the first version of the manuscript). The authors stated that p_{eq} is pressure at the equator as a function of position and pitch angle, and that it is the standard definition of pressure. If it is the standard definition of pressure, please cite relevant reference. The reason why I am asking is that readers may be eager to know how the authors obtained the terms, P_{\perp} and P_{\parallel} . Here, I assume that P_{\perp} and P_{\parallel} are the pressure tensor components in the perpendicular and parallel components, respectively. Lui et al. (1987, 10.1029/JA092iA07p07459) show the equations to calculate P_{\perp} and P_{\parallel} as a function of velocity v and the velocity distribution function f (Eqs. 2 and 3 in Lui et al., 1987). The velocity distribution function f is associated with the differential flux that is directly measurable. What is the relationship between p_{eq} and the measured value (probably differential flux derived from the ENA observation)?

The Referee is correct, the equation as presented is unclear. Somehow the full response to the original comment was lost.

The pressure anisotropy shown in Figure 3 is defined as

$$A = \frac{P_{\perp} - P_{\parallel}}{P_{\perp} + P_{\parallel}}$$

with

$$P_{\perp} = \int_{-1}^{+1} p_{eq}(\alpha) \sin^2 \alpha d \cos \alpha \quad \& \quad P_{\parallel} = 2 \int_{-1}^{+1} p_{eq}(\alpha) \cos^2 \alpha d \cos \alpha$$

where α is the pitch angle and p_{eq} is the equatorial pressure as a function of location and pitch angle which was obtained from the energy dependent number flux deconvolved from the TWINS ENA images, i.e.,

$$p_{eq} = \frac{2\pi}{m} \int_0^\infty E f(E, n, \cos \alpha) dE$$

where $f(E, n, \cos \alpha)$ is the number of ions per unit area, energy, and steradian. This definition is derived from Braginskii (1965) and is consistent with previous formulations, e.g., Lui et al. (1987).

The authors now present the meaning of the equatorial pressure p_{eq} as $p_{eq} = 2\pi m R E f dE$, where m is mass, E is energy, and f is the number of ions per unit area, energy and steradian. First of all, I am unsure if f corresponds to the so-called differential number flux that is the number of ions per unit area, energy, time and steradian. If so, I have further comment. The definition of the perpendicular and parallel pressure (P_{\perp} and $P_{||}$) is as follows. $P_{\perp} = 1/2 R m v^2 \sin^2 \alpha F dE$ and $P_{||} = R m v^2 \cos^2 \alpha F dE$, where F is the velocity distribution function. These equations can be derived from the original definition of pressure (probably Braginskii (1965) provided, too). Lui et al. (1987) also present these equations. The velocity distribution function is given by $F = m v^2 f$. Substituting this into above equations, I have $P_{\perp} = RR\pi v^2 m f V E \sin^2 \alpha d(\cos \alpha) dE = RR\pi v^2 m f V E dE \sin^2 \alpha d(\cos \alpha) = R p_{eq} \sin^2 \alpha d(\cos \alpha)$ and $P_{||} = RR^2 \pi v^2 m f V E \cos^2 \alpha d(\cos \alpha) dE = R^2 p_{eq} \cos^2 \alpha d(\cos \alpha)$, where $p_{eq} = R\pi v^2 m f V E dE$. It seems that the definition of p_{eq} is different from the authors'. The same equation is found in Eqs (7) and (8) in De Michelis et al. (1997, doi:10.1029/96JA03743). Maybe I misunderstand, but I would like to make it clear. I suggest avoiding the term 'equatorial pressure' because this term is confusing and misleading. The above equations can be applied for everywhere, not restricted in the equatorial plane.

The question seems to revolve around 2 areas of confusion.

First, the use of the subscript "eq" to indicate that it is the equatorial pressure. The purpose was to communicate that it is at the equator that we actually calculate the pressure anisotropy. We agree, however, that this may be confusing so we agree to leave it out.

Second the definition of the symbols f and F in the equations. We suggest that to try to avoid this confusion, we suggest the following:

The pressure anisotropy shown in Figure 3 is defined as

$$A = \frac{P_{\perp} - P_{\parallel}}{P_{\perp} + P_{\parallel}}$$

with

$$\begin{Bmatrix} P_{\perp} \\ P_{\parallel} \end{Bmatrix} = \int_{-1}^{+1} d \cos \alpha \begin{Bmatrix} \sin^2 \alpha \\ 2 \cos^2 \alpha \end{Bmatrix} \left(\int_0^{\infty} dE \sqrt{\frac{2E}{m}} F(E, n, \cos \alpha) \right)$$

where α is the ion pitch angle, E is the ion energy, n is the ion density, m is the ion mass and $F(E, n, \cos \alpha)$ is the number flux per unit area, energy, time, steradian. This definition is derived from Braginskii (1965) and is consistent with previous formulations, e.g., Lui et al. (1987).

The authors revised the equation for the pressure terms. However, the equation seems to be different from the equation given by De Michelis et al. (1997, <http://doi.wiley.com/10.1029/96JA03743>) by a factor of πm . I am curious to know the reason why the equation is different. The definition of the plasma pressure is changed. Does this change have any impact on the result? I suppose that lower energy protons may have more impact on the pressure. I recommend removing n from $F(E, n, \cos \alpha)$ because F is an arbitrary function and n is an independent variable.

C3

We very much appreciate the comments that have been made by the Referee. They have certainly made our paper better. But at this time, it seems that we having trouble communicating. We are not sure how to respond. Please see comments below: (The Referee's comments are repeated in italics.)

The authors revised the equation for the pressure terms. However, the equation seems to be different from the equation given by De Michelis et al. (1997, <http://doi.wiley.com/10.1029/96JA03743>) by a factor of πm . I am curious to know the reason why the equation is different.

I assume that the referee is referring to Eqs. (7) and Eqs (8) in De Michelis et al. (1997). Let's look at the unit of those eqs. For the pressure to have the correct units of energy per unit volume, the units of the "differential flux intensity", J in Eqs. (7) and (8) must be $1/(\text{vol} * m * v)$. The reason for the different factors is that J is not the flux we have in our equation. Our flux, $F(E, n, \cos \alpha)$, as it says in the text, has units of #ions/(energy*time*area*steradian). One can check the units of the equation we have in the paper and they come out to be pressure. In fact if one substitutes the proper equation for a Maxwellian distribution into the equation in the paper, i.e.,

$$F(E, n, \cos \alpha) = \frac{n}{\sqrt{2m}(\pi T)^{3/2}} E e^{-E/T}$$

and performs the integrals, the result is nT , precisely what one expects for a Maxwellian.

The definition of the plasma pressure is changed.

The definition of the plasma pressure has not changed. We have been discussing a general definition of pressure. That has not changed, just the way it is presented has been made clearer with the help of the Referee.

Does this change have any impact on the result? I suppose that lower energy protons may have more impact on the pressure.

We assume this is in reference to the previous comment regarding the change in the definition of the pressure. We assume that the referee is referring to the fact that the pressure we calculate and present as results is the partial pressure, i.e., it is integrated from 2.5 to 97.5 keV for TWINS and 1 to 133 keV for CIMI. The referee correctly requested that we distinguish the pressure calculated in this paper as the partial pressure and we have done so. There is no change that would impact the results in this paper.

I recommend removing n from $F(E, n, \cos\alpha)$ because F is an arbitrary function and n is an independent variable.

This comment may somehow be at the heart of the miscommunication that we are having at this time. Yes, it is in some sense arbitrary, i.e., in the expression for the pressure, it is whatever it is in a particular physical situation. In what we are presenting, however, the $F(E, n, \cos\alpha)$ is definitely not an arbitrary function. For the TWINS results, it is what is obtained from the ENA images. For CIMI, it is what is obtained from the simulations. As stated above it has units of $\# \text{ions}/(\text{energy} \cdot \text{time} \cdot \text{area} \cdot \text{steradian})$. We feel that it makes the most sense to express the pressure in terms of what it is obtained, i.e., from the measurements and simulations. It is then integrated as expressed in the formulas to obtain the pressures we present. We might also note that previous publications of TWINS and CIMI results have shown the average of $F(E, n, \cos\alpha)$ over pitch angles as a function of energy.

My comment is simple: How did the authors calculate the plasma pressure? The following is the procedure that I am currently understanding. First of all, please make sure if my understanding is correct.

1. For the TWINS results, the authors obtained the differential flux F from ENA images. For CIMI, the authors calculated the differential flux F. F has units of the number of ions/(unit energy-unit time-unit area-unit solid angle).

Yes that is correct.

2. The authors calculated the pressure terms by integrating F with respect to energy and pitch angle.

$$P_{\perp} = \int d\cos\alpha \sin^2 \alpha Z dE r^2 E m$$

$$F, (1)$$

$$P_{\parallel} = \int 2 d\cos\alpha \cos^2 \alpha Z dE r^2 E m$$

F. (2)

We can only apologize to the Referee. There was a typing error in the equations we sent in our previous reply. The factor in the integral should be $\sqrt{2mE}$. There also is a factor of 2π from the integral over the gyrotropic angle. The paragraph in the proposal is now

The pressure anisotropy shown in Figure 3 is defined as

$$A = \frac{P_{\perp} - P_{\parallel}}{P_{\perp} + P_{\parallel}}$$

With

$$\left\{ \frac{P_{\perp}}{P_{\parallel}} \right\} = 2\pi \int_{-1}^{+1} d \cos \alpha \left\{ \frac{\sin^2 \alpha}{2 \cos^2 \alpha} \right\} \left(\int_0^{\infty} dE \sqrt{2mE} F(E, n, \cos \alpha) \right)$$

where α is the ion pitch angle, E is the ion energy, n is the ion density, m is the ion mass and $F(E, n, \cos \alpha)$ is the number flux per unit area, energy, time, steradian. This definition is derived from Braginskii (1965) and is consistent with previous formulations, e.g., Lui et al. (1987).

The units are now $\text{steradians} * E \sqrt{m^2 v^2} \frac{1}{El^2 t * \text{steradians}} = E \frac{mv}{mv^2 t} = \frac{E}{l^3}$, i.e., energy/vol as it should be.

Now, I realized that the confusion comes from the definition of F .

That is exactly correct.

Eqs. (1) and (2) will be understandable if F is the velocity distribution function, NOT differential flux!

I am not sure what you mean by “differential flux”. It is my understanding that one can have energy flux, number flux, charge flux, etc either per velocity, per energy, etc.

It is true that f is often used for the velocity distribution function. That is not what F is the equation above and in the paper.

The velocity distribution function, which is the number of particles in 6-dimensional space, is defined by

$$F = m^2/2Ej.$$

Using this relationship, Eqs. (1) and (2) yield $P_{\perp} = Z \cos\alpha \sin^2\alpha Z dE/2Emj$, (3) $P_{||} = 2Z \cos\alpha \cos^2\alpha Z dE/2Emj$. (4) Eqs. (3) and (4) are consistent with Eqs. (7) and (8) of De Michelis et al. (1997) who use the symbol J to represent the differential flux.

Yes, the corrected equations above are exactly as you say. If all that is needed to make it clear is to change F to j , we have no problem with that.

Hereinafter, I would like to define the terms F and j to be the velocity distribution function and the differential flux, respectively, to avoid confusion. I would appreciate if the authors make sure which equations, (1)-(2), or (3)-(4), the authors used to calculate the pressure.

We want the function in the integral to per unit energy. That is not what we would call a “velocity distribution”.

In the second reply, the authors stated that the plasma pressure was calculated by $P_{\perp} = Z peq \cos\alpha \sin^2\alpha$, (5) $P_{||} = 2Z peq \cos\alpha \cos^2\alpha$, (6) $peq = 2\pi m Z EjdE$. (7) Although Eqs. (5)-(7) are different from Eqs. (1)-(2) and Eqs. (3)-(4), the authors state that the change of the equations does not affect the results. Why? Does it mean that the authors did not use these equations to calculate the pressure? Does Eqs. (5)-(7) include typographical error?

Honestly, we do not remember an equation of mine with a j in it. We would not say that Eqs. (5-6) contain typographical errors. We would say they were ill-defined and unclear. We appreciate your efforts to make them clear. At this point, we think that they are at least well-defined and describe appropriately the equations we used to calculate the anisotropy measurements and simulations we report in the paper.

I may misunderstand something, but I would appreciate very much if the authors answer these questions.

Given the unclear definitions we presented originally and the mistakes made in the equation we sent in our earlier reply, it is reasonable that you have not understood. To the best of our knowledge, the equations are now correct and well-defined.

To summarize, we want to use #ions per unit energy*area*time*steradians in the integral definition of the parallel and perpendicular pressure.

We have tried and will gladly continue to try to answer your questions until you are satisfied.

Line 489-496: Ebihara et al. (2009) also showed multiple peaks of the plasma pressure distribution in the inner magnetosphere by introducing temporal changes in the distribution function at the outer boundary of CRCM. It would be worth mentioning that the rapid changes in the distribution function in the plasma sheet could result in the multiple peaks of the plasma pressure.

A sentence has been added pointing out that the model calculations did show multiple pressure peaks inside of $4 R_E$. [See Lines 534-535 in revised document.]

Line 499 "But they do not provide incontrovertible evidence for the effects of spatially and temporally dependent injections into the inner magnetosphere." This sentence is difficult to understand.

The sentence has been removed.

Figure 10, caption: Please indicate the unit of the color bar (probably in keV), and pitch angle of the particle. What is the meaning of "Minimum – Maximum Energy for Each Path"?

An explanation has been added. [See Figure 10 caption, Line 1035 of revised document.]

Line 520, "Peak 5" Does it mean "Peak 4"?

Yes. It has been corrected. [See Line 563 of revised document.]

C3
Line 497-527: The spectral shape of the differential flux of the ions is almost the same at the 4 points. Please explain the validity of the differential flux derived from TWINS? At Peak 3, the ion is inaccessible from the outer boundary. I recommend tracing the ion trajectory backward in time by starting at slightly different points.

I think we have addressed this issue in response to previous comments. The main reason for presenting these spectra is to motivate showing the paths of the 46 keV ions. As stated above, if the referee prefers, they can be removed.

Line 546-548: "This is not unexpected as the ions are being injected into regions of higher magnetic field, and conservation of the first adiabatic invariant would predict the enhancement of parallel pitch angles." I cannot understand this meaning. Please explain the reason why the conservation of the first adiabatic invariant results in the pressure anisotropy dominated by the parallel component?

A full explanation has been added. [See Lines 589-598 in revised document.]

Line 548-550: "Nevertheless the parallel anisotropy is seen in the observations only during the main phase of the first storm. This is also an indication of stronger electric and magnetic shielding." Please explain the reason why the stronger shielding results in the parallel anisotropy?

The statement has been changed to be consistent with responses to previous comments by the referee. [See Lines 589-598 in revised document.]

The authors answered my question properly. Everything is now clear. I have no additional comments or concerns. I recommend this paper for possible publication in *Annales Geophysicae*

C3

Dynamics of a Geomagnetic Storm on 7-10 September 2015 as Observed by TWINS and Simulated by CIMI

Perez¹, Joseph D., James Edmond¹, Shannon Hill², Hanyun Xu¹, Natalia Buzulukova³, Mei-Ching Fok³, Jerry Goldstein^{4,5}, David J. McComas⁶ and Phil Valek^{4,5}

¹Auburn University, Auburn, AL 36849, USA

²Emory University, Atlanta, GA 30322, USA

³NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

⁴Southwest Research Institute, San Antonio, TX 78228, USA

⁵University of Texas at San Antonio, San Antonio, TX 78249, USA

⁶Department of Astrophysical Sciences, Princeton University, NJ 08540, USA

Correspondence to: J. D. Perez, perez@physics.auburn.edu

Abstract. For the first time, direct comparisons of the equatorial ion partial pressure and pitch angle anisotropy observed by TWINS and simulated by CIMI are presented. The TWINS ENA images are from a 4-day period, 7-10 September 2015. The simulations use both the empirical Weimer 2K and the self-consistent RCM electric potentials. There are two moderate storms in succession during this period. In most cases, we find that the general features of the ring current in the inner magnetosphere obtained from the observations and the simulations are similar.

Nevertheless, we do also see consistent contrasts between the simulations and observations. The simulated partial pressure peaks are often inside the observed peaks and more toward dusk than the measured values. There are also cases in which the measured equatorial ion partial pressure shows multiple peaks that are not seen in the simulations. This occurs during a period of intense AE index. The CIMI simulations consistently show regions of parallel anisotropy spanning the night side between approximately 6 and 8 R_E whereas the parallel anisotropy is seen in the observations only during the main phase of the first storm. The evidence from the unique global view provided by the TWINS observations strongly suggests that there are features in the ring current partial pressure distributions that can be best explained by enhanced electric shielding

31 and/or spatially-localized, short-duration injections..

32

33 **Key Words.** Magnetospheric physics (Storms and substorms, Magnetosphere configurations and

34 dynamics) – Space plasma physics (charged particle motion and acceleration)

35 **1 Introduction**

36

37 The Earth's inner magnetosphere contains a large-scale current system, the ring current, in which
38 the current is carried by trapped ions that are injected from the magnetotail and generally drift
39 westward. It is a major contributor to magnetic depressions measured in the Earth's equatorial
40 region that are expressed in terms of the Dst or SYM/H indices which characterize the time-
41 evolution of geomagnetic storms. The plasma sheet is a primary source of particles in the inner
42 magnetosphere. Therefore understanding and predicting the dynamics of the injected particles is
43 a key factor in understanding the formation and decay of the ring current. This challenge can be
44 addressed by a comparison of model and simulation results with observations.

45 There have been many studies which compared model results to observations. Kistler and
46 Lawson (2000) used 2 different magnetic field models, dipole and Tsy89 (Tsyganenko, 1989),
47 along with two different electric potential models, Volland (Volland, 1973)-Stern (Stern, 1975)
48 and Weimer96 (Weimer, 1996), to calculate ion paths in the inner magnetosphere. They
49 compared the results with in-situ proton energy spectra measured by the Active Magnetospheric
50 Particle Tracer Explorers (AMPTE) (Gloeckler et al, 1985) over a range of local times. They
51 found that, in the inner magnetosphere, the electric field has a much stronger effect on the
52 particle paths than the magnetic field and that the Weimer96 model gave a better match to the
53 features of the observed energy spectra than the Volland-Stern model. But the energy at which
54 the drift paths became closed, 40-50 keV, was not in agreement with the observations. It is to be
55 noted that the effects of induction electric fields were not included in this analysis. Angelopoulos

56 et al. (2002) added co-rotation electric fields to Volland-Stern, Weimer 96, Weimer 2000 along
57 with modifications to improve fits to instantaneous electric field measurements by
58 POLAR/HYDRA (Scudder et al., 1995) and Defense Meteorological Satellite Program satellites
59 to compare with in-situ measurements of ion spectrograms from POLAR/HTDRA , EQUATOR-
60 S (Kistler et al., 1999) and FAST (Carlson, et al., 2001). They found differences that seemed to
61 require the inclusion of local inductive electric fields and/or particle injections. Ebihara et al.,
62 (2004) modeled discrete energy bands observed by POLAR using a dipole magnetic field and a
63 realistic electric field to show that changes in the convection electric field produced better
64 results.

65 De Michelis et al (1999) obtained images of pressure in the equatorial plane, both orthogonal
66 and parallel, and anisotropy using 2-year averages of proton distributions measured by
67 AMPTE/CCE-CHEM (Dassoulas et al., 1985; Gloeckler et al., 1985). They located 2 current
68 systems, the inner portion of the cross-tail current and the ring current during times of $AE > 100$
69 nT, and both the full and partial ring current along with region 2 currents for $100 \text{ nT} < AE < 600$
70 nT. Ebihara et al. (2002) compared statistically averaged data from POLAR/MICS (Wilken, et
71 al., 1992) with simulations of proton drift paths using the Volland-Stern electric potential and
72 found reasonable agreement. Lui, et al. (2003) used the AMPTE/CCE-CHEM and MEPA
73 (McEntire et al., 1985) to construct the plasma pressure distribution over an extended energy
74 range from 1 keV to 4 MeV. They found that the statistical pressure distribution obtained from
75 the in-situ measurements differed from the results obtained from ENA images obtained from
76 IMAGE/HENA (Brandt et al., 2004). Wang et al (2011) compared average spatial profiles of the

77 Time History of Events and Macroscale Interaction during Substorms (THEMIS) (Angelopoulos,
78 2008) in situ-observations with simulations using the Rice Convection Model (RCM) self-
79 consistent electric and magnetic fields (Toffoletto et al, 2003). The agreement with key spatial
80 features of the particle fluxes confirms the importance of the magnetic and electric transport in
81 determining features of the ring current. With the advent of missions dedicated to energetic
82 neutral atom (ENA) imaging, e.g., (1) the 3 instruments, LENA (T. E. Moore et al, 2000),
83 MENA (Pollock et al, 2000), and HENA (Mitchell et al, 2000) on board IMAGE (Burch, 2000),
84 (2) the Energetic Neutral Atom Detector Unit (NUADU) (McKenna-Lawlor et al, 2005), and (3)
85 Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) (McComas et al, 2009a;
86 Goldstein and McComas, 2013; Goldstein and McComas, 2018), it became possible to test
87 simulations against full images of the inner magnetosphere.

88 Fok et al (2003) compared simulations using the CRCM (Fok et al, 2001) model with ENA
89 images from IMAGE/MENA & HENA. They were able to match the magnitude and trends of
90 the observed Dst but not all of the short time variations. The empirical Weimer96 electric field
91 model was not able to explain the fact that the peaks of the proton flux in the inner
92 magnetosphere were in the midnight/dawn sector rather than the expected dusk/midnight sector
93 during a strong storm on 12 August 2000, but the self-consistent CRCM electric field model did
94 explain this feature. They also used the MHD fields computed by the BATS-R-US (Block-
95 Adaptive-Tree Solar-wind Roe Upwind Scheme) (Groth et al, 2000) model to provide electric
96 and magnetic fields and ion temperature and density at the model boundary ($10 R_E$) at the

97 equator to model a large storm that occurred on 15 July 2000. The simulated ENA images
98 matched the general features of the HENA ENA images.

99 Buzulukova et al. (2010) studied the effects of electric shielding on ring current morphology
100 by comparing the results of CRCM simulations from a moderate and a strong storm with ENA
101 images from TWINS and IMAGE/HENA. The Tsy96 empirical magnetic field, the Weimer-
102 2000 electric potential model (Weimer, 2001) and the empirical Tsyganenko and Mukai (2003)
103 model of the plasma sheet density and temperature were employed. They achieved agreement
104 between the magnitude and trends of the observed SYM/H and the simulated values for both
105 storms, and were able to explain the post-midnight enhancements of the pressure due to electric
106 shielding. They did not include the effects of inductive electric fields or time dependence due to
107 substorms.

108 Fok et al (2010) used ENA images from both TWINS1 and TWINS2 along with in-situ
109 THEMIS observations during a storm on 22 July 2009 to validate the CRCM simulations. They
110 found that, when a time-dependent magnetic field is included, the electric potential pattern is less
111 twisted and the ion flux peak did not move as far eastward giving better agreement with the ENA
112 observations.

113 It is clear that present-day simulations are able to explain the general features of the
114 observations of the ring current in the inner magnetosphere, both from in-situ measurements and
115 in ENA images. It is also clear that questions remain as to the contributions of various shielding
116 mechanisms. Self-consistent dynamic electric potentials give better results. Inclusion of
117 magnetic induction effects is also necessary for the best results. But to date effects on short time

118 scales, e.g., injections from sub-storms, bubbles, and bursty bulk flows have not been included in
119 a self-consistent manner.

120 It is also important to note that the cases treated have been either statistical averages or single
121 events in which there was no evidence for multiple peaks in the ring current pressure
122 distribution. The existence of multiple peaks, however, has been observed in data from the
123 AMPTE Charged Particle Explorer mission (Liu et al, 1987; Ebihara et al, 1985) and in ion
124 distributions extracted from TWINS ENA images (Perez et al., 2015).

125 The science question to be addressed by this study is: Are there features in the global ring
126 current pressure that are caused by enhanced electric shielding and/or spatially-localized, short-
127 duration injections? We present for the first time a direct comparison between simulations of
128 ring current equatorial partial pressure and anisotropy distributions with the unique global
129 images extracted from the TWINS ENA images. We present cases in which the general
130 characteristics of the observed partial pressure distribution are reproduced by the simulations and
131 others in which the observed ion partial pressure peaks are at larger radius, in different MLT
132 sectors, and display multiple peaks that are not found in the simulations. We also compare for the
133 first time global images of the pressure anisotropy extracted from the TWINS ENA images with
134 the results of simulations using the Comprehensive Inner Magnetosphere Ionosphere (CIMI)
135 model (Fok et al., 2014).

136 In Sect. 2, we describe the measurement of the TWINS ENA images and the process by
137 which ion partial pressures and anisotropy are extracted, and briefly discuss how this technique
138 has been validated against in-situ measurements. In Sect. 3, we describe the important aspects of

139 the CIMI model, and how it has been compared with geomagnetic activity indices, in-situ
140 measurements, and ENA images. The particular storms on 7-10 September 2015, which are the
141 focus of this study, are described in Sect. 4. The comparison of results of the measurements and
142 simulations are presented in Sect. 5. They are discussed in Sect. 6. Sect. 7 summarizes the
143 results and the conclusions.

144

145 **2 Measurements**

146

147 **2.1 TWINS ENA Images**

148

149 The NASA TWINS mission of opportunity (McComas et al., 2009a; Goldstein and McComas,
150 2013, Goldstein and McComas, 2018) obtains ENA images of the inner region of the Earth's
151 magnetosphere. The instrument concept is described in McComas et al. (1998). Every 72 s with
152 an integration (sweep) time of 60 s, full images are obtained. In this study, in order to obtain
153 sufficient counts for the deconvolution process described in Sect. 2.2, the images are integrated
154 over 15-16 sweeps. This means data is collected for ~15 min over an ~ 20 min time period. The
155 energies of the neutral atoms span a range from 1-100 keV/amu. In the images used in this
156 study, the energy bands are such that $\Delta E/E = 1.0$ for H atoms. In order to enhance the processed
157 image, a statistical smoothing technique and background suppression algorithms described in
158 detail in Appendix A of McComas et al. (2012) are employed. This combined approach is an
159 adapted version of the statistical smoothing technique used successfully for IBEX (McComas et

160 al., 2009b) data.

161

162 **2.2 Ion Pressures**

163

164 For the comparison with simulation results using the CIMI program (See Sect. 3.), the spatial and
165 temporal evolution of equatorial ion partial pressure and pressure anisotropy are routinely
166 obtained from the TWINS ENA images. To extract this information from the ENA images, the
167 ion equatorial pitch angle distribution is expanded in terms of tri-cubic splines (deBoor, 1978).

168 To fit the data and to obtain a smooth solution, the sum of normalized chi-squared and a penalty

169 function derived by Wahba (1990) is minimized. The penalty function is what produces the
170 smoothness of the result (in the sense of a minimum second derivative), and the normalized chi-
171 square is what ensures that the calculated image corresponds to the measured ENA image. This

172 means that the spatial structure obtained in the equatorial ion partial pressure distributions is no

173 more than is required by the observations (Perez et al, 2004). In order to obtain pressures from
174 the energy dependent ENA images, which are integrated over energy bands with widths equal to

175 the central energy, e.g., 40 keV images are integrated from 20-60 keV, a technique using singular

176 valued decomposition as described in Perez, et al., (2012, Appendix B) is employed. The energy
177 range included in the partial pressures presented in this paper is 2.5-97.5 keV, i.e., the energy

178 range observed by TWINS. It is to be noted that higher energies do make significant

179 contributions to the total ring current pressure. (Smith and Hoffman, 1973)

180 In order to obtain the ion distributions from the ENA images, models for both the magnetic

181 field and the exospheric neutral hydrogen density are required. In this study, we use the
182 Tsyganenko and Sitnov (2005) magnetic field model and the TWINS exospheric neutral
183 hydrogen density model (Zoennchen, et al, 2015).

184 We must also deal with the fact that there are two components to the ENA emissions: the
185 energetic ions created in charge exchange interactions with neutral hydrogen in the geocorona,
186 the so-called high altitude emissions (HAE), and those due to charge exchange with neutral
187 oxygen at low altitudes (below \sim 600 km), the so-called low altitude emissions (LAE) (Roelof,
188 1997). The former are treated as optically thin emissions, and the latter with a thick target
189 approximation developed by Bazell et al. (2010) and validated by comparisons with DMSP data
190 (Hardy et al., 1984).

191 A full range of the ion characteristics obtained from the TWINS ENA images have been
192 compared with in-situ measurements. Measurements of the spatial and temporal variations of the
193 flux in specific energy bands from the Time History of Events and Macroscale Interactions
194 during Substorms (THEMIS) (Angelopoulos, 2008) have been compared with ion flux obtained
195 from the TWINS ENA images (Grimes et al, 2013; Perez et al, 2015). A similar comparison
196 (Perez et al, 2016) has been made with measurements made on the Van Allen Probes (formerly
197 known as the Radiation Belt Storm Probes (RBSP) A and B) (Mauk et al., 2013; Spence et al.,
198 2013) by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) (Mitchell et
199 al., 2013) instrument. Pitch angle distributions and pitch angle anisotropy have been compared
200 with THEMIS observations (Grimes et al, 2013). Energy spectra have also been compared with
201 THEMIS measurements (Perez et al, 2012). Partial pressure and anisotropy from TWINS have

202 been compared with RBSP-SPICE-A (Perez et al, 2016) observations. While the in-situ
203 measurements show more detailed temporal and spatial features, there is good agreement with
204 the overall trends. Goldstein et al (2017) compared the TWINS ENA images with in-situ data
205 from THEMIS and the Van Allen probes. They found evidence for bursty flows and ion
206 structures in the plasma transport during the 2015 St. Patrick's day storm.

207

208 **3 The CIMI Model**

209

210 The CIMI model is a combination of the Comprehensive Ring Current Model (CRCM) (Fok et
211 al, 2001b) and the Radiation Belt Environment (RBE) model (Fok, et al., 2008). The CRCM is a
212 combination of the classic Rice Convection Model (RCM) (Harel et al, 1981) and the Fok kinetic
213 model (Fok et al., 1993).

214 The CRCM simulates the evolution of an inner magnetosphere plasma distribution that
215 conserves the first two adiabatic invariants. The Fok kinetic model solves the bounce-averaged
216 Boltzmann equation with a specified electric and magnetic field to obtain the plasma distribution.
217 It is able to include arbitrary pitch angles with a generalized RCM Birkeland current algorithm.
218 The Fok model advances in time the ring current plasma distribution using either a self-
219 consistent RCM field or the semi-empirical Weimer electric field model. A specified height-
220 integrated ionospheric conductance is required for the RCM calculation of the electric field. The
221 Hardy model (Hardy et al., 1987) provides auroral conductance. Losses along the particle drift
222 paths are a key feature of the CIMI model. The CIMI pressure distributions utilized in this study

223 cover an energy range from 75 eV to 133 keV.

224 Simulated results from CIMI or its predecessors have been tested against a variety of
225 measurements from a number of satellite missions. Some examples are: (1) AMPTE/CCE (Fok
226 et al., 2001b), (2) IMAGE ENA images (Fok et al., 2003), (3) Polar/CEPPAD (Ebihara et al.,
227 2008), (4) IMAGE/EUV(Buzulukova et al., 2008), (5) TWINS ENA images (Fok, et al., 2010),
228 (6) Radiation belt measurements and Akebono (Glocer, et al., 2011), (7) TWINS plasma sheet
229 boundary conditions (Elfritz, et al., 2014), and (8) TWINS ENA images and Akebono (Fok et al.,
230 2014). Using the Dessler-Parker-Schopke relation (Dessler and Parker, 1959; Schokpe, 1966), it
231 has also been shown that the simulated CIMI pressures match well the observed SYM/H. (See
232 Figure 9, Buzulukova et al., 2010). In this study, we present the first direct comparison between
233 CIMI and TWINS ion partial pressure and anisotropy.

234 Important input to the CIMI simulations are the particles injected into the inner
235 magnetosphere along the outer boundary of the simulation. In the simulations shown here, it has
236 been assumed that the particles have a Maxwellian distribution with density and temperature
237 determined by a linear relationship to the solar wind density and velocity respectively (Ebihara
238 and Ejiri, 2000; Borovsky et al., 1998). A 2 hour time delay between the arrival of the solar wind
239 parameters at the nose of the magnetopause and its effect on the ions crossing into the inner
240 magnetosphere also has been assumed (Borovsky et al. 1998). The pitch angle distribution of the
241 incoming ions is taken to be isotropic.

242 Results from simulations with the CIMI model using two different forms of the electric
243 potential are compared in this investigation. One is the Weimer 2K empirical model (Weimer,

244 2001) and the other is a self-consistent electric potential from RCM.

245

246 **4 The 7-10 September 2015 Storms**

247

248 Figure 1 shows solar wind parameters and geomagnetic activity indices from the OMNI data
249 service for 4 days, i.e., 7-10 September 2015. During this 4-day period, there were two SYM/H
250 minima in succession. The first came early on 8 September 2015 after a 1-day long main phase
251 on 7 September 2015. The minimum SYM/H was approximately -90 nT, so it was a relatively
252 weak storm. There was a rapid recovery for approximately 3 hours coinciding with a sharp
253 transition of B_z from negative, i.e., -8 or -9 nT, to positive, i.e., +18 or +19 nT along with a sharp
254 transition of B_y from positive, i.e., +5 nT, to negative, i.e., -12 or -13 nT. There was also a sharp
255 spike in the solar wind density at the inception of this first recovery phase. After the recovery
256 was completed, there followed about a 12-hour period of near 0 nT SYM/H. The main phase of
257 the second storm showed a relatively steady decline in SYM/H to a minimum near -110 nT in
258 about 12 hours. The recovery from this second minimum was slow with a duration of about 1½
259 days. The second main phase and minimum corresponded to a slow swing of B_z back to negative
260 and B_y to a slightly negative value. Also to be noted is the strong AE index, indicative of
261 possible substorm activity during the main phases and early recovery of both minima. There is
262 also some AE activity near the end of the second storm. During those same periods, the ASY/H
263 index also had significant values during the main phase and early recovery of both minima. (See
264 Figure 1.)

265

266 **5 Results**

267

268 **5.1 Comparison of the Location of the Equatorial Ion Partial Pressure Peaks**

269

270 Figure 2 shows the location of the equatorial ion partial pressure peaks as measured from the
271 TWINS ENA images (green diamonds) and simulated by CIMI with both the Weimer 2K (red
272 lines) and the RCM (orange lines) electric fields. Figure 2a is the radial location for the four
273 days of the 07-10Sep2015 storms, and Figure 2b is the MLT location.

274 The radial positions of the partial pressure peaks for the CIMI simulations are similar,
275 i.e., about $4 R_E$, for both the Weimer 2K and the RCM electric potentials. The RCM results do
276 show more variation. Many of the radial positions for the TWINS observations are also near $4 R_E$,
277 but others are at larger values. The MLT locations of the peaks are generally in the
278 dusk/midnight sector. This is consistent with statistical analysis of proton fluxes from the
279 database of the magnetospheric plasma analyzer (MPA) instrument aboard Los Alamos satellites
280 at geosynchronous orbit (Korth et al., 1999). But the CIMI simulations, with both the Weimer
281 2K and RCM potentials, show a brief time early on 8 September 2015 where some of the peaks
282 are in the midnight/dawn sector. Given the assumed 2 hour delay in the propagation of the solar
283 wind parameters into the inner magnetosphere, this seems to correlate with a sharp swing in B_y
284 shown in Figure 1. The TWINS observations show several instances of the partial pressure
285 peaks being near midnight and in the midnight/dawn sector. As described earlier, ion flux peaks

286 in this region have been seen from ENA images for very strong storms (Fok et al, 2003).

287

288 **5.2 Comparison of Equatorial Ion Partial Pressure Peaks and Anisotropies at Specific**
289 **Times**

290

291 The following subsections will examine in detail a number of specific times during these two
292 storms in order to address similarities and differences in the simulations with an empirical and a
293 self-consistent electric field model and with observations. One apparent difference in what
294 follows is the magnitude of the equatorial partial pressure for the three cases. The maximum on
295 the colorbars for Figures 3-9 were chosen to be different for each time in order to emphasize the
296 spatial dependence of the pressure distribution. The maxima for the two CIMI simulations are
297 very similar, i.e., the RCM vary from 20-38 nPa and the Weimer 2K from 15-30 nPa. But the
298 maxima of the TWINS peaks vary from 1-4 nPa, which is significantly smaller.

299 The magnitude of the ion intensities derived from the ENA images has been addressed in
300 several previous comparisons with in-situ measurements. Vallat et al. (2004) compared Cluster-
301 CIS (Réme et al., 2001) and IMAGE-HENA observations and found that for relatively strong
302 fluxes, the agreement was excellent for two cases, but for another the ion flux determined from
303 the ENA images was somewhat higher than the in-situ observations and in another it was
304 significantly lower. Grimes et al. (2013) compared THEMIS (Angleopoulos, 2008) spectral
305 measurements with spectra obtained from TWINS ENA images and found that the in-situ fluxes
306 were a factor of 3 times greater than those obtained from the ENA images. Perez et al. (2016)

307 compared 30 keV ion fluxes obtained from TWINS ENA images with in-situ measurements by
308 RBSPICE-A (Mauk et al., 2013) and found good agreement in both the average time dependent
309 trend and in the magnitude. The in-situ measurements, of course, showed more structure given
310 their much higher spatial and temporal resolution. Goldstein et al. (2017) analyzed data from
311 THEMIS, Van Allen probes, and TWINS for a large storm to find that the ion fluxes obtained
312 from the ENA images were generally lower than those from the in-situ measurements. They also
313 found significant variations in the in-situ data. So while some part of the difference in the partial
314 pressures obtained from TWINS measurements and CIMI simulations are due to the larger
315 energy range included in the CIMI pressures, it is not the entire explanation. The issue of the
316 absolute magnitude remains an important, unresolved issue, but the fluxes obtained from ENA
317 images have been shown to reflect the global structure of the trapped ring current particles, and
318 that is the emphasis in this study.

319

320 **5.2.1 2200 UT 07 September 2015**

321

322 Figure 3 shows the equatorial partial pressure profiles and the pressure anisotropy from the
323 CIMI/RCM simulation, the TWINS observations, and the CIMI/Weimer 2K simulation at 2200
324 UT 07 September 2015. This was late in the main phase of the first storm (See Figure 1.). The
325 radial locations of the peaks differ by less than 1 R_E . The MLT locations of the partial pressure
326 peaks, however, differ by 3 hours in MLT. While the TWINS peak is near midnight, the CIMI
327 peaks are well into the dusk/midnight sector with the CIMI/Weimer even closer to dusk. Results

328 for the Weimer96 when compared with the RCM for a very strong storm showed even greater
329 shielding for the RCM when compared to the empirical Weimer model (Fok et al., 2003). Note,
330 however, that for this weaker storm, the MLT spread in the peaks of the partial pressure
331 distributions do overlap. It is also to be noted that the TWINS results show more radial
332 structure.

333 The pressure anisotropy shown in Figure 3 is defined as

334

$$A = \frac{P_{\perp} - P_{\parallel}}{P_{\perp} + P_{\parallel}}$$

335 with

336

$$\begin{Bmatrix} P_{\perp} \\ P_{\parallel} \end{Bmatrix} = 2\pi \int_{-1}^{+1} d \cos \alpha \begin{Bmatrix} \sin^2 \alpha \\ 2 \cos^2 \alpha \end{Bmatrix} \left(\int_0^{\infty} dE \sqrt{2mE} F(E, n, \cos \alpha) \right)$$

337

338 where α is the ion pitch angle, E is the ion energy, n is the ion density, m is the ion mass and
339 $F(E, n, \cos \alpha)$ is the number flux per unit area, energy, time, steradian. This definition is derived
340 from Braginskii (1965) and is consistent with previous formulations, e.g., Lui et al. (1987).

341 The pressure anisotropy at the pressure peaks is somewhat perpendicular in all 3 cases. We
342 also note a region of parallel anisotropy at $R > 6-7 R_E$ from pre-midnight to dawn in all 3.

343

344 **5.2.2 0400 UT 08 September 2015**

345

346 Figure 4 shows results for 0400 UT 08 September 2015 in the same format. This was early in
347 the rapid recovery phase of the first minimum in SYM/H. (See Figure 1.) The radial location of

348 the partial pressure peaks again differ by less than 1 R_E . This time, however, all the peaks are in
349 the dusk/midnight sector. Again the CIMI/Weimer 2K is closer to dusk than the CIMI/RCM
350 pressure profiles. The TWINS peak is between the two simulations. The CIMI/Weimer 2K
351 pressure distribution is more symmetric than the others even though the ASY/H shown in Figure
352 1 is > 50 nT. The region of parallel pressure anisotropy in the CIMI results does not appear in the
353 TWINS results which are more nearly isotropic in general compared to the CIMI simulations.

354

355 **5.2.3 1600 UT 08 September 2015**

356

357 Figure 5 shows results for 1600 UT 08 September 2015 in the same format. This was during the
358 period of near 0 nT SYM/H between the two storm minima. It was during a time period when
359 both B_z and B_y are positive (See Figure 1.). Again the radial location of the partial pressure
360 peaks are similar. The TWINS peak, however, has moved to the noon/dusk sector. It has
361 continued to move westward from its positions in Figures 3 and 4. This could be the classic drift
362 due to magnetic field gradient and curvature as originally observed in IMAGE/HENA ENA
363 images by Brandt et al., (2001). In contrast to the TWINS pressure profile, the CIMI pressures
364 reflect a nearly symmetric ring current. While ASY/H was relatively low at this time, it did
365 show a small peak (See Figure 1.). Both the CIMI/RCM and the CIMI/Weimer 2K results show a
366 region of parallel pressure anisotropy at large radii that almost circles the Earth. The TWINS
367 results show only perpendicular pressure anisotropy.

368

369 **5.2.4 0200 UT 09 September 2015**

370

371 Figure 6 shows results for 0200 UT 09 September 2015 in the same format. This is early in the
372 main phase of the second minimum in SYM/H (See Figure 1.). The TWINS equatorial ion
373 partial pressure peak is at a larger radius and in the midnight/dawn sector in contrast to the CIMI
374 results where the peaks are in the dusk/midnight sector. There is considerably more spatial
375 structure in the TWINS results. The strongest TWINS peak extends well into the dusk/midnight
376 sector with a region near the same location as the CIMI peaks and with another at a larger radius
377 in the dusk/midnight sector. There is an even larger difference in the pressure anisotropy. The
378 parallel region at large radii in the CIMI result is even more parallel but is again absent in the
379 TWINS result. The small intense parallel region at very small radius in the TWINS plot is a
380 region of very low flux and therefore not a reliable ratio. At this time, the AE index was rising
381 sharply as was the ASY/H index (See Figure 1.).

382

383 **5.2.5 0400 UT 09 September 2015**

384

385 Figure 7 shows results for 0400 UT 09 September 2015 in the same format. This was just 2
386 hours later than the time shown in Figure 6. It was near the end of the main phase of the second
387 minimum in SYM/H (See Figure 1.). Again the TWINS peak is in the midnight/dawn region
388 whereas the CIMI peaks appear in the dusk/midnight region, but the radial location is very nearly
389 the same. This time, however, the TWINS peak extends past dawn and not into the pre-midnight

390 region. Even though the MLT location of the CIMI/RCM and the CIMI/Weimer 2K peaks are
391 nearly the same, the CIMI/Weimer 2K maximum extends to almost noon. The pressure
392 anisotropy shows features very similar to those seen 2 hours previously (See Figure 6.) .The AE
393 index has been at fairly high values for about an hour and the ASY/H index is beginning to rise
394 sharply again (See Figure 1.).

395

396 **5.2.6 1800 UT 09 September 2015**

397

398 Figure 8 shows results from 1800 UT 09 September 2015 in the same format. At this time
399 SYM/H (See Figure 1.) shows that the second storm was a few hours into a slow recovery.
400 There are 4 distinct peaks in the TWINS equatorial ion partial pressure distribution. The highest
401 is at large radius, about $7 R_E$, in the dusk/midnight sector. There is another lower peak, also at
402 large radius in the noon/dusk sector. There are two peaks at a similar radius as the CIMI peaks.
403 This interval is an example of multiple peaks in the ring current that have been inferred from in-
404 situ measurements (Liu et al., 1987), and seen in analysis of ENA images (Perez et al., 2015).
405 The parallel pressure anisotropy in the CIMI results is again present, but it is smaller and weaker
406 than at previous times. Again TWINS does not show this feature.

407

408 **5.2.7 1700 UT 10 September 2015**

409

410 Figure 9 shows results from 1700 UT 10 September 2015 in the same format. At this time the

411 second storm was well into its slow recovery, SYM/H was beginning a small dip, there was a
412 peak in the AE index, and ASY/H had a weak peak. (See Figure 1.) The partial pressure profiles
413 for CIMI/RCM and CIMI/Weimer 2K are symmetrical with a peak in the dusk/midnight sector.
414 The TWINS partial pressure peak is closer to dusk. This interval is in contrast to results at
415 earlier times in the storm. The TWINS partial pressure peak is at a larger radius, and there is
416 very little flux in the dawn/noon sector. The CIMI pressure anisotropies again show a region of
417 strong parallel pitch angles that is not seen in TWINS.

418

419 **6 Discussion**

420

421 Injections from the plasma sheet are thought to be the primary source of ring current protons in
422 the inner magnetosphere, i.e., those that are observed by TWINS. Electric and magnetic fields
423 determine the ultimate path of the injected ions, i.e., whether they reach locations close enough
424 to the Earth where the magnetic gradient and curvature drifts are strong enough to exceed the
425 electric drift forming the ring current or whether they drift out to the magnetopause. The
426 locations of the partial pressure peaks from the CIMI/RCM and the CIMI/Weimer 2K
427 simulations and the TWINS observations during the 4-day period, 07-10 September 2015, show
428 that the peaks are usually in the dusk/midnight sector. (See Figure 2b) This phenomenon is
429 consistent with analysis of data at geosynchronous orbit (Birn et al., 1997). Nevertheless the
430 TWINS observations show partial pressure peaks that are often at larger radii than the CIMI
431 simulations, even when they are in the dusk/midnight sector (See Figure 2a.). The fact that the

432 CIMI/Weimer peaks are generally closer to dusk than the CIMI/RCM. (See Figure 2b.) is
433 consistent with simulations reported by Fok, et al. (2003). The TWINS MLT locations are closer
434 to midnight and in the midnight /dawn sector more frequently than the CIMI results. This
435 suggests that there are often enhanced electric shielding and effects from localized and short time
436 injections that are not present in the CIMI simulations. To understand how the electric
437 shielding works to affect the paths of the injected particles, we note that the convection electric
438 field from the solar wind is mapped into the magnetosphere along open field lines into the polar
439 ionosphere. It is then shielded from penetrating to lower latitudes and therefore further into the
440 inner magnetosphere by the Birkeland region 2 currents driven by pressure gradients in the ring
441 current. During geomagnetic storms when there is a sharp turn in the z-component of the
442 interplanetary magnetic field (IMF) from negative to positive (See row 2 of Figure 1.), the
443 accompanying electric field in the ionosphere associated with the Region 2 currents can produce
444 what is referred to as over-shielding. See for example Jaggi and Wolf (1973). There are also
445 neutral disturbance dynamo electric fields in the ionosphere that affect electric shielding.
446 Localized and short time injections may contribute to the complexity of these effects.

447 Looking in detail reveals an even more complex story. Figures 3-9 show comparisons of the
448 partial pressure profiles during different phases of the storms. In the main phase of the first
449 storm (See Figure 3.), while there is a significant AE index and ASY/H asymmetry (See Figure
450 1.), the observed TWINS peak is at midnight while the simulated peaks are more toward dusk.
451 During the rapid recovery phase of the first storm, (See Figure 4.) when the AE index is smaller
452 (See Figure 1.), the observed and simulated partial pressure peaks are at approximately the same

453 radius, and all are in the dusk/midnight sector. During the period between the two storms (See
454 Figure 5.) when there is very little geomagnetic activity, i.e., SYM/H near 0 nT (See Figure 1.),
455 the observed partial pressure peak has drifted more westward than the simulated peaks, even
456 going past dusk (See Figure 5.). Another feature to note is the symmetry of the ring current in the
457 CIMI simulations whereas the TWINS observations show a gap in the dawn/noon sector. The
458 ASY/H index shows a small peak at this time (See Figure 1.) This suggests time dependence in
459 the electric and magnetic fields that is not present in the CIMI simulations.

460 It is in the second storm (Figures 6-8) that the TWINS observations begin to show more
461 spatial and temporal structure than the CIMI simulations. In Figure 6, early in the main phase,
462 the TWINS observations show the main partial pressure peak near $6 R_E$ and 3 MLT while the
463 simulated peaks are near $4 R_E$ and 20 MLT. But there is also a strong observed pressure region in
464 the same area as the simulated peaks. Just 2 hours later, the simulated pressure shows little
465 change, but the observed main peak extends farther eastward, and the relative pressure in the
466 dusk/midnight region has weakened relative to the main peak. Fourteen hours later in the
467 recovery phase of the second storm, the simulated peaks have not changed significantly, whereas
468 the TWINS observed peaks are dramatically different (See Figure 8.). There are 4 pressure
469 peaks. The strongest peak is at $7 R_E$ and just westward of midnight. At smaller radii, there is a
470 weaker peak near the location of the simulated peaks as well as one on the dawn side past
471 midnight. There is another weaker peak at large radius near noon. It should be noted that there
472 is strong AE activity and that ASY/H has significant values during this period (See Figure 1.).
473 This activity suggests that there may be variations in the electric and magnetic fields produced

474 by spatial and time dependence of the location of the ion injections that are not present in the
475 CIMI simulations.

476 The increased structure in the partial pressure distributions as observed by TWINS is
477 especially dramatic during the recovery phase of the second storm. (See Figure 8.) There is
478 strong AE activity and the largest values of ASY/H during this period. In the late recovery of the
479 second storm (See Figure 9.), the CIMI simulations show a symmetric ring current as expected
480 (Pollock et al., 2001). The TWINS results are not symmetric and have a peak at large radius in
481 the dusk/midnight sector. There is some AE activity and a rise in the ASY/H index at this time.

482 Figures 3-9 also show comparisons of the pressure anisotropy during the different phases of
483 the storm. The pressure anisotropies at the partial pressure peaks are generally in good
484 agreement among the 3 results presented here, i.e., the pitch angle distributions are more
485 perpendicular than parallel. The CIMI simulations, however, show a consistent region of parallel
486 anisotropy at radii outside the pressure peak. The degree to which the pitch angle distributions
487 are more parallel increases until the early recovery phase of the second storm (See Figure 8.)
488 where it weakens but then strengthens again in the late recovery phase. This feature is seen by
489 TWINS only in the main phase of the first storm (See Figure 3.) and perhaps very faintly in the
490 early recovery phase of the second storm. (See Figure 8.) The ions that are injected at the
491 boundary of the CIMI simulations, located at $10 R_E$ for those shown here, have an isotropic pitch
492 angle distribution. As they are accelerated while conserving the first adiabatic invariant to enter
493 the region observed by TWINS, i.e. an outer radius of $8 R_E$, their pitch angle distributions
494 become parallel because the energy increase exceeds what can be absorbed in the perpendicular

495 pitch angles while still conserving the first adiabatic invariant. One mechanism for reducing the
496 parallel anisotropy is wave-particle interactions which are not included in the CIMI simulations..

497 Another possible contributing factor to the differences between the observations and
498 simulations is the input to the CIMI model used in these simulations. Following Fok et
499 al.(2014), the ion distribution at the boundary of the CIMI simulations in this study is an
500 isotropic, Maxwellian distribution at a radius of $10 R_E$ at all MLT. The density and temperature
501 of the Maxwellian is taken to have a linear relation to the solar wind density and solar wind
502 velocity respectively (Borovsky et al., 1998; Ebihara and Ejiri, 2000). This produces a relatively
503 smooth time variation in the input which has been shown to be successful in matching the
504 general features of SYM/H (Buzulukova et al., 2010), but does not match the more rapid
505 variations as a function of time. It has also been shown that varying the spatial dependence of
506 the input along the boundary can have a significant effect on the location of the pressure peaks
507 (Zheng et al., 2010). Likewise Buzulukova et al. (2010) showed that input of non-isotropic
508 pitch angle distributions can affect the comparison between the CIMI simulations and the ENA
509 observations.

510 There is significant experimental evidence for temporal and spatial variations in the injection
511 of ions into the trapped particle region of the ring current (e.g., Birn et al., 1997; Daglis et al.,
512 2000; Lui et al., 2004). Bursty bulk flows associated with near-Earth magnetic reconnection
513 events have been frequently observed in the magnetotail (Angelopoulos et al., 1992). These fast
514 flows have been observed to have a $1-3 R_E$ width in the dawn-dusk direction (e.g., Angelopoulos
515 et al., 1996; Nakamura et al., 2001; Angelopoulos et al., 2002). Magnetic flux ropes flowing

516 Earthward have also been observed (e.g., Slavin et al., 2003; Eastwood et al., 2005; Imber et al.,
517 2011). Short time, spatially limited injections into the inner magnetosphere have also been seen
518 in 3D hybrid simulations. (e.g. see Lin et al., 2014.) Thus it is reasonable to suppose that the
519 additional spatial and temporal structure in the partial pressure profiles observed during this
520 storm is due to effects not yet incorporated into the simulations.

521 Buzulukova et al. (2008) combined the Comprehensive Ring Current Model (CRCM) (Fok et
522 al., 2001) and the Dynamical Global Core Plasma Model (Ober et al., 1997) to model features of
523 the plasma sphere observed by the Extreme UltraViolet (EUV) instrument on the Imager for
524 Magnetosphere-to-Aurora Global Exploration (IMAGE) (Burch, 2000) on 17 April 2002. They
525 found that injections from the plasma sheet that were localized in magnetic local time (MLT)
526 explained observed undulations of the plasmasphere. Some features of an inductive electric field
527 were included through the use of a time dependent magnetic Tsy96 (Tsyganenko and Stern,
528 1996) magnetic field model.

529 Likewise, Ebihara et al. (2009) compared CRCM simulations with midlatitude Super Dual
530 Auroal Radar Network (SuperDARN) Hokkaido radar observations of fluctuating ionospheric
531 flows on 15 December 2006. Using input from geosynchronous satellites to model the temporal
532 and spatial variations of the plasma sheet input to the inner magnetosphere, they were able to
533 show that the resulting pressure variations in the ring current were responsible for field aligned
534 currents and matched the dynamics of the observed subauroral flows. The results from the
535 CRCM also showed multiple pressure peaks inside of $4 R_E$. This is indicative of a strong

536 connection between the dynamics of the ring current pressure distribution and the rapid temporal
537 characteristics of the subauroral plasma flow during a geomagnetic storm.

538 The comparisons between the observations and the simulations presented here give a view
539 not available from in-situ measurements. To further elucidate this phenomenon, we present in
540 Figure 10 the paths of particles injected into the inner magnetosphere calculated using the CIMI
541 simulations that provide additional support for concluding that the observations may show
542 effects from enhanced electric shielding and localized and short time injections. The focus is
543 upon the time 1800 UT on 9 September 2015 during the second storm. As shown in Figure 8,
544 the TWINS observations show multiple peaks in contrast to the single peak in the CIMI
545 simulations. For each of the 4 partial pressure peaks observed by TWINS, we show the energy
546 spectrum (left column) and the paths of particles that reach the location of the pressure peaks
547 (right column). The energy spectra show two energy maxima, one below 20 keV and the largest
548 maxima above 40 keV. The ion paths are calculated with the CIMI model using the RCM
549 fields. The path shown is of a particle with an energy of 46 keV when it reaches the respective
550 pressure peaks, i.e., the energy at the maximum of the energy spectra shown in the left hand
551 column. The TWINS partial pressure configuration from Figure 8 is repeated in gray scale so as
552 to highlight the paths. In each case the pressure peak is shown by a black square. Along the path
553 there are stars every 10 minutes. The color of the stars indicate the ion energy as it moves along
554 its path. (See color bar.)

555 For Peak 1, the 46 keV particle enters at $10 R_E$ in the midnight/dawn sector. The time from
556 injection to reaching this peak in the outer magnetosphere is approximately 20 minutes. For

557 Peak 2, which is at a smaller radius, a 46 keV ions arrives at the peak from the dawn/midnight
558 sector after approximately 2 ½ hours. This peak observed by TWINS is very near the pressure
559 peak that appears in the CIMI simulations. (See Figure 8.) Peak 3 is at a similar radius as Peak
560 2, but it is on the dawn side of midnight. The path of a 46 keV particle followed backwards in
561 time from this peak location does not show an injection location after completing nearly 3 orbits
562 of the Earth in approximately 12 hours. This partial pressure peak observed by TWINS may not
563 be consistent with the RCM fields in the CIMI model. Peak 4 is in the noon/dusk sector. A 46
564 keV particle reaches this peak after approximately 3 ¾ hours and 1 orbit of the Earth. It enters
565 the inner magnetosphere in the same sector, i.e., the midnight/dawn sector, as the particle that
566 reached the location of Peak 1, but it was injected much earlier. The different locations and
567 times of the entrance of the ions at the peaks of the energy spectra of the 4 pressure peaks 1, 2,
568 and 4 observed by TWINS at 1808 UT on 9 September 2015 suggest spatial and temporal
569 variations in the injections from the plasma sheet. The fact that the calculated path for Peak 3
570 does not show an injection may indicate variations in the fields not captured in the models.

571

572 **7 Summary and Conclusions**

573

574 We have presented, for the first time, direct comparisons of the equatorial ion partial pressure
575 distributions and pitch angle anisotropy obtained from TWINS ENA images and CIMI
576 simulations using both an empirical Weimer 2K and the self-consistent RCM electric potentials
577 for a 4-day period, 7-10 September 2015. There were two moderate storms in succession during

578 this period (See Figure 1.). In most cases, we find that the comparison of the general features of
579 the ring current in the inner magnetosphere obtained from the observations and simulations are in
580 agreement. Nevertheless, we do see consistent indications effects of enhanced electric shielding
581 and localized and short time injections from the plasma sheet in the observations. The simulated
582 partial pressure peaks are often inside the measured peaks and are more toward dusk than the
583 measured values (See Figure 2.). There are also cases in which the measured equatorial ion
584 partial pressure distribution shows multiple peaks that are not seen in the simulations (See Figure
585 8.). This occurs during a period of intense AE index. The observations suggest time and
586 spatially dependent injections from the plasma sheet that are not included in the simulations. The
587 paths of the ions that enter the inner magnetosphere calculated with the CIMI model using the
588 self-consistent RCM fields support this interpretation.

589 The simulations consistently show regions of parallel anisotropy spanning the night side
590 between approximately 6 and 8 R_E (See Figures 3-9.). This is thought to be a result of the
591 increasing energy of the particles as they come enter the simulation region at 10 R_E with
592 isotropic pitch angle distributions. The particles are entering regions of stronger magnetic field
593 so conservation of the first adiabatic invariant requires the perpendicular velocity to increase, but
594 it is not adequate to accommodate the increase in energy. So the parallel velocity must increase.
595 Nevertheless the parallel anisotropy is seen in the observations only during the main phase of the
596 first storm. Localized and short time injections may produce ions that are injected with
597 perpendicular pitch angle distributions that would result in the observed nearly isotropic pressure
598 anisotropy.

599

600 *Acknowledgments.* OMNI solar wind data are accessible via CDAWeb at
601 <https://cdaweb.gsfc.nasa.gov/>. TWINS data are accessible to the public at <http://twins.swri.edu>.
602 Geomagnetic activity indices are also available from the World Data Center for Geomagnetism
603 in Kyoto, <https://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html>.

604 This work was supported by the TWINS mission, a part of NASA's Explorer program. We
605 thank the World Data Center for Geomagnetism, Kyoto for supplying Real Time Dst and AE
606 indices. We also thank the ACE and Wind plasma and magnetometer teams for L1 data and the
607 OMNI data set for their propagation of these data.

608 Significant parts of the calculations in this study were performed on the Auburn University
609 High Performance and Parallel Computing Facility.

610

611 **References**

612

613 Angelopoulos, V., W. Baumjohann, C. F. Kennel, F. V. Coroniti, M. G. Kivelson, R. P. R. J. W.
614 H. Luhr, and G. Paschmann, Bursty bulk flows in the inner central plasma sheet, *J. Geophys.*
615 *Res.*, 97, 4027--4039, doi:10.1029/91JA02701, 1992.

616

617 Angelopoulos, V., W. Baumjohann, C. F. Kennel, F. V. Coroniti, M. G. Kivelson, R. Pellat, R. J.
618 Walker, H. Lohr, and G. Paschmann, Multi-point analysis of a bursty bulk flow event on
619 April 11, 1985, *J. Geophys. Res.*, 101, 4967, 1996.

620

621 Angelopoulos, V., Chapman, J. A., Mozer, F. S., Scudder, J. D., Russell, C. T., Tsuruda, K.
622 Mukai, T., Hughes, T. J. and Yumoto, K., Plasma sheet electromagnetic power generation
623 and its dissipation along auroral field lines, *J. Geophys. Res.*, 107(A8), 1181,
624 doi:10.1029/2001JA900136, 2002.

625

626 Angelopoulos, V., M. Temerin, I. Roth and F. S. Mozer, Testing global storm-time electric field
627 models using particle spectra on multiple spacecraft, *J. Geophys. Res.*, 107,1194,
628 10.1029/2001JA900174, 2002.

629

630 Angelopoulos, V., The THEMIS mission, *Space Sci. Rev.*, 141(1–4), 5–34, doi:10.1007/s11214-
631 008-9336-1, 2008.

632

633 Bazell, D., E. C. Roelof, T. Sotirelis, P. C. Brandt, H. Nair, P. Valek, J. Goldstein, and D.
634 McComas, Comparison of TWINS images of low-altitude emission of energetic neutral
635 atoms with DMSP precipitating ion fluxes, *J. Geophys. Res.*, 115, A10204,
636 doi:10.1029/2010JA015644, 2010.

637

638 Birn, J., M. F. Thomsen, J. E. Borovsky, G. D. Reeves, D. J. McComas, and R. D. Belian,
639 Characteristic plasma properties during dispersionless substorm injections at geosynchronous
640 orbit, *J. Geophys. Res.*, 102, 2309, 1997.

641

642 Borovsky, J.E.,M.F.Thomsen, and R.C. Elphic, The driving of the plasma sheet by the solar wind,
643 *J. Geophys. Res.*, 103,17,617–17,639, doi:10.1029/97JA02986, 1998.

644

645 Braginskii, S. I., Transport Processes in a Plasma, *Reviews of Plasma Physics*, 1, 205, 1965.

646

647 Brandt, P. C:Son, E. C. Roelof, S. Ohtani, D. G. Mitchell, and B. Anderson, IMAGE/HENA:
648 pressure and current distributions during the 1 October 2002 storm, *Adv. Space Res.*, 33,
649 719, 2004.

650

651 Brandt, P. C:Son, D. G. Mitchell, E. C. Roelof, and J. L. Burch, Bastille Day Storm: Global
652 Response of the Terrestrial Ring Current, *Solar Physics*, 204, 377, 2001.

653
654 Burch, J. L., Image mission review, *Space Sci. Rev.*, 91, 1–14, 2000.
655
656 Buzulukova, N., M.-C. Fok, T. E. Moore, and D. M. Ober, Generation of plasmaspheric
657 undulations, *Geophys. Res. Lett.*, 35, L13105, doi:10.1029/2008GL034164, 2008.
658
659 Buzulukova, N., M.-C. Fok, J. Goldstein, P. Valek, D. J. McComas, and P. C. Brandt, Ring
660 current dynamics in moderate and strong storms: Comparative analysis of TWINS and
661 IMAGE/HENA data with the Comprehensive Ring Current Model, *J. Geophys. Res.*, 115,
662 A12234, doi:10.1029/2010JA015292, 2010.
663
664 Carlson, C. W., et al., The electron and ion plasma experiment for FAST, *Space Sci. Rev.*, 98,
665 33, 2001.
666
667 Daglis, I. A. R. M. Thorne, W. Baumjohann, and S. Orsini, “Fine Structure” of the storm
668 substorm relationship: ion injections during DST decrease, *Adv. Space Res.*, 25, 23698,
669 2000.
670
671 Dassoulas J., D. L. Margolies, and M. R. Peterson, The AMPTE/CCE spacecraft, *IEEE Trans
672 Geosci. Remote Sens.*, GE-23, 234, 1985.
673
674 deBoor, C., *A Practical Guide to Splines*, Springer, New York, doi:10.1007/978 1 4612 6333 3,
675 1978.
676
677 De Michelis, Paola, Ioannis A. Daglis, and Giuseppe Consolini, An average image of proton
678 plasma pressure and of current systems in the equatorial plan derived from AMPTE/CCE-
679 CHEM measurements, *J. Geophys. Res.*, 104, 28,615, 1999.
680
681 Dessler, A. J., and E. N. Parker, Hydromagnetic theory of geomagnetic storms, *J. Geophys. Res.*,
682 64, 2239–2252, doi:10.1029/JZ064i012p02239, 1959.
683
684 Eastwood, J. P., D. G. Sibeck, J. A. Slavin, M. L. Goldstein, B. Lavraud, M. Sitnov, S. Imber, A.
685 Balogh, E. A. Lucek, and I. Dandouras, Observations of multiple X-line structure in the
686 Earth's magnetotail current sheet: A Cluster case study, *Geophys. Res. Lett.*, 32 (11),
687 L11105, doi:10.1029/2005gl022509, 2005.
688
689 Ebihara, Y., and M. Ejiri, Simulation study on fundamental properties of the storm time ring
690 current, *J. Geophys. Res.*, 105(15), 15,843–15,859, doi:10.1029/1999JA900493, 2000.
691
692 Ebihara, Y., M. Ejiri, H. Nilsson, I. Sandahl, A. Milillo, M. Grande, J. F. Fennell, and J. L.
693 Roeder, Statistical distribution of the storm-time proton ring current: POLAR measurements,
694 *Geophys. Res. Lett.*, 29(20), 1969, doi:10.1029/2002GL015430, 2002.

695
696 Ebihara, Y., M. Ejiri, Hans Nilsson, I. Sandahl, M. Grande, J. F. Fennell, J. L. Roeder, D. R.
697 Weimer, and T. A. Fritz, Multiple discrete-energy ion features in the inner magnetosphere: 9
698 February 1998, event. *Annales Geophysicae, European Geosciences Union*, 22 (4), pp.1297-
699 1304, 2004.

700
701 Ebihara, Y., M.-C. Fok, J. B. Blake, and J. F. Fennell, Magnetic coupling of the ring current and
702 the radiation belt, *J. Geophys. Res.*, 113, A07221, doi:10.1029/2008JA013267, 2008

703
704 Ebihara, Y., N. Nishitani, T. Kikuchi, T. Ogawa, K. Hosokawa, M.-C. Fok, and M. F. Thomsen,
705 Dynamical property of storm time subauroral rapid flows as a manifestation of complex
706 structures of the plasma pressure in the inner magnetosphere, *J. Geophys. Res.*, 114, A01306,
707 doi:10.1029/2008JA013614, 2009.

708
709 Elfritz, J. G., A.M. Keesee, N. Buzulukova, M. -C. Fok, and E. E. Scime, First results using
710 TWINS-derived ion temperature boundary conditions in CRCM, *J. Geophys. Res. Space
711 Physics*, 119, 3345–3361, doi:10.1002/2013JA019555, 2014.

712
713 Fok, M.-C., J. U. Kozyra, A. F. Nagy, C. E. Rasmussen, and G. V. Khazanov, Decay of
714 equatorial ring current ions and associated aeronomical consequences, *J. Geophys. Res.*, 98,
715 19,381-19,393, 1993.

716
717 Fok, M.-C., T. E. Moore, and W. N. Spjeldvik, Rapid enhancement of radiation belt electron
718 fluxes due to substorm dipolarization of the geomagnetic field, *J. Geophys. Res.*, 106, 3873–
719 3881, doi:10.1029/2000JA000150, 2001a

720
721 Fok, M.-C., R. A. Wolf, R. W. Spiro, and T. E. Moore, Comprehensive computational model of
722 the Earth's ring current, *J. Geophys. Res.*, 106, 8417–8424, doi:10.1029/2000JA000235,
723 2001b.

724
725 Fok, M.-C., T. E. Moore, G. R. Wilson, J. D. Perez, X. X. Zhang, P. C:son Brandt, D. G.
726 Mitchell, E. C. Roelof, J.-M. Jahn, C. J. Pollock, and R. A. Wolf, Global ENA IMAGE
727 simulations, *Space Sci. Rev.*, 109, 77-103, 2003.

728
729 Fok, M.-C., R. B. Horne, N. P. Meredith, and S. A. Glauert, The radiation belt environment
730 model: Application to space weather nowcasting, *J. Geophys. Res.*, 113, A03S08,
731 doi:10.1029/2007JA012558, 2008.

732
733 Fok, M.-C., N. Buzulukova, S.-H. Chen, P. W. Valek, J. Goldstein, and D. J. McComas,
734 Simulation and TWINS observations of the 22 July 2009 storm, *J. Geophys. Res.*, 115,
735 A12231, doi:10.1029/2010JA015443, 2010.

736

737 Fok, M.-C., A. Glocer, Q. Zheng, R. B. Horne, N. P. Meredith, J. M. Albert, and T. Nagai,
738 Recent developments in the radiation belt environment model, *J. Atmos. Sol. Terr. Phys.*, 73,
739 1435–1443, 2011.

740

741 Fok, M.-C., N. Y. Buzulukova, S.-H. Chen, A. Glocer, T. Nagai, P. Valek, and J. D. Perez, The
742 Comprehensive Inner Magnetosphere-Ionosphere Model, *J. Geophys. Res. Space Physics*,
743 119, 7522–7540, doi:10.1002/2014JA020239, 2014.

744

745 Glocer, A., M.-C. Fok, T. Nagai, G. Tóth, T. Guild, and J. Blake, Rapid rebuilding of the outer
746 radiation belt, *J. Geophys. Res.*, 116, A09213, doi:10.1029/2011JA016516, 2011.

747

748 Gloeckler, G . et al., The charge-energy-mass (CHEM) spectrometer for 0.3 to 300 keV/e ions on
749 AMPTE-CCE, *IEEE Trans. Geosci. Electron.*, GE-23, 234, 1985.

750

751 Goldstein, J., and D. J. McComas, Five years of stereo magnetospheric imaging by TWINS,
752 *Space Sci. Rev.*, 180, 39, doi:10.1007/ s11214-013-0012-8, 2013.

753

754 Goldstein, J., V. Angelopoulos, S. De Paxcuale, H. O. Funsten, W. S. Kurth, K. Llera, D. J.
755 McComas, J. D. Perez, G. D. Reeves, H. E. Spencer, S. A. Thaller, P.W. Valek, and J. R.
756 Wyant, Cross-scale observations of the 2015 St. Patrick’s day storm: THEMIS, Van Allen
757 Probes, and TWINS, *J. Geophys. Res. Space Physics*, 122, 368–392,
758 doi:10.1002/2016JA023173, 2017.

759

760 Goldstein, J., & McComas, D. J., The big picture: Imaging of the global geospace
761 environment by the TWINS mission. *Reviews of Geophysics*, 56,
762 <https://doi.org/10.1002/2017RG000583>, 2018.

763

764 Grimes, E. W., J. D. Perez, J. Goldstein, D. J. McComas, P. Valek, and D. Turner, Comparison
765 of TWINS and THEMIS observations of proton pitch angle distributions in the ring current
766 during the 29 May 2010 geomagnetic storm, *J. Geophys. Res. Space Physics*, 118, 4895–
767 4905, doi:10.1002/jgra.50455, 2013.

768

769 Groth, C.P.T., Zeeuw, D.L., Gombosi, T.I., and Powell, K.G., Global three-dimensional MHD
770 simulation of a space weather event: CME formation, interplanetary propagation, and
771 interaction with the magnetosphere, *J. Geophys. Res.* 105, 25053–25078, 2000.

772

773 Hardy, D. A., L. K. Schmitt, M. S. Gussenhoven, F. J. Marshall, H. C. Yeh, T. L. Schumaker, A.
774 Huber, and J. Pantazis, Precipitating electron and ion detectors (SSJ 4) for the block 5D
775 Flights 6–10 DMSP satellites: Calibration and data presentation, *Rep. AFGL TR 84 0317*,
776 Air Force Geophys. Lab., Hanscom Air Force Base, Mass, 1984.

777

778 Hardy, D. A., M. S. Gussenhoven, R. Raistrick, and W. J. McNeil, Statistical and functional

779 representations of the pattern of auroral energy flux, number flux, and conductivity, *J.
780 Geophys. Res.*, 92, 12,275–12,294, doi:10.1029/JA092iA11p12275, 1987.
781

782 Harel, M., R. A. Wolf, P.H. Reiff, R. W. Spiro, W. J. Burke, F. J. Rich, and M. Smiddy,
783 Quantitative simulation of a magnetospheric substorrn, 1, Model logic and overview, *J.
784 Geophys. Res.*, 86, 22,17- 22,41, 1981.
785

786 Imber, S. M., J. A. Slavin, H. U. Auster, and V. Angelopoulos, A THEMIS survey of fluxropes
787 and traveling compression regions: Location of the near-Earth reconnection site during solar
788 minimum, *J. Geophys. Res.*, 116, A02201, doi:10.1029/2010ja016026, 2011.
789

790 Kistler, L. M., et al., Testing electric field models using ring current ion energy spectra from the
791 Equator-S ion composition (ESIC) instrument, *Ann. Geophys.*, 17, 1611, 1999.
792

793 Kistler, Lynn M. and Douglas J. Larson, Testing electric and magnetic field models of the
794 storm-time inner magnetosphere, *J. Geophys. Res.* 105, 25,221, 2000.
795 Korth, H., M. F. Thomsen, J. E. Borovsky, and D. J. McComas, Plasma sheet access to
796 geosynchronous orbit, *J. Geophys. Res.*, 104, 25,045, 1999.
797

798 Lin, Y., X. Y. Wang, S. Lu, J. D. Perez, and Q. Lu, Investigation of storm time magnetotail and
799 ion injection using three-dimensional global hybrid simulation, *J. Geophys. Res. Space
800 Physics*, 119, 7413–7432, doi:10.1002/2014JA020005, 2014.
801

802 Lui, A., R. McEntire, and S. Krimigis, Evolution of the ring current during two geomagnetic
803 storms, *J. Geophys. Res.*, 92(A7), 7459– 7470, doi:10.1029/JA092iA07p07459, 1987.
804

805 Lui, A. T. Y., T. Hori, S. Ohtani, Y. Zhang, X. Y. Zhou, M. G. Henderson, T. Mukai, H.
806 Hayakawa, and S. B. Mende, Magnetotail behavior during storm time “sawtooth injections,”
807 *J. Geophys. Res.*, 109, A10215, doi:10.1029/2004JA010543, 2004.
808

809 Mauk, B. H., N. J. Fox, S. G. Kanekal, R. L. Kessel, D. G. Sibeck, and A. Ukhorskiy, Science
810 objectives and rationale for the Radiation Belt Storm Probes mission, *Space Sci. Rev.*, 179, 3
811 –27, doi:10.1007/s11214-012-9908-y, 2013.
812

813 McComas, D. J., H.O. Funsten, E.E. Scime, Advances in low energy neutral atom imaging, in
814 Measurement Techniques in Space Plasmas-Fields, ed. by R.F. Pfaff, J.E. Borovsky, D.T.
815 Young. *Geophys.Monograph Series*, 103 (AGU, Washington), 275B280, 1998.
816

817 McComas, D. J. , F. Allegrini, J. Baldonado, B. Blake, P. C. Brandt, J. Burch, J. Clemons, W.
818 Crain, D. Delapp, R. DeMajistre, D. Everett, H. Fahr, L. Friesen, H. Funsten, J. Goldstein,
819 M. Gruntman, R. Harbaugh, R. Harper, H. Henkel, C. Holmlund, G. Lay, D. Mabry, D.
820 Mitchell, U. Nass, C. Pollock, S. Pope, M. Reno, S. Ritzau, E. Roelof, E. Scime, M. Sivjee,

821 R. Skoug, T. S. Sotirelis, M. Thomsen, C. Urdiales, P. Valek, K. Viherkanto, S. Weidner, T.
 822 Ylikorpi, M. Young, J. Zoenenchen, The Two Wide-angle Imaging Neutral-atom
 823 Spectrometers (TWINS) NASA Mission-of-Opportunity, *Space Sci. Rev.* 142, 157B231
 824 DOI:10.1007/s11214-008-9467-4, 2009a.

825

826 McComas, D.J., F. Allegrini, P. Bochsler, M. Bzowski, E.R. Christian, G.B. Crew, R.
 827 DeMajistre, H. Fahr, H. Fichtner, P. Frisch, H.O. Funsten, S. A. Fuselier, G. Gloeckler, M.
 828 Gruntman, J. Heerikhuisen, V. Izmodenov, P. Janzen, P. Knappenberger, S. Krimigis, H.
 829 Kucharek, M. Lee, G. Livadiotis, S. Livi, R.J. MacDowall, D. Mitchell, E. Möbius, T.
 830 Moore, N.V. Pogorelov, D. Reisenfeld, E. Roelof, L. Saul, N.A. Schwadron, P.W. Valek, R.
 831 Vanderspek, P. Wurz, and G.P. Zank, Global observations of the interstellar interaction from
 832 the Interstellar Boundary Explorer (IBEX), *Science*, 326, 959-962, doi:
 833 10.1126/science.1180906, 2009b.

834

835 McComas, D. J., N. Buzulukova, M. G. Connors, M. A. Dayeh, J. Goldstein, H. O. Funsten, S.
 836 Fuselier, N. A. Schwadron, and P. Valek, Two Wide-Angle Imaging Neutral-Atom
 837 Spectrometers and Interstellar Boundary Explorer energetic neutral atom imaging of the 5
 838 April 2010 substorm, *J. Geophys. Res.*, 117, A03225, doi:10.1029/2011JA017273, 2012.

839

840 McEntire, R. W., E. P. Keath, D. E. Fort, A. T. Y. Lui and S. M. Krimigis, "The Medium-Energy
 841 Particle Analyzer (MEPA) on the AMPTE CCE Spacecraft," in *IEEE Transactions on*
 842 *Geoscience and Remote Sensing*, vol. GE-23, no. 3, pp. 230-233, May 1985, doi:
 843 10.1109/TGRS.1985.289518

Mitchell, D. G., S. E. Jaskulek, C. E. Schlemm, E. P. Keath, R. E. Thompson, B. E. Tossman, J. D. Boldt, J. R. Hayes, G. B. Andrews, N. Paschalidis, D. C. Hamilton, R. A. Lundgren, E. O. Tums, P. Wilson IV, H. D. Voss, D. Prentice, K. C. Hsieh, C. C. Curtis, F. R. Powell, High Energy Neutral Atom (HENNA) Imager for the IMAGE mission, *Space Sci. Rev.*, 91, 67, 2000.

844

845

846

847

848

849 Mitchell, D. G., L. J. Lanzerotti, C. K. Kim, M. Stokes, G. Ho, S. Cooper, A. Ukhorskly, J. W. Manweller, S. Jaskulek, D. K. Haggerty, P. Brandt, M. Sitnov, N. Keika, J. F. Hayes, L. E. Brown, R. S. Gurnce, J. C. Hutcheson, K. S. Nelson, N. Paschalidis, E. Rossano, and S. Kerem, Radiation Belt Storm Probes Ion Composition Experiment RBSPICE, *Space Sci. Rev.*, 179, 263–308, 2013.

850

851

852

853

854

855 Moore, T.E., D. J. Chornay, M. R. Collier, F. A. Herrero, J. Johnson, M. A. Johnson, J. W. Keller, J. F. Laudadio, J. F. Lobell, K. W. Ogilvie, J. P. Rozmarynowski, S. A. Fuselier, A. G. Ghielmetti, E. Hertzberg, D. C. Hamilton, R. Lundgren, P. Wilson, P. Walpolle, T.M. Stephen, B. L. Peko, B. Van Zyl, P. Wurz, J. M. Quinn and G. R. Wilson., The low-energy neutral atom imager for IMAGE, *Space Sci. Rev.* 91, 155–195, 2000.

856

857

858

859

860

861 Nakamura, R., W. Baumjohann, M. Brittnacher, V. A. Sergeev, M. Kubyshkina, T. Mukai, and K. Liou, Flow bursts and auroral activations: Onset timing and foot point location, *J.*

862

863 Geophys. Res., 106, 10,777, 2001.

864

865 Ober, D. M., J. L. Horwitz, and D. L. Gallagher (1997), Formation of density troughs embedded
866 in the outer plasma sphere by subau roral ion dr ift events, J. Geophys. Res., 102, 14,595 –
867 14,602, doi:10.1029/97JA01046.

868

869 Perez, J. D., X.-X. Zhang, P. C:son Brandt, D. G. Mitchell, J.-M. Jahn, and C. J. Pollock,
870 Dynamics of ring current ions as obtained from IMAGE HENA and MENA ENA images, J.
871 Geophys. Res. 109, A05208, doi:10.1029/2003JA010164, 2004.

872

873 Perez, J. D., E. W. Grimes, J. Goldstein, D. J. McComas, P. Valek, and N. Billor, Evolution of
874 CIR storm on 22 July 2009, J. Geophys. Res., 117, A09221, doi:10.1029/2012JA017572,
875 2012.

876

877 Perez, J. D., J. Goldstein, D. J. McComas, P. Valek, N. Buzulukova, M.-C. Fok, and H. J. Singer,
878 TWINS stereoscopic imaging of multiple peaks in the ring current, J. Geophys. Res. Space
879 Physics, 120, 368–383, doi:10.1002/2014JA020662, 2015.

880

881 Perez, J. D., J. Goldstein, D. J. McComas, P. Valek, M.-C. Fok, and K.-J. Hwang, Global images
882 of trapped ring current ions during main phase of 17 March 2015 geomagnetic storm as
883 observed by TWINS, J. Geophys. Res. Space Physics, 121, doi:10.1002/2016JA022375,
884 2016.

885

886 Pollock, C.J., K. Asamura, J. Baldonaldo, M. M. Balkey, P. Barker, J. L. Burch, E. J. Korpela, J.
887 Cravens, G. Dirks, M.-C. Fok, H. O. Funsten, M. Grande, M. Gruntman, J. Hanley, J.-M
888 Jahn, M. Jenkins, M. Lampton, M. Marckwordt, D. J. McComas, T. Mukai, G. Penegor, S.
889 Pope, S. Ritzal, M. I. Schattenburg, E. Scime, R. Skoug, M. Spurgeon, T. Stecklein, S.
890 Storms, C. Urdiales, P. Valek, J. T. M. Van Bee,, S.E. Weidner, M.Wuest, M. K. Young, and
891 C. Zinsmeter, Medium Energy Neutral Atom (MENA) imager for the IMAGE mission,
892 Space Sci. Rev. 91, 113–154, 2000.

893

894 Pollock, C. J., K. Asamura, M. M. Balkey, J. L. Burch, H. O. Funsten, M. Grande, M. Gruntman,
895 M. Henderson, J. M. Jahn, M. Lampton, M. W. Liemohn, D. J. McComas, T. Mukai, S.
896 Ritanu, M. L. Schattenburg, E. Scime, R. Skoug, P. Valek, and M. Wüest, First medium
897 energy neutral atom (MENA) images of Earth's magnetosphere during substorm and storm-
898 time, Geophys. Res. Letters, 28, 1147, 2001.

899

900 Réme, H., C Aoustin, J. M. Bosques, I. Dandouras, B. Lavraud, J. A. Sauvauaud, A. Barthe, J.
901 Bouyssou, Th. Camus, O. Coeur-Joly, A. Cros, J. Cuvilo, F. Ducay, Y. Garbarowitz, J. L.
902 Medale, E. Penou, H. Perrier, D. Romefort, J. Rouzaud, C. Vallat, D. Alcayde, C. Jacquey,
903 C. Mazelle, C. d'Uston, E. Mobius, L. M. Kistler, K. Crocker, M. Granoff, C. Mouikis, M.
904 Popecki, M. Vosbury, B. Klecker, D. Hovestadt, H. Kucharek, E. Kuenneth, G. Paschmann,

905 M. Scholer, N. SCkopke, E. Seidenschwang, C. W. Carlson, D. W. Curtis, C. Ingraham, R. P.
906 Lin, J. P. McFadden, G. K. Parks, T. Phan, V. Formisano, E. Amata, M. B. Bavassano-
907 Cattaneo, P. Baldetti, R. Bruno, G. Chionchio, A. Di Lellis, M. F. Marcucci, G. Pallocchia,
908 A. Korth, P. W. Daly, B. Braeve, M. Rosenbauer, V. Vasyliunas, M. McCarthy, M. Wilber,
909 L. Eliasson, R. Lundin, S. Olsen, E. G. Shelley, S. Fuselier, A. G. Ghielmetti, W.
910 Lennartsson, C. P. Escoubet, H. Balsiger, R. Friedel, J.-B. Cao, R. A. Kovrakhkin, I.
911 Papamastorakis, R. Pellat, J. Scudder, and B. Sonnerup, First multispacecraft ion
912 measurements in and near the Earth's magnetosphere with the identical Cluster ion
913 spectrometry (CIS) experiment, *Ann. Geophys.*, 19, 1303, 2001.
914

915 Roelof, E. C., ENA Emission from Nearly-Mirroring Magnetospheric Ions Interacting with the
916 Exosphere, *Adv. Space Res.* 20, 361, 1997.
917

918 Sckopke, N., A general relation between the energy of trapped particles and the disturbance field
919 near the Earth, *J. Geophys. Res.*, 71, 3125–3130, 1966.
920

921 Scudder, J., et al., HYDRA: A 3-dimensional electron and ion hot plasma instrument for the
922 POLAR spacecraft of the GGS mission, *Space Sci. Rev.*, 71, 459, 1995.
923

924 Slavin, J. A., R. P. Lepping, J. Gjerloev, D. H. Fairfield, M. Hesse, C. J. Owen, M. B. Moldwin,
925 T. Nagai, A. Ieda, and T. Mukai, Geotail observations of magnetic flux ropes in the plasma
926 sheet, *J. Geophys. Res.*, 108 (A1), 1015, doi:10.1029/2002ja009557, 2003.
927

928 Smith, P., and R. Hoffman, Ring current particle distributions during the magnetic storms of
929 December 16–18, 1971, *J. Geophys. Res.*, 78(22), 4731–4737,
930 doi:10.1029/JA078i022p04731, 1973.
931

932 Spence, H. E., G. D. Reeves, D. N. Baker, J. B. Blake, M. Bolton, S. Bourdarie, A. A. Chan, S.
933 G. Claudepherre, J. H. Clemons, J. P. Cravens, S. R. Elkington, J. F. Fennell, R. H. W.
934 Friedel, H. O. Funsten, J. Goldstein, J. C. Green, A. Guthrie, M. G. Henderson, R. B.
935 Honrne, M. K. Hudson, J.-M Jahn, V. K. Jordanova, S. G. Kanekal, B. W. L Klatt, B. A.
936 Larsen, X. Li, E., A. MacDonald, I. R. Mann, J. Niehof, T. P. O'Brien, T. G. Onsaga, D
937 Salvaggio, R. M. Skoug, S. S. Smith, L. L. Suther, M. F. Thomsen, R. M. Thorne, Science
938 goals and overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle,
939 Composition, and Thermal Plasma (ECT) suite on NASA's Van Allen Probes mission, *Space
940 Sci. Rev.*, 179, 311–336, doi:10.1007/s11214-013-0007-5, 2013.
941

942 Stern, D.P., The motion of a proton in the equatorial magnetosphere, *J. Geophys. Res.*, 80, 595,
943 1975.
944

945 Toftoletto, F., S. Sazykin, R. Spiro, and R. Wolf, Inner magnetospheric modeling with the Rice
946 convection model, *Space Sci. Rev.*, 107, 175–196, 2003.

947
948 Tsyganenko, N .A., A magnetospheric magnetic field model with a warped tail current sheet,
949 Planet. Space Sci., 37, 5-20, 1989.
950
951 Tsyganenko, N. A., and D. P. Stern, Modeling the global magnetic field of the large scale
952 Birkeland current systems, J. Geophys. Res., 101, 27,187–27,198, doi:10.1029/96JA02735,
953 1996.
954
955 Tsyganenko, N. A., and T. Mukai, Tail plasma sheet models derived from Geotail particle data,
956 J. Geophys. Res., 108(A3), 1136, doi:10.1029/2002JA009707, 2003.
957
958 Tsyganenko, N. A., and M. I. Sitnov, Modeling the dynamics of the inner magnetosphere during
959 strong geomagnetic storms, J. Geophys. Res., 110, A03208, doi:10.1029/2004JA010798,
960 2005.
961
962 Vallat, C., I. Dandouras, P. X. Brandt, R. DeMajistre, D. G. Mitchesll, E. C. Roelof, H. Reme, J.-
963 A. Sauvaud, L. Kistler, C. Mouikis, M. Dunlop, and A. Balgh, First comparisons of local ion
964 measurements in the inner magnetosphere with energetic neutral atom magnetospheric image
965 inversions: Cluster-CIS and IMAGE-HENA observations, J. Geophys. Res., 109, A04213,
966 doi:10.1029/2003JA010224, 2004.
967
968 Volland, H., A semiempirical model of large-scale magnetospheric electric fields, J. Geophys.
969 Res., 78, 171, 1973.
970
971 Wahba, G., Spline Models for Observational Data, Soc. for Ind. and Appl. Math., Philadelphia,
972 Pa., doi:10.1137/1.9781611970128, 1990.
973
974 Weimer, D.R., A flexible, IMF dependent model of high-latitude electric potentials having
975 "space weather" applications, Geophys. Res. Lett., 23, 2549, 1996.
976
977 Weimer, D. R., An improved model of ionospheric electric potentials including substorm
978 perturbations and applications to the Geospace environment modeling November 24, 1996,
979 event, J. Geophys. Res., 106, 407–416, doi:10.1029/2000JA000604, 2001.
980
981 Wilken, B., et al., Magnetospheric ion composition spectrometer onboard the CRRES spacecraft,
982 Journal of Spacecraft and Rockets, 29, 585, 1992.
983
984 Yang, J., F. R. Toffoletto, R. A. Wolf, and S. Sazykin, On the contribution of plasma sheet
985 bubbles to the storm time ring current, J. Geophys. Res. Space Physics, 120, 7416–7432,
986 doi:10.1002/2015JA021398, 2015.
987
988 Zheng, Y., A. T. Y. Lui, and M.-C. Fok, Effects of plasma sheet properties on storm-time ring

989 current, J. Geophys. Res., 115, A08220, doi:10.1029/2009JA014806, 2010.
990
991 Zoennchen, J. H., U. Nass and H. J. Fahr, Terrestrial exospheric hydrogen density distributions
992 under solar minimum and maximum conditions observed by the TWINS stereo mission, Ann.
993 Geophys., 33, 413–426, doi:10.5194, 2105.
994
995
996

997 **Figure Captions**

998

999 **Figure 1.** The solar wind parameters and geomagnetic indices for the two storms during the
1000 period 07-10 September 2015. The data is from the OMNI data base
1001 (https://omniweb.gsfc.nasa.gov/html/omni_min_data.html).

1002

1003 **Figure 2.** Plot of the ion equatorial pressure peak as a function of time during the 4-day period
1004 07-10 September 2015. (a) the radial location and (b) the MLT location. The green triangles
1005 mark the locations obtained from the TWINS ENA images, the red line from the CIMI/Weimer
1006 simulations and the orange line from the CIMI/RCM simulations.

1007

1008 **Figure 3.** The ion equatorial pressure (first row) and pressure anisotropy (second row) for 2200
1009 UT 07 September 2015 from the CIMI/RCM simulations (first column), from the TWINS ENA
1010 images (second column), and the CIMI/Weimer simulations (third column). The stars mark the
1011 location of the peaks.

1012

1013 **Figure 4.** The ion equatorial pressure and pressure anisotropy for 0400 UT 08 September 2015
1014 in the same format as Figure 3.

1015

1016 **Figure 5.** The ion equatorial pressure and pressure anisotropy for 1600 UT 08 September 2015
1017 in the same format as Figure 3.

1018

1019 **Figure 6.** The ion equatorial pressure and pressure anisotropy for 0200 UT 09 September 2015
1020 in the same format as Figure 3.

1021

1022 **Figure 7.** The ion equatorial pressure and pressure anisotropy for 0400 UT 09 September 2015
1023 in the same format as Figure 3.

1024

1025 **Figure 8.** The ion equatorial pressure and pressure anisotropy for 1800 UT 09 September 2015
1026 in the same format as Figure 3.

1027

1028 **Figure 9.** The ion equatorial pressure and pressure anisotropy for 1700 UT 10 September 2015
1029 in the same format as Figure 3.

1030

1031 **Figure 10.** Paths of 46 keV particles, the energy of protons at the maximum flux (See left
1032 column.) that reach the 4 pressure peaks observed by TWINS as shown in Figure 8. The
1033 observed pressure is shown in grey scale. The locations of the peaks are shown by black squares.
1034 The energy of the particle is indicated by the color of the stars that are spaced 10 minutes apart.
1035 The units of the color bars are keV. The energies span the range of the particle energies along
1036 their paths.

1037
1038