

1 Local time extent of magnetopause reconnection using space-ground coordination
2
3 Ying Zou^{1,2}, Brian M. Walsh³, Yukitoshi Nishimura^{4,5}, Vassilis Angelopoulos⁶, J.
4 Michael Ruohoniemi⁷, Kathryn A. McWilliams⁸, Nozomu Nishitani⁹
5
6 1. Department of Astronomy and Center for Space Physics, Boston University, Massachusetts,
7 USA
8 2. Cooperative Programs for the Advancement of Earth System Science, University Corporation
9 for Atmospheric Research, Boulder, Colorado, USA
10 3. Department of Mechanical Engineering and Center for Space Physics, Boston University,
11 Boston, Massachusetts, USA
12 4. Department of Electrical and Computer Engineering and Center for Space Sciences, Boston
13 University, Boston, Massachusetts, USA
14 5. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles,
15 California, USA
16 6. Department of Earth, Planetary and Space Sciences, University of California, Los Angeles,
17 California, USA
18 7. The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg,
19 Virginia, USA
20 8. Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon,
21 Saskatchewan, Canada
22 9. Center for International Collaborative Research, Institute for Space-Earth Environmental
23 Research, Nagoya University, Nagoya, Japan

24 Corresponding author: Ying Zou
25 1. Department of Astronomy and Center for Space Physics, Boston University, Massachusetts,
26 USA
27 2. Cooperative Programs for the Advancement of Earth System Science, University Corporation
28 for Atmospheric Research, Boulder, Colorado, USA
29 yingzou@bu.edu

30

31 Keyword: 2784 Solar wind–magnetosphere interactions; 2724 Magnetopause, cusp, and
32 boundary layers; 7835 Magnetic reconnection

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 Abstract

48 Magnetic reconnection can vary considerably in spatial extents. At the Earth's magnetopause,
49 the extent generally corresponds to the extent in local time. The extent has been probed by multi-
50 spacecraft crossing the magnetopause, but the estimates have large uncertainties because of the
51 assumption of spatially continuous reconnection activity between spacecraft and the lack of
52 information beyond areas of spacecraft coverage. The limitations can be overcome by using radars
53 examining ionospheric flows moving anti-sunward across the open-closed field line boundary. We
54 therefore infer the extents of reconnection using coordinated observations of multi-spacecraft and
55 radars for three conjunction events. We find that when reconnection jets occur at only one
56 spacecraft, only the ionosphere conjugate to this spacecraft shows a channel of fast anti-sunward
57 flow. When reconnection jets occur at two spacecraft and the spacecraft are separated by <1 Re,
58 the ionosphere conjugate to both spacecraft shows a channel of fast anti-sunward flow. The
59 consistency allows us to determine the reconnection jet extent by measuring the ionospheric flows.
60 The full-width-at-half-maximum flow extent is 200, 432, and 1320 km, corresponding to a
61 reconnection jet extent of 2, 4, and 11 Re. Considering that reconnection jets emanate from
62 reconnection of a high reconnection rate, the result indicates that both spatially patchy (a few Re)
63 and spatially continuous and extended reconnection (>10 Re) are possible forms of active
64 reconnection at the magnetopause. Interestingly, the extended reconnection develops from a
65 localized patch via spreading across local time. Potential effects of IMF B_x and B_y on the
66 reconnection extent are discussed.

67

68

69

70

71

72 1. Introduction

73 A long-standing question in magnetic reconnection is what is the spatial extent of reconnection
74 in the direction normal to the reconnection plane. At the Earth's magnetopause, for a purely
75 southward IMF, this corresponds to the extent in the local time or azimuthal direction. The extent
76 of reconnection has significant relevance to solar wind-magnetosphere coupling, as it controls the
77 amount of energy being passed through the boundary from the solar wind into the magnetosphere
78 and ionosphere. Magnetopause reconnection tends to occur at sites of strictly anti-parallel
79 magnetic fields as anti-parallel reconnection [e.g. *Crooker*, 1979; *Luhmann et al.*, 1984], or occur
80 along a line passing through the subsolar region as component reconnection [e.g.
81 *Sonnerup*, 1974; *Gonzalez and Mozer*, 1974]. Evidence shows either or both can occur at the
82 magnetopause, and the overall reconnection extent can span from a few to 40 Re [*Paschmann et*
83 *al.*, 1986; *Gosling et al.*, 1990; *Phan and Paschmann*, 1996; *Coleman et al.*, 2001; *Phan et al.*,
84 2001, 2003; *Chisham et al.*, 2002, 2004, 2008; *Petrinec and Fuselier*, 2003; *Fuselier et al.*, 2002,
85 2003, 2005, 2010; *Pinnock et al.*, 2003; *Bobra et al.*, 2004; *Trattner et al.*, 2004, 2007, 2008,
86 2017; *Trenchi et al.*, 2008]. However, reconnection does not occur uniformly across this
87 configuration but has spatial variations [*Pinnock et al.*, 2003; *Chisham et al.*, 2008], and it is the
88 reconnection of high reconnection rates that effectively contributes to the momentum and energy
89 flow within the magnetosphere. Reconnection of high reconnection rates is expected to cause rapid
90 magnetic flux generation and fast reconnection jets. This paper therefore investigates the spatial
91 extent of reconnection through the extents of reconnection jets.

92 Numerical models show that reconnection tends to occur at magnetic separators, i.e. at the

junction between regions of different magnetic field topologies, and global MHD models have identified a spatially continuous separator along the magnetopause [Dorelli *et al.*, 2007; Laitinen *et al.*, 2006, 2007; Haynes and Parnell, 2010; Komar *et al.*, 2013; Glocer *et al.*, 2016]. However, little is known about where and over what range along the separators reconnection proceeds at a high rate. Reconnection in numerical simulations can be activated by introducing perturbations of the magnetic field or can grow spontaneously with instability or resistivity inherent in the system [e.g. Hesse *et al.*, 2001; Scholer *et al.*, 2003]. When reconnection develops as patches (as due to the instabilities or localized perturbations), the patches can spread in the direction out of the reconnection plane [Huba and Rudakov, 2002; Shay *et al.* 2003; Lapenta *et al.*, 2006; Nakamura *et al.*, 2012; Shepherd and Cassak, 2012; Jain *et al.*, 2013]. The patches either remain patchy after spreading if the current layer is thick, or form an extended X-line if the current layer is already thin [Shay *et al.*, 2003].

Studies have attempted to constrain the extent of reconnection based on fortuitous satellite conjunctions where the satellites detect reconnection jets at the magnetopause at different local times nearly simultaneously [Phan *et al.*, 2000, 2006; Walsh *et al.*, 2014a, 2014b, 2017]. The satellites were separated by a few Re in Phan *et al.* [2000] and Walsh *et al.* [2014a, 2014b, 2017], and >10 Re in Phan *et al.* [2006], and this is interpreted as the reconnection being active over a few Re and even 10 Re, respectively. At the magnetopause, reconnection of a few Re is often referred to as spatially patchy [e.g., Fear *et al.*, 2008, 2010], and reconnection of >10 Re is spatially extended [Dunlop *et al.*, 2011; Hasegawa *et al.*, 2016]. The term patchy has also been used to describe the temporal characteristics of reconnection [e.g. Newell and Meng, 1991]. But this paper primarily focuses on the spatial properties. The extent has been alternatively determined by studying the structures of newly reconnected flux tubes, i.e., flux transfer events (FTEs) [Russell

116 and Elphic, 1978; Haerendel *et al.*, 1978]. Conceptual models regard FTEs either as azimuthally
117 narrow flux tubes that intersect the magnetopause through nearly circular holes, as formed by
118 spatially patchy reconnection [Russell and Elphic, 1978], or as azimuthally elongated bulge
119 structures or flux ropes that extend along the magnetopause, as formed by spatially extended
120 reconnection [Scholer, 1988; Southwood *et al.*, 1987; Lee and Fu, 1985]. FTEs have been
121 observed to be on the order of a few Re wide in local time [Fear *et al.*, 2008, 2010; Wang *et al.*,
122 2005, 2007]. FTEs have also been observed across ~20 Re from the subsolar region to the flanks
123 [Dunlop *et al.*, 2011]. But it is unclear whether these FTEs are branches of one extended bulge or
124 flux rope, or multiple narrow tubes formed simultaneously. When the satellites are widely spaced,
125 it is in general questionable whether a reconnection jet/FTE is spatially continuous between the
126 satellites or whether satellites detect the same moving reconnection jet/FTE. Satellites with a small
127 separation may possibly measure the same reconnection jet/FTE, but only provide a lower limit
128 estimate of the extent. A reconnection jet/FTE may also propagate or spread between satellite
129 detection but satellite measurements cannot differentiate the spatial and temporal effects.

130 This situation can be improved by studying ionospheric signatures of reconnection and FTEs,
131 since their spatial sizes in the ionosphere can be obtained from wide field ground instruments or
132 Low-Earth orbit spacecraft. The ionospheric signatures include poleward moving auroral forms
133 (PMAFs), channels of flows moving anti-sunward across the open-closed field line boundary [e.g.,
134 Southwood, 1985], and cusp precipitation [Lockwood and Smith, 1989, 1994; Smith *et al.*, 1992].
135 Radar studies have shown that the flows can differ considerably in size, varying from tens of km
136 [Oksavik *et al.*, 2004, 2005], to hundreds of km [Goertz *et al.*, 1985; Pinnock *et al.*, 1993, 1995;
137 Provan and Yeoman, 1999; Thorolfsson *et al.*, 2000; McWilliams *et al.*, 2001a, 2001b], and to
138 thousands of km [Provan *et al.*, 1998; Nishitani *et al.*, 1999; Provan and Yeoman, 1999]. A

139 similarly broad distribution has been found for PMAFs [e.g. *Sandholt et al.*, 1986, 1990; *Lockwood*
140 *et al.*, 1989, 1990; *Milan et al.*, 2000, 2016] and the cusp [*Crooker et al.*, 1991; *Newell and Meng*,
141 1994; *Newell et al.*, 2007]. This range of spatial sizes in the ionosphere approximately corresponds
142 to a range from <1 to >10 Re at the magnetopause. However, care needs to be taken when
143 interpreting the above ionospheric features, since they could also form due to other drivings such
144 as solar wind dynamic pressure pulses [*Lui and Sibeck*, 1991; *Sandholt et al.*, 1994]. An
145 unambiguous proof of their connection to magnetopause reconnection requires simultaneous
146 space-ground coordination [*Elphic et al.*, 1990; *Denig et al.*, 1993; *Neudegg et al.*, 1999, 2000;
147 *Lockwood et al.*, 2001; *Wild et al.*, 2001, 2005, 2007; *McWilliams et al.*, 2004; *Zhang et al.*, 2008].

148 Therefore a reliable interpretation of reconnection extent has been difficult due to observation
149 limitations. We will address this by comparing the extents probed by multi-spacecraft and radars
150 using space-ground coordination. On one hand, this enables us to investigate whether reconnection
151 spans continuously between satellites, and how wide reconnection extends beyond satellites. On
152 the other hand, this helps to determine whether reconnection is the driver of ionospheric
153 disturbances and whether the in-situ extent is consistent with the ionospheric disturbance extent.

154

155 2. Methodology

156 We study the local time extent of reconnection jets as a characteristic extent of reconnection.
157 We use conjugate measurements between the Time History of Events and Macroscale Interactions
158 during Substorms (THEMIS) [*Angelopoulos*, 2008] and Super Dual Auroral Network
159 (SuperDARN) [*Greenwald et al.*, 1995]. We focus on intervals when the IMF in OMNI data
160 remains steadily southward. We require that two of the THEMIS satellites fully cross the
161 magnetopause nearly simultaneously and that the satellite data provide clear evidence for

162 reconnection occurring or not. The full crossings are identified by a reversal of the Bz magnetic
163 field and a change in the ion energy spectra. The requirements of nearly simultaneous crossings
164 and steady IMF conditions help to reduce the spatial-temporal ambiguity by satellite measurements,
165 where the presence/absence of reconnection jets at different local times likely reflects spatial
166 structures of reconnection. Reconnection can still possibly vary between the two satellite crossings,
167 and we use the radar measurements to examine whether the reconnection of interest has continued
168 to exist and maintained its spatial size.

169 Identification of reconnection jets in the magnetosphere is based on the fluid (MHD) evidence
170 of magnetopause reconnection. Reconnection accelerates plasma bulk flow to Alfvénic speed
171 producing reconnection jets at the magnetopause, and the acceleration should be consistent with
172 the prediction of tangential stress balance across a rotational discontinuity, i.e. Walen relation
173 [Hudson, 1970; Paschmann *et al.*, 1979]. The Walen relation is expressed as

$$174 \Delta V_{predicted} = \pm(1 - \alpha_1)^{1/2}(\mu_0 \rho_1)^{-1/2}[B_2(1 - \alpha_2)/(1 - \alpha_1) - B_1] \quad (1)$$

175 Where ΔV is the change in the plasma bulk velocity vector across the discontinuity. B and ρ are
176 the magnetic field vector and plasma mass density. μ_0 is the vacuum permeability. $\alpha = (p_{\parallel} - p$
177 $_{\perp})\mu_0/B^2$ is the anisotropy factor where p_{\parallel} and p_{\perp} are the plasma pressures parallel and perpendicular
178 to the magnetic field. The magnetic field and plasma moments are obtained from the fluxgate
179 magnetometer (FGM) [Auster *et al.*, 2008] and the ElectroStatic Analyzers (ESA) instrument
180 [McFadden *et al.*, 2008]. The plasma mass density is determined using the ion number density,
181 assuming a mixture of 95% protons and 5% helium. The subscripts 1 and 2 refer to the reference
182 interval in the magnetosheath and to a point within the magnetopause, respectively. The
183 magnetosheath reference interval is a 10-s time period just outside the magnetopause. The point
184 within the magnetopause is taken at the maximum ion velocity change across the magnetopause.

185 We ensure that the plasma density at this point is $>20\%$ of the magnetosheath density to avoid the
186 slow-mode expansion fan [Phan *et al.*, 1996]. We compare the observed ion velocity change with
187 the prediction from the Walen relation. The level of agreement is measured by $\Delta V^* =$
188 $\Delta V_{obs} \cdot \Delta V_{predicted} / |\Delta V_{predicted}|^2$, following Paschmann *et al.* [1986]. Here ΔV_{obs} is the
189 observed ion velocity change. By convention only the velocity changes with $\Delta V^* > 0.5$ are
190 classified as reconnection jets [e.g., Phan *et al.*, 1996; 2013].

191 To further ensure that reconnection occurs, we examine the kinetic signature of reconnection,
192 which is D-shaped ion distributions at the magnetopause. As magnetosheath ions encounter newly
193 opened magnetic field lines at the magnetopause, they either transmit through the magnetopause
194 entering the magnetosphere or reflect at the boundary. The transmitted ions have a cutoff parallel
195 velocity (i.e. de-Hoffman Teller velocity) below which no ions could enter the magnetosphere.
196 The D-shaped ion distributions are deformed into a crescent shape as ions travel away from the
197 reconnection site [Broll *et al.* 2017]. We require the satellites to operate in the Fast Survey or Burst
198 mode in which ion distributions are available at 3 s resolution.

199 We determine reconnection being active if the plasma velocity change across the magnetopause
200 is consistent with the Walen relation with $\Delta V^* \geq 0.5$, and if the ions at the magnetopause show a
201 D shape distribution. Reconnection is deemed absent if neither of the two signatures is detected.
202 We require that at least one of the two satellites observe reconnection signatures. Reconnection is
203 regarded as ambiguous if only one of the two signatures is detected, and such reconnection is
204 excluded from our analysis.

205 We mainly use the three SuperDARN radars located at Rankin Inlet (RKN, geomagnetic 72.6°
206 MLAT, -26.4° MLON), Inuvik (INV, 71.5° MLAT, -85.1° MLON), and Clyde River (CLY, 78.8°
207 MLAT, 18.1° MLON) to measure the ionospheric convection near the dayside cusp. The three

208 radars have overlapping field of views (FOVs), enabling a reliable determination of the 2-d
209 convection velocity. The FOVs cover the ionosphere $>75^\circ$ MLAT, covering the typical location
210 of the cusp under weak and modest solar wind driving conditions [i.e., *Newell et al.*, 1989] and the
211 high occurrence region of reconnection-related ionospheric flows [*Provan and Yeoman*, 1999]
212 with high spatial resolution. Data from Saskatoon (SAS, 60° MLAT, -43.8° MLON) and Prince
213 George (PGR, 59.6° MLAT, -64.3° MLON) radars are also used when data are available. The
214 measurements of these two radars at far range gates can overlap with the cusp. The radar data have
215 a time resolution of 1-2 min. We focus on observations ± 3 h MLT from magnetic noon
216 (approximately 1600-2200 UT). The satellite footprints should be mapped close to the radar FOVs
217 under the Tsyganenko (T89) model [*Tsyganenko*, 1989]. Footprints mapped using different
218 Tsyganenko (e.g., T96 or T01 [*Tsyganenko*, 1995, 2002a, 2002b]) models have similar
219 longitudinal locations (difference <100 km), implying the longitudinal uncertainty of mapping to
220 be small. The latitudinal uncertainty can be inferred by referring to the open-closed field line
221 boundary as estimated using the 150 m/s spectral width boundary [e.g., *Baker et al.*, 1995, 1997;
222 *Chisham and Freeman*, 2003]. And T89 has given the smallest latitudinal uncertainty for the
223 studied events. We surveyed years 2014-2016 during the months when the satellite apogee was on
224 the dayside, and present three events in the paper.

225 The ionospheric signature of reconnection jets includes fast anti-sunward flows moving across
226 the open-closed field line boundary. We obtain the flow velocity vectors by merging line-of-sight
227 (LOS) measurements at the radar common FOVs [*Ruohoniemi and Baker*, 1998], and these merged
228 vectors reflect the true ionospheric convection velocity. However, the radar common FOVs are
229 hundreds of km wide only, which can be too small to cover the full azimuthal extent of the
230 reconnection-related flows (which are up to thousands of km wide). We therefore also reconstruct

231 the velocity field using the Spherical Elementary Current Systems (SECS) method [Amm *et al.*,
232 2010]. Similar to the works by *Ruohoniemi et al.* [1989] and *Bristow et al.* [2016], the SECS
233 method reconstructs a divergence-free flow pattern using all LOS velocity data. We refer to these
234 velocities as SECS velocities. The accuracy of SECS velocities can be validated by comparing to
235 the LOS measurements and the merged vectors. SECS velocities work best in regions with dense
236 echo coverage and those around sparse echoes are not reliable and thus are excluded from our
237 analysis.

238 The third way of obtaining a velocity field is Spherical Harmonic Fit (SHF). This method uses
239 the LOS measurements and a statistical convection model to fit the distribution of electrostatic
240 potential, which is expressed as a sum of spherical harmonic functions [*Ruohoniemi and Baker*,
241 1998]. The statistical model employed here is *Cousins and Shepherd* [2010]. While this method
242 may suppress small or meso-scale velocity details, such as, sharp flow gradients or flow vortices,
243 we compare SHF velocities with the LOS measurements and merged vectors to determine how
244 well the SHF velocities depict the velocity details.

245 As seen in our observations presented below, the longitudinal profile of the fast anti-sunward
246 ionospheric flows has a near bell shaped curve. We measure the extent based on full width at half
247 maximum (FWHM) of the profile at 1° poleward of the open-closed field line boundary. The
248 choice of FWHM is analogous to *Shay et al.* [2003], where the reconnection extent is measured as
249 regions of electron speed above half of the peak electron flow speed during reconnection. The
250 choice is also supported by magnetopause observations, where we find that ionospheric flows with
251 a speed above half of the peak flow speed map to jets consistent with Walen relation, while those
252 with a speed below map to jets much slower than the Walen relation (Section 3.1). However, it
253 should be noted that the magnitude of the widths is always dependent on the threshold used, and

254 that half maximum is very likely not the only sensible threshold. Using FWHM excludes
255 ionospheric flows with a speed below half of the peak flow speed. Those flows, if related to
256 reconnection, associate with comparatively slow generation of open magnetic flux and low
257 contribution to geomagnetic activity.

258 Among the three presented events, the time separations of magnetopause crossings by two
259 satellites are 1, 2, and 30 min. While the time separation for the third case is somewhat long, we
260 distinguish the spatial and temporal effects using the radar data. Although the three events occurred
261 under similar IMF Bz conditions, the reconnection-related flows in the ionosphere had an
262 azimuthal extent varying from a few hundred km (Sections 3.1-3.2) to more than a thousand km
263 wide (Section 3.3). This corresponds to reconnection of a few to >10 Re wide indicating that both
264 spatially patchy (a few Re) and spatially continuous and extended reconnection (>10 Re) are
265 possible forms of active reconnection at the magnetopause. Interestingly, the extended
266 reconnection was found to arise from a spatially localized patch that spreads azimuthally. Potential
267 effects of IMF Bx and By on the reconnection extent are discussed in Section 4.

268 Note that reconnection can happen over various spatial and temporal scales and our space-
269 ground approach can resolve reconnection that are larger than 0.5 Re and persist longer than a few
270 minutes. This is limited by the radar spatial and temporal resolution, and the magnetosphere-
271 ionosphere coupling time which is usually 1-2 min [e.g. *Carlson et al.*, 2004]. This constraint is
272 not expected to impair the result because reconnection above this scale has been found to occur
273 commonly in statistics (see the Introduction section for spatial and *Lockwood and Wild* [1993],
274 *Kuo et al.* [1995], *Fasel* [1995], and *McWilliams et al.* [1999] for temporal characteristics).

275

276 3. Observations

277 3.1. Spatially patchy reconnection active at one satellite only

278 3.1.1 In-situ satellite measurements

279 On February 2, 2013, THA and THE made simultaneous measurements of the dayside
280 magnetopause with a 1.9 Re separation in the Y direction around 21:25 UT. The IMF condition is
281 displayed in Figure 1a and the IMF was directed southward. The satellite location in the GSM
282 coordinates is displayed in Figure 1b, and the measurements are presented in Figure 2. The
283 magnetic field and the ion velocity components are displayed in the LMN boundary normal
284 coordinate system, where L is along the outflow direction, M is along the X-line, and N is the
285 current sheet normal. The coordinate system is obtained from the minimum variance analysis of
286 the magnetic field at each magnetopause crossing [Sonnerup and Cahill, 1967]. Figures 2g-p show
287 that both satellites passed from the magnetosheath into the magnetosphere, as seen as the sharp
288 changes in the magnetic field, the ion spectra, and the density (shaded in pink).

289 As THE crossed the magnetopause boundary layer (2122:57-2123:48 UT), it detected a rapid,
290 northward-directed plasma jet within the region where the magnetic field rotated (Figures 2g and
291 2j). The magnitude of this jet relative to the sheath background flow reached 262 km/s at its peak,
292 which was 72% of the predicted speed of a reconnection jet by the Walen relation (366 km/s, not
293 shown). The angle between the observed and predicted jets was 39°. THE also detected kinetic
294 signatures of reconnection. The ion distributions in Figure 2k showed a distorted D-shaped
295 distribution similar to the finding of by *Broll et al.* [2018]. The distortion is due to particles
296 traveling in the field-aligned direction from the reconnection site to higher magnetic field region,
297 and *Broll et al.* [2018] estimated the traveling distance to be a few Re for the observed level of
298 distortion.

299 THA crossed the magnetopause one to two minutes later than THD (2124:48-2125:13 UT).

300 While it still identified a plasma jet at the magnetopause (Figures 2l and 2o), the jet speed was
301 significantly smaller than what was predicted for a reconnection jet (80 km/s versus 380 km/s in
302 the L direction). The observed jet was directed 71° away from the prediction. The ion distributions
303 deviated from clear D-shaped distributions (Figure 2p). This suggests that the reconnection jet at
304 THE likely did not extend to THA.

305

306 3.1.2 Ground radar measurements

307 The velocity field of the dayside cusp ionosphere during the satellite measurements is shown in
308 Figures 2a-c. Figure 2a shows the radar LOS measurements at 21:25 UT, as denoted by the color
309 tiles, and the merged vectors, as denoted by the arrows. The colors of the arrows indicate the
310 merged velocity magnitudes, and the colors of the tiles indicate the LOS speeds that direct anti-
311 sunward (those project to the sunward direction appear as black). Fast (red) and anti-sunward flows
312 are the feature of our interest. One such of this flow can be identified in the pre-noon sector, which
313 had a speed of ~ 800 m/s and was directed poleward and westward. As the merged vector arrows
314 indicate, the velocity vectors have a major component close to the INV beam directions and thus
315 the INV LOS velocities reflect the flow distribution. The flow crossed the open-closed field line
316 boundary, which was located at 78° MLAT based on the spectral width (Figure 2d and S1). This
317 flow thus meets the criteria of being an ionospheric signature of magnetopause reconnection jets.
318 Another channel of fast flow was present in the post-noon sector. This post-noon flow was directed
319 more azimuthally and was increasingly separated from the pre-noon flow as it moved away from
320 the noon (see the region of slow velocities at $>79^\circ$ MLAT around noon). The difference in flow
321 trajectories implies that these flows were driven by different magnetic tension forces. They also
322 evolved differently over time as seen in Figure 2e which is discussed below. The flows thus likely

323 originated from two reconnection regions that were associated with different magnetic field
324 topologies and different temporal variabilities. Since the satellites were located in the pre-noon
325 sector we focus on the pre-noon flow below.

326 The flow had a limited azimuthal extent. The extent is determined at half of the maximum flow
327 speed, which was ~400 m/s. Figure 2f discussed below shows a more quantitative estimate of the
328 extent. In Figure 2a, we mark the eastern and western boundaries with the dashed magenta lines,
329 across which the LOS velocities dropped from red to blue/green colors.

330 Figure 2b shows the SECS velocities, denoted by the arrows. The SECS velocities reasonably
331 reproduced the spatial structure of the flows seen in Figure 2a. The flow boundaries were marked
332 by the dashed magenta lines, across which the flow speed dropped from red to blue.

333 The velocity field reconstructed using the SHF velocities is shown in Figure 2c (obtained
334 through the Radar Software Toolkit (<http://superdarn.thayer.dartmouth.edu/software.html>)). This
335 is an expanded view of the global convection maps in Figure S2 focusing on the dayside cusp.
336 Comparing Figures 2c and S2 reveals that the employed radars listed in Section 2 have contributed
337 to the majority of the backscatters on the dayside. This is because this event (same for the following
338 two events) occurred under non-storm time, where the open-closed field line was confined within
339 the FOVs of the radars used. During storm time the boundary expands to lower latitude where
340 backscatter from a wider network of radars may be available. The SHF velocities also captured the
341 occurrence of two flows in the pre- and post-noon sectors, respectively, although the orientation
342 of the flows were slightly different from Figure 2a or 2b. The difference is likely due to the
343 contribution from the statistical potential distribution under the southward IMF. The flow western
344 and eastern boundaries were again marked by the dashed magenta lines.

345 Figure 2d shows spectral width measurements. Large spectral widths can be produced by soft

346 (~100 eV) electron precipitation [Ponomarenko *et al.*, 2007], and evidence has shown that the
347 longitudinal extent of large spectral widths correlates with the extent of PMAFs [Moen *et al.*, 2000]
348 and of poleward flows across the open-closed field line boundary [Pinnock and Rodger, 2001].
349 Large spectral widths thus have the potential to reveal the reconnection extent. For the specific
350 event under examination, the region of large spectral widths, appearing as red color, spanned from
351 10.5 to 14.5 h MLT if we count the sporadic scatters in the post-noon sector. This does not
352 contradict the flow width identified above because the wide width reflects the summed width of
353 the pre- and post-noon flows. In fact a more careful examination shows that there might exist two
354 dark red regions (circled in red, the red dashed line is due to the discontinuous backscatters outside
355 the INV FOV) embedded within the ~200-m/s spectral widths. These two regions had slightly
356 higher spectral widths than the surrounding (by ~20-50 m/s) and possibly corresponded to the two
357 flows.

358 Figures 2a-c all observed a channel of fast anti-sunward flow in the pre-noon sector of the high
359 latitude ionosphere, and the flow had a limited azimuthal extent. If the flow corresponded to a
360 magnetopause reconnection jet, the reconnection jet is expected to span over a limited local time
361 range. This is consistent with the THEMIS satellite observation in Section 3.1.1, where THE at Y
362 = -2.9 Re detected a clear reconnection jet, while THA at Y = -4.8 Re did not. In fact, if we project
363 the satellite location to the ionosphere through field line tracing under the T89 model, THE was
364 positioned at the flow longitude, while THA was to the west of the flow embedded in weak
365 convection (Figure 2a).

366 While this paper primarily focuses on the spatial extent of reconnection, the temporal evolution
367 can be obtained from the time series plot in Figure 2e. Figure 2e presents the northward component
368 of the SECS velocity along 79° MLAT (just 1° poleward of the open-closed field line boundary)

369 as functions of magnetic local time (MLT) and time. Here we only show the northward component
370 of the SECS velocity as this component represents reconnecting flows across an azimuthally-
371 aligned open-closed field line boundary. Similar to the snapshots, the flow of our interest appears
372 as a region of red color. The time and the location where THA and THE crossed the magnetopause
373 are marked by the crosses. The pre-noon flow emerged from a weak background from 2122 UT
374 and persisted for \sim 30 min, while the post-noon flow only lasted for \sim 10 min. Minutes following
375 the onset the pre-noon flow spread in width, where the western boundary of the red color moved
376 from 10.7 to 10.5 h MLT, and the eastern boundary moved to 11.2 to 11.5 h MLT. After 2134 UT
377 the spreading ceased and the entire flow moved westward (the western boundary moved beyond
378 the FOV). Hence the reconnection-related ionospheric flow, once formed, has spread in width and
379 displaced westward. The spreading behavior is similar to events studied by Zou et al. [2018], and
380 is interpreted to relate to spreading of the reconnection extent seen in simulation studies (see
381 introduction). The spreading has also been noticed in the other two events (see Section 3.3),
382 indicating that this could be a common development feature of the reconnection-related flows.

383 A consequence of the flow temporal evolution is that THA, which was previously outside the
384 reconnection-related flow, became immersed in the flow from 2130 UT, while THE, which was
385 previously inside the flow, was left outside from 2142 UT (Figure 2e). This implies that at the
386 magnetopause the reconnection has spread azimuthally sweeping across THA, and has slid in the
387 $-y$ direction away from THE. This is in perfect agreement with satellite measurements shown in
388 Figures 2q-z. Figures 2q-z presents subsequent magnetopause crossings made by THA and THE
389 following the crossings in Figures 2g-p. THA detected an Alfvénic reconnection jet and a clear D-
390 shape ion distribution, and THE detected a jet much slower than the Alfvénic speed and an ion
391 distribution without a clear D-shape. This corroborates the connection between the in-situ

392 reconnection jet with the fast anti-sunward ionospheric flow, and reveals the dynamic evolution of
393 reconnection in the local time direction. On the other hand, this also sheds light on the nature of
394 the slow convection outside the fast flow, which corresponds to sub-Alfvenic jets at the
395 magnetopause.

396 We quantitatively determine the flow extent in Figure 2f. Figure 2f shows the profile of the
397 northward component of the SECS velocity at 2129 UT as a function of the distance from magnetic
398 noon. The 2129 UT is the time when the flow extent has slowed down from spreading and
399 stabilized. The profile should theoretically be taken just poleward of the open-closed field line
400 boundary. In practice we smooth the velocity in latitude with a 1° window and take measurements
401 1° poleward of the open-closed field line boundary. The profile has a near bell shaped curve, and
402 the FWHM was 200 km at an altitude of 250 km. Also shown is the INV LOS velocity profile,
403 which is obtained in a similar manner as the SECS one. The LOS velocity profile also gives a
404 narrow FWHM, which was 280 km.

405 While it is commonly assumed that the extent of reconnection jets reflects the extent of
406 reconnection, we test the assumption by calculating the distribution of reconnection electric field
407 in Figure 3. Reconnection electric field can be estimated by measuring the flow across the open-
408 closed field line boundary in the reference frame of the boundary [Pinnock *et al.*, 2003; Freeman
409 *et al.*, 2007; Chisham *et al.*, 2008], and we follow this procedure to derive the its distribution across
410 local time. A close-up presentation of the open-closed field line boundary is shown in Figures 3a-
411 c around the space-ground conjunction time and longitude. The open-closed field line boundary,
412 drawn as the dashed black line, is identified following Chisham and Freeman [2003, 2004] and
413 Chisham *et al.* [2004b, 2005a, 2005b, 2005c]. The boundary was almost along a constant magnetic
414 latitude. The motion of the boundary is obtained by inspecting the time series of the spectral width

415 measurements along each radar beam and examples are given for INV beams 4, 7, and 10 in
416 Figures 3d-f. Subtracting the speed of the boundary from that of the flow (in the rest frame) across
417 the boundary gives the flow speed in the reference frame of the boundary. Assuming that the flow
418 is $E \times B$ drift, electric field can be derived and this is the ionosphere-mapped reconnection electric
419 field. The flow speed across the boundary is taken from the 1° -averaged speed at the boundary
420 latitude (similar to *Chisham et al.* [2008]). Note that a precise determination of the boundary
421 motion could be subject to radar spatial and temporal resolution and the error can be as large as
422 300 m/s or 15 mV/m.

423 As shown in Figure 3g, the profile of the reconnection electric field had a peak in the azimuthal
424 direction with a limited FWHM, and the FWHM is essentially the same as the flow width just
425 poleward of the boundary (difference being less than the radar spatial resolution) This establishes
426 the relation between our measure of the reconnection jet extent and the extent of reconnection of
427 high reconnection rates. Regions of high reconnection rates are localized, although those of low
428 reconnection rates (>0 mV/m) can extend over a much broader region. For example, the western
429 boundary of non-zero reconnection rates was located just at the edge of INV FOV (considering
430 the 15 mV/m uncertainty), and the eastern edge extended beyond INV FOV, likely into where the
431 post-noon flow was originated from. A lower estimate of the extent of non-zero reconnection rates
432 is therefore ~ 4 h MLT. It is likely that there were two components of reconnection at different
433 scales: broad and low-rate background reconnection, and embedded high-rate reconnection.

434 To infer the reconnection extent at the magnetopause, we project the flow extent based on the
435 SECS in the ionosphere to the equatorial plane. The result suggests that the reconnection local
436 time extent was ~ 2 Re.

437

438 3.2. Spatially patchy reconnection active at both satellites

439 3.2.1. In-situ satellite measurements

440 On April 19, 2015, under a southward IMF (Figure 4a), THA and THE crossed the
441 magnetopause nearly simultaneously (<2 min lag) with a 0.5 Re separation in Y (Figure 4b). They
442 passed from the magnetosheath into the magnetosphere. Both satellites observed jets in the V_L
443 component at the magnetopause (Figures 5g-p). The jet at THA at ~1828:05 UT had a speed of
444 84% of and an angle within ~15° from the Walen prediction. The jet at THE at ~1826:25 UT had
445 a speed of 95% of and an angle of ~29° from the Walen prediction. The ion distributions at THA
446 and THE exhibit clear D-shaped distributions. Reconnection thus occurred at both local times.

447

448 Section 3.2.2. Ground radar measurements

449 During the satellite measurements, the radars observed a channel of fast anti-sunward flow
450 around magnetic noon (Figures 5a-c). The flow crossed the open-closed field line boundary at 77°
451 MLAT, and qualifies for an ionospheric signature of magnetopause reconnection jets. The flow
452 direction was nearly parallel to the RKN radar beams, and therefore the RKN LOS measurements
453 in Figure 5a approximated to the 2-d flow speed. The flow eastern boundary can be identified as
454 where the velocity dropped from red/orange to blue (dashed magenta line). Determining the flow
455 western boundary requires more measurements of the background convection velocity, which is
456 beyond the RKN FOV. But we infer that the western boundary did not extend more than 1.5 h
457 westward beyond the RKN FOV because the PGR and INV echoes there showed weakly poleward
458 and equatorward LOS speeds around the open-closed field line boundary. The CLY radar data
459 further indicated that the anti-sunward flow had started to rotate westward immediately beyond
460 the RKN FOV. This is because the CLY LOS velocities measured between the RKN and INV

461 radar FOVs were larger for more east-west oriented beams (appearing as yellow color) than for
462 more north-south oriented beams (green color). The rotation likely corresponds to the vortex at the
463 flow western boundary as sketched in *Oksavik et al.* [2004].

464 The more precise location of the western boundary can be retrieved from the SECS velocities in
465 Figure 5b and the SHF velocities in Figure 5c. The SECS velocities present a flow channel very
466 similar to that in Figure 5a, while the flow channel in the SHF velocities was more azimuthally-
467 aligned than in Figures 5a-b. It can be seen that across the flow western boundary the flow direction
468 reversed. The equatorward-directed flows are interpreted as the return flow of the poleward flows,
469 as sketched in *Southwood* [1987] and *Oksavik et al.* [2004].

470 The determined flow extent agrees with the extent of the cusp in Figure 5d. The high spectral
471 widths associated with the cusp were located at the western half of the RKN FOV. They extended
472 westward beyond the RKN FOV into CLY far range gates, where they dropped from red to green
473 color. This is consistent with the inferred location and extent of the anti-sunward fast flow.

474 The flow of our interest just emerged from a weak background at the time when the THEMIS
475 satellites crossed the magnetopause (Figure 5e). This implies that the related reconnection just
476 activated at the studied local time. The flow spread azimuthally until 1833 UT when it stabilized.
477 We quantify the stabilized flow extent and the reconnection electric field extent (Figure 5f) in a
478 similar way as Figure 2f and Figure 3g. The FWHM of the flow is determined to be 432 and 336
479 km based on the SECS and RKN LOS data respectively. While the reconnection electric field had
480 data gaps due to the limited coverage and backscatter availability at near range gate, it implies a
481 western boundary of FWHM consistent with the flow slightly poleward of it. This is also the
482 western boundary of non-zero reconnection rates considering the 15-mV/m uncertainty. The
483 eastern boundary extended beyond RKN FOV. The FWHM of the SECS flow profile corresponds

484 to \sim 4 Re in the equatorial plane.

485 The fact that the fast anti-sunward flow had a limited azimuthal extent around magnetic noon
486 implies that the corresponding magnetopause reconnection should span over a limited local time
487 range around the noon. This is consistent with the THEMIS satellite observation in Section 3.2.1,
488 where reconnection was active at $Y = 0.7$ (THA) and 0.2 Re (THE). Projecting THA and THE
489 locations to the ionosphere reveals that both satellite footprints were located within the flow
490 longitudes. Therefore the reconnection at the two satellites was part of the same reconnection
491 around the subsolar point of the magnetopause. (The THE footprint was equatorward of THA
492 because the X location of THE was closer to the Earth than THA. The magnetopause was
493 expanding and it swept across THE and then THA.) The reconnection further extended azimuthally
494 beyond the two satellite locations, reaching a full length of \sim 4 Re.

495

496 3.3. Spatially continuous and extended reconnection active at both satellites

497 3.3.1. In-situ satellite measurements

498 On Apr 29, 2015, under a prolonged and steady southward IMF (Figure 6a), THA and THE
499 crossed the magnetopause successively with a time separation of \sim 30 min. The locations of the
500 crossings were separated by 0.1-0.2 Re in the Y direction (Figure 6b). The satellites passed from
501 the magnetosphere into the magnetosheath, and the magnetic field data suggest that the satellites
502 crossed the current layer multiple times before completely entering the magnetosheath (Figures
503 6i-r). We therefore only display the magnetic field and the plasma velocity in the GSM coordinates.
504 Both satellites detected multiple flow jets, all agreeing with the Walen prediction with $\Delta V^* > 0.5$.
505 For example, the jet at 1849-1850 UT measured by THA had a speed with 80% of and angle with
506 9° from the Walen prediction, and the jet at 1920-1922 UT by THE had a speed with 83% of and

507 an angle with 1° from the Walen prediction. The ion distributions at THA and THE exhibit clear
508 D-shaped distributions.

509

510 3.3.2. Ground radar measurements

511 In the ionosphere, the radars detected a fast anti-sunward flow as an ionospheric signature of
512 the magnetopause reconnection jet (Figures 7a-c). The flow had a broad azimuthal extent, as
513 delineated by the dashed magenta lines (Figure 7a). A similar flow distribution is found in the
514 SECS velocities (Figure 7b), and the SHF velocities (Figure 7c). The flow propagated into the
515 polar cap as one undivided channel (as opposed to Section 3.1.2), implying that it was one flow
516 structure at least to the resolution the radars can resolve. Corresponding to the broad extent of the
517 flow, the cusp had a broad extent (Figure 7d). The cusp continuously spanned across the INV and
518 RKN FOVs and its western and eastern edges coincided with the western and eastern boundaries
519 of the flow, supporting our delineation of the flow extent.

520 The wide flow channel in the ionosphere implies that the corresponding magnetopause
521 reconnection jet should be wide in local time. Based on the flow distribution, we infer that much
522 of the reconnection should be located on the pre-noon sector, except that the eastern edge can
523 extend across the magnetic noon meridian to the early post-noon sector. This inference is again
524 consistent with the inference from the THA and THE measurements that the reconnection extended
525 at least over the satellite separation ($Y = -0.2$ (THA) and 0 Re (THE)). Note, however, that the
526 distance between THA and THE only covered $<2\%$ of the reconnection extent determined from
527 the ionosphere flow. While the satellite configuration and measurements here were similar to those
528 in Section 3.2, the extent of reconnection was fundamentally different. This suggests that it is
529 difficult to obtain a reliable estimate of the reconnection extent without the support of 2-d

530 measurements and that satellites alone also cannot differentiate spatially extended reconnection
531 from spatially patchy reconnection.

532 The flow temporal evolution is shown in Figures 7e, where the velocities are the northward
533 component of the SECS data. An overall wide flow channel is seen during the time interval of our
534 interest with the eastern and western boundaries located at ~12.0-12.5 and ~8.0-8.7 h MLT,
535 respectively. But between the two satellite observations, the flow experienced an interesting
536 variation. The velocity at 9.3-12.0 h MLT dropped by 100-200 m/s during 1902-1912 UT (red
537 color turned orange, yellow, and then green), while the velocity at 8.6-9.3 h MLT did not change
538 substantially. The velocity enhanced again from 1912 UT. The enhancement centered at 10.7 h
539 MLT and spread azimuthally towards east and west. The enhancement spread by 0.7 h MLT over
540 14 min at its eastern end (marked by the dashed black line), suggesting a spreading speed of 275
541 m/s. The enhancement spread by 1.2 h MLT at its western end, suggesting a spreading speed of
542 471 m/s. It should be noted that the all three components of the IMF stayed steady for an extended
543 time (Figure 8, discussed below in Section 4), and thus the evolution of the flow/reconnection was
544 unlikely to be externally driven.

545 This sequence of changes gives an important implication that the spatially extended
546 reconnection was a result of spreading of an initially patchy reconnection. If we map the spreading
547 in the ionosphere to the magnetopause, the spreading occurred bi-directionally and at a speed of
548 15 and 26 km/s in the east and west directions based on field-line mapping under the T89 model
549 (the mapping factor was 55). Such an observation is similar to what has recently been reported by
550 *Zou et al. [2018]*, where the reconnection also spreads bi-directionally at a speed of a few tens of
551 km/s. However, the spreading in *Zou et al. [2018]* occurs following a southward turning of the
552 IMF, while the spreading here occurred without IMF variations. The mechanism of spreading is

553 explained either as motion of the current carriers of the reconnecting current sheet or as
554 propagation of the Alfvén waves along the guide field [Huba and Rudakov, 2002; Shay *et al.* 2003;
555 Lapenta *et al.*, 2006; Nakamura *et al.*, 2012; Jain *et al.*, 2013].

556 It should be noted that reconnection spreading can be a common process of reconnection that is
557 not limited to extended reconnection. It also occurs for patchy reconnection as seen in Sections 3.1
558 and 3.2. The spreading speeds were similar across the three events but the duration of the spreading
559 process was two to three times longer in the spatially extended than the spatially patchy
560 reconnection events. For the extended reconnection, the spreading process persisted for 14 min
561 expanding the extent by 5-6 Re.

562 Figure 7f quantifies the extent of the flow and reconnection electric field. The FWHM extent
563 was 1320 km based on the SECS data. Despite the presence of the data gaps, the LOS
564 measurements suggest a western and eastern boundary consistent with the SECS data. The
565 reconnection electric field had a similar FWHM to the flow although regions of non-zero
566 reconnection rates again extended beyond the available coverage indicating an overall extent >4 h
567 MLT. The extent corresponds to a reconnection extent of ~ 11 Re.

568

569 4. Discussion

570 The above events definitely show that the local time extent of magnetopause reconnection can
571 vary from a few to >10 Re. Here we investigate whether and how the extent may depend on the
572 upstream driving conditions. Figure 8 presents the IMF, the solar wind velocity, and the solar wind
573 pressure taken from the OMNI data for the three events. The red vertical lines mark the times when
574 the reconnection was measured. The three events occurred under similar IMF field strengths (5-6
575 nT), similar IMF B_z components (-2-3 nT), and similar dynamic pressures (1-2 nPa), implying

576 that the different reconnection extents were unlikely due to these parameters. The solar wind
577 speeds had a slight decreasing trend as the reconnection extent increased. This is different from
578 *Milan et al.* [2016], who identified a large solar wind speed as a cause of a large reconnection
579 extent. However, *Milan et al.* [2016] studied reconnection under very strong IMF driving
580 conditions when $|B| \sim 15$ nT, while our events occurred under a more typical moderate driving ($|B|$
581 $\sim 5\text{-}6$ nT).

582 The spatially patchy reconnection events had an IMF B_x of a larger magnitude than the extended
583 reconnection event did (4 vs. 0 nT). The spatially patchy reconnection events also had an IMF B_y
584 component of a smaller magnitude (2 vs. 5 nT, and therefore a clock angle closer to 180°), and
585 with more variability on time scales of tens of minutes, than the extended reconnection event. The
586 IMF B_x and B_y components are known to modify the magnetic shear across the magnetopause
587 and to affect the occurrence location of reconnection. Studies have found that at dayside low
588 latitude magnetopause small $|B_y|/|B_z|$ relates to anti-parallel and large $|B_y|/|B_z|$ to component
589 reconnection [*Coleman et al.*, 2001; *Chisham et al.*, 2002; *Trattner et al.*, 2007]. Large $|B_x|/|B|$,
590 i.e. cone angle, also favors formation of high-speed magnetosheath jets [*Archer and Horbury*, 2013;
591 *Plaschke et al.*, 2013] of a few Re in scale size, resulting in a turbulent magnetosheath environment
592 for reconnection to occur [*Coleman, and Freeman*, 2005]. The steady IMF condition may allow
593 reconnection to spread across local times unperturbedly, eventually reaching a wide extent. Thus
594 our preliminary analysis suggests that the reconnection extent may depend on the IMF orientation
595 and steadiness, although whether and how they influence the extent needs to be further explored.

596

597 5. Summary

598 We carefully investigate the local time extent of magnetopause reconnection by comparing the

599 measurements of reconnection jets by two THEMIS satellites and three ground radars. When
600 reconnection jets are only observed at one of the two satellite locations, only the ionosphere
601 conjugate to this spacecraft shows a channel of fast anti-sunward flow. When reconnection jets are
602 observed at both spacecraft and the spacecraft are separated by <1 Re, the ionosphere conjugate to
603 both spacecraft shows a channel of fast anti-sunward flow. The fact that the satellite locations are
604 mapped to the same flow channel suggests that the reconnection is continuous between the two
605 satellites, and that it is appropriate to take the satellite separation as a lower limit estimate of the
606 reconnection extent. Whether reconnection can still be regarded as continuous when the satellites
607 are separated by a few or > 10 Re is questionable, and needs to be examined using conjunctions
608 with a larger satellite separation than what have been presented here.

609 The reconnection extent is measured as the FWHM of the ionospheric flow. In the three
610 conjunction events, the flows have FWHM of 200, 432, and 1320 km in the ionosphere, which
611 corresponds to ~ 2 , 4, and 11 Re at the magnetopause (under the T89 model) in the local time
612 direction. The flow extent is confirmed to be related to reconnection of high reconnection electric
613 field. The result provides strong observational evidence that magnetopause reconnection can occur
614 over a wide range of extents, from spatially patchy (a few Re) to spatially continuous and extended
615 (> 10 Re). Interestingly, the extended reconnection is seen to initiate from a patchy reconnection,
616 where the reconnection grows by spreading across local time. The speed of spreading is 41 km/s
617 summing the westward and eastward spreading motion, and the spreading process persists for 14
618 min broadening the extent by 5-6 Re.

619 Based on the three events studied in this paper, the reconnection extent may be affected by the
620 IMF orientation and steadiness, although the mechanism is not clearly known. For the observed
621 modest solar wind driving conditions, the spatially extended reconnection is suggested to occur

622 under a smaller IMF Bx component, and a larger and steadier IMF By component than the spatially
623 patchy reconnection. The IMF strength, the Bz component, and the solar wind velocity and
624 pressure are about the same for the extended and the patchy reconnection. This finding, however,
625 could be limited by the number of events under analysis, and further study is needed to achieve an
626 understanding of how solar wind controls reconnection extent. Reconnection can vary with time,
627 even under steady IMF driving conditions.

628

629 **Acknowledgments.** This research was supported by the NASA Living With a Star Jack Eddy
630 Postdoctoral Fellowship Program, administered by UCAR's Cooperative Programs for the
631 Advancement of Earth System Science (CPAESS), NASA grant NNX15AI62G, NSF grants PLR-
632 1341359 and AGS-1451911, and AFOSR FA9550-15-1-0179 and FA9559-16-1-0364. The
633 THEMIS mission is supported by NASA contract NAS5-02099. SuperDARN is a collection of
634 radars funded by national scientific funding agencies. SuperDARN Canada is supported by the
635 Canada Foundation for Innovation, the Canadian Space Agency, and the Province of
636 Saskatchewan. We thank Tomoaki Hori for useful discussion on the SECS technique. Data
637 products of the SuperDARN, THEMIS, and OMNI are available at <http://vt.superdarn.org/>,
638 <http://themis.ssl.berkeley.edu/index.shtml>, and GSFC/SPDF OMNIWeb website.

639

640 Reference

641 Amm, O., Grocott, A., Lester, M. and Yeoman, T. K.: Local determination of ionospheric plasma
642 convection from coherent scatter radar data using the SECS technique, J. Geophys. Res., 115,
643 A03304, doi:10.1029/2009JA014832, 2010.
644 Angelopoulos, V.: The THEMIS mission, Space Sci. Rev., 141, 5–34, doi:[10.1007/s11214-008-008-1](https://doi.org/10.1007/s11214-008-008-1)

645 9336-1, 2008.

646 647 648 Archer, M. O. and Horbury, T. S.: Magnetosheath dynamic pressure enhancements: occurrence and typical properties, *Ann. Geophys.*, 31, 319-331, <https://doi.org/10.5194/angeo-31-319-2013>, 2013.

649 Auster, H. U., et al.: The THEMIS fluxgate magnetometer, *Space Sci. Rev.*, **141**, 235–264, 2008.

650 Baker, K. B., Dudeney, J. R., Greenwald, R. A., Pinnock, M., Newell, P. T., Rodger, A. S.,
651 Mattin, N. , and Meng, C.-I.: HF radar signatures of the cusp and low-latitude boundary
652 layer, *J. Geophys. Res.*, 100(A5), 7671–7695, doi:[10.1029/94JA01481](https://doi.org/10.1029/94JA01481), 1995.

653 Baker, K. B., Rodger, A. S., and Lu, G.: HF-radar observations of the dayside magnetic merging
654 rate: A Geospace Environment Modeling boundary layer campaign study, *J. Geophys.*
655 Res., 102(A5), 9603–9617, doi:[10.1029/97JA00288](https://doi.org/10.1029/97JA00288), 1997.

656 Bobra, M. G., Petrinec, S. M., Fuselier, S. A., Claflin, E. S., and Spence, H. E.: On the solar
657 wind control of cusp aurora during northward IMF, *Geophys. Res. Lett.*, 31, L04805,
658 doi:[10.1029/2003GL018417](https://doi.org/10.1029/2003GL018417), 2004.

659 Bristow, W. A., Hampton, D. L., and Otto, A.: High-spatial-resolution velocity measurements
660 derived using Local Divergence-Free Fitting of SuperDARN observations, *J. Geophys. Res.*
661 *Space Physics*, 121, 1349–1361, doi:[10.1002/2015JA021862](https://doi.org/10.1002/2015JA021862), 2016.

662 Chisham, G., Coleman, I. J., Freeman, M. P., Pinnock, M., and Lester, M.: Ionospheric signatures
663 of split reconnection X-lines during conditions of IMF $B_z < 0$ and $|B_y|/|B_z|$: Evidence for the
664 antiparallel merging hypothesis, *J. Geophys. Res.*, 107(A10), 1323,
665 doi:[10.1029/2001JA009124](https://doi.org/10.1029/2001JA009124), 2002.

666 Chisham, G., and Freeman, M. P.: A technique for accurately determining the cusp-region polar
667 cap boundary using SuperDARN HF radar measurements, *Ann. Geophys.*, 21, 983–996,

668 2003.

669 Chisham, G., Freeman, M. P., Coleman, I. J., Pinnock, M., Hairston, M. R., Lester, M., and
670 Sofko, G.: Measuring the dayside reconnection rate during an interval of due northward
671 interplanetary magnetic field, *Ann. Geophys.*, 22, 4243–4258, 2004.

672 Chisham, G., and M. P. Freeman: An investigation of latitudinal transitions in the SuperDARN
673 Doppler spectral width parameter at different magnetic local times, *Ann. Geophys.*, 22,
674 1187–1202, 2004.

675 Chisham, G., Freeman, M. P., and Sotirelis, T.: A statistical comparison of SuperDARN spectral
676 width boundaries and DMSP particle precipitation boundaries in the nightside ionosphere,
677 *Geophys. Res. Lett.*, 31, L02804, doi:10.1029/2003GL019074, 2004b.

678 Chisham, G., Freeman, M. P., Sotirelis, T., Greenwald, R. A., Lester, M., and Villain J.-P.: A
679 statistical comparison of SuperDARN spectral width boundaries and DMSP particle
680 precipitation boundaries in the morning sector ionosphere, *Ann. Geophys.*, 23, 733–743,
681 2005a.

682 Chisham, G., Freeman, M. P., Sotirelis, T., and Greenwald, R. A.: The accuracy of using the
683 spectral width boundary measured in off-meridional SuperDARN HF radar beams as a
684 proxy for the open-closed field line boundary, *Ann. Geophys.*, 23, 2599–2604, 2005b.

685 Chisham, G., Freeman, M. P., Lam, M. M., Abel, G. A., Sotirelis, T., Greenwald, R. A., and
686 Lester, M.: A statistical comparison of SuperDARN spectral width boundaries and DMSP
687 particle precipitation boundaries in the afternoon sector ionosphere, *Ann. Geophys.*, 23,
688 3645–3654, 2005c.

689 Chisham, G., et al.: Remote sensing of the spatial and temporal structure of magnetopause and
690 magnetotail reconnection from the ionosphere, *Rev. Geophys.*, 46, RG1004,

691 doi:10.1029/2007RG000223, 2008.

692 Coleman, I. J., Chisham, G., Pinnock, M., and Freeman, M. P., An ionospheric convection
693 signature of antiparallel reconnection, *J. Geophys. Res.*, 106, 28,995–29,007, 2001.

694 Coleman, I. J., and Freeman, M. P.: Fractal reconnection structures on the magnetopause,
695 *Geophys. Res. Lett.*, 32, L03115, doi:10.1029/2004GL021779, 2005.

696 Cousins, E. D. P., and Shepherd, S. G.: A dynamical model of high - latitude convection derived
697 from SuperDARN plasma drift measurements, *J. Geophys. Res.*, 115, A12329,
698 doi:10.1029/2010JA016017, 2010.

699 Crooker, N. U., Dayside merging and cusp geometry, *J. Geophys. Res.*, 84(A3), 951–959,
700 doi:[10.1029/JA084iA03p00951](https://doi.org/10.1029/JA084iA03p00951), 1979.

701 Crooker, N. U., F. R. Toffoletto, and M. S. Gussenhoven, Opening the cusp, *J. Geophys.*
702 *Res.*, 96(A3), 3497–3503, doi: 10.1029/90JA02099, 1991.

703 Denig, W. F., Burke, W. J., Maynard, N. C., Rich, F. J., Jacobsen, B., Sandholt, P. E., Egeland, S.,
704 Leontjev, A., and Vorobjev, V. G.: Ionospheric signatures of dayside magnetopause
705 transients: A case study using satellite and ground measurements, *J. Geophys.*
706 *Res.*, 98(A4), 5969–5980, doi:[10.1029/92JA01541](https://doi.org/10.1029/92JA01541), 1993.

707 Dorelli, J. C., Bhattacharjee, A., and Raeder, J.: Separator reconnection at Earth's dayside
708 magnetopause under generic northward interplanetary magnetic field conditions, *J. Geophys.*
709 *Res.*, 112, A02202, doi:[10.1029/2006JA011877](https://doi.org/10.1029/2006JA011877), 2007.

710 Dunlop, M. W., et al.: Magnetopause reconnection across wide local time, *Ann.*
711 *Geophys.*, 29, 1683–1697, doi:[10.5194/angeo-29-1683-2011](https://doi.org/10.5194/angeo-29-1683-2011), 2011.

712 Elphic, R. C., Lockwood, M., Cowley, S. W. H., and Sandholt, P. E.: Flux transfer events at the
713 magnetopause and in the ionosphere, *Geophys. Res. Lett.*, 17, 2241, 1990.

714 Fasel, G. J. (1995), Dayside poleward moving auroral forms: A statistical study, *J. Geophys.*
715 *Res.*, 100(A7), 11891–11905, doi: 10.1029/95JA00854.

716 Fear, R. C., Milan, S. E., Fazakerley, A. N., Lucek, E. A., Cowley, S. W. H., and Dandouras, I.:
717 The azimuthal extent of three flux transfer events, *Ann. Geophys.*, 26, 2353-2369,
718 <https://doi.org/10.5194/angeo-26-2353-2008>, 2008.

719 Fear, R. C., Milan, S. E., Lucek, E. A., Cowley, S. W. H., and Fazakerley, A. N.: Mixed azimuthal
720 scales of flux transfer events, in *The Cluster Active Archive – Studying the Earth's Space*
721 *Plasma Environment*, *Astrophys. Space Sci. Proc.*, edited by H. Laakso, M. Taylor, and C. P.
722 Escoubet, pp. 389–398, Springer, Dordrecht, Netherlands, doi:[10.1007/978-90-481-3499-1_27](https://doi.org/10.1007/978-90-481-3499-1_27), 2010.

724 Freeman, M. P., G. Chisham, and I. J. Coleman (2007), Remote sensing of reconnection, in
725 *Reconnection of Magnetic Fields*, edited by J. Birn and E. Priest, chap. 4.6, pp. 217–228,
726 Cambridge Univ. Press, New York.

727 Fuselier, S. A., Frey, H. U., Trattner, K. J., Mende, S. B., and Burch, J. L.: Cusp aurora
728 dependence on interplanetary magnetic field Bz, *J. Geophys. Res.*, 107(A7), 1111,
729 doi:10.1029/2001JA900165, 2002.

730 Fuselier, S. A., Mende, S. B., Moore, T. E., Frey, H. U., Petrinec, S. M., Claflin, E. S., and Collier,
731 M. R.: Cusp dynamics and ionospheric outflow, in *Magnetospheric Imaging—The Image*
732 Mission, edited by J. L. Burch, *Space Sci. Rev.*, 109, 285,
733 doi:10.1023/B:SPAC.0000007522.71147.b3, 2003.

734 Fuselier, S. A., Trattner, K. J., Petrinec, S. M., Owen, C. J., and Rème, H., Computing the
735 reconnection rate at the Earth's magnetopause using two spacecraft observations, *J. Geophys.*
736 *Res.*, 110, A06212, doi:10.1029/2004JA010805, 2005.

737 Fuselier, S. A., Petrinec, S. M., and Trattner, K. J.: Antiparallel magnetic reconnection rates at the
738 Earth's magnetopause, *J. Geophys. Res.*, 115, A10207, doi:[10.1029/2010JA015302](https://doi.org/10.1029/2010JA015302), 2010.

739 Glocer, A., Dorelli, J., Toth, G., Komar, C. M., and Cassak, P. A.: Separator reconnection at the
740 magnetopause for predominantly northward and southward IMF: Techniques and results, *J.*
741 *Geophys. Res. Space Physics*, 121, 140–156, doi:[10.1002/2015JA021417](https://doi.org/10.1002/2015JA021417), 2016.

742 Goertz, C. K., Nielsen, E., Korth, A., Glassmeier, K. H., Haldoupis, C., Hoeg, P.,
743 and Hayward, D.: Observations of a possible ground signature of flux transfer events, *J.*
744 *Geophys. Res.*, 90(A5), 4069–4078, doi:[10.1029/JA090iA05p04069](https://doi.org/10.1029/JA090iA05p04069), 1985.

745 Gonzalez, W. D., and Mozer, F. S.: A quantitative model for the potential resulting from
746 reconnection with an arbitrary interplanetary magnetic field, *J. Geophys. Res.*, 79(28), 4186–
747 4194, doi:[10.1029/JA079i028p04186](https://doi.org/10.1029/JA079i028p04186), 1974.

748 Gosling, J. T., Thomsen, M. F., Bame, S. J., Onsager, T. G., and Russell, C. T.: The electron edge
749 of low latitude boundary layer during accelerated flow events, *Geophys. Res. Lett.*, 17, 1833–
750 1836, doi:[10.1029/GL017i011p01833](https://doi.org/10.1029/GL017i011p01833), 1990b.

751 Greenwald, R. A., et al.: DARN/SuperDARN: A global view of the dynamics of high-latitude
752 convection, *Space Sci. Rev.*, 71, 761–796, 1995.

753 Haerendel, G., Paschmann, G., Sckopke, N., Rosenbauer, H., and Hedgecock, P. C., The frontside
754 boundary layer of the magnetosphere and the problem of reconnection, *J. Geophys.*
755 *Res.*, 83(A7), 3195–3216, doi:[10.1029/JA083iA07p03195](https://doi.org/10.1029/JA083iA07p03195), 1978.

756 Hasegawa, H., et al., Decay of mesoscale flux transfer events during quasi - continuous spatially
757 extended reconnection at the magnetopause, *Geophys. Res. Lett.*, 43, 4755–4762,
758 doi:[10.1002/2016GL069225](https://doi.org/10.1002/2016GL069225), 2016.

759 Haynes, A. L., and Parnell, C. E., A method for finding three-dimensional magnetic

760 skeletons, *Phys. Plasmas*, **17**, 092903, doi:[10.1063/1.3467499](https://doi.org/10.1063/1.3467499), 2010.

761 Huba, J. D., and Rudakov, L. I.: Three-dimensional Hall magnetic reconnection, *Phys.*
762 *Plasmas*, **9**, 4435, 2002.

763 Hudson, P. D., Discontinuities in an anisotropic plasma and their identification in the solar
764 wind, *Planet. Space Sci.*, **18**, 1611–1622, 1970.

765 Jain, N., Büchner, J., Dorfman, S., Ji, H., and Sharma, A. S.: Current disruption and its spreading
766 in collisionless magnetic reconnection, *Phys. Plasmas* **20**, 112101, 2013.

767 Komar, C. M., Cassak, P. A., Dorelli, J. C., Glocer, A., and Kuznetsova, M. M., Tracing magnetic
768 separators and their dependence on IMF clock angle in global magnetospheric simulations, *J.*
769 *Geophys. Res. Space Physics*, **118**, 4998–5007, doi:[10.1002/jgra.50479](https://doi.org/10.1002/jgra.50479), 2013.

770 Kuo, H., Russell, C. T., and Le, G., Statistical studies of flux transfer events, *J. Geophys.*
771 *Res.*, **100**(A3), 3513–3519, doi: [10.1029/94JA02498](https://doi.org/10.1029/94JA02498), 1995.

772 Laitinen, T. V., Janhunen, P., Pulkkinen, T. I., Palmroth, M., and Koskinen, H. E. J., On the
773 characterization of magnetic reconnection in global MHD simulations, *Ann.*
774 *Geophys.*, **24**, 3059–3069, 2006.

775 Laitinen, T. V., Palmroth, M., Pulkkinen, T. I., Janhunen, P., and Koskinen, H. E. J.: Continuous
776 reconnection line and pressure-dependent energy conversion on the magnetopause in a global
777 MHD model, *J. Geophys. Res.*, **112**, A11201, doi:[10.1029/2007JA012352](https://doi.org/10.1029/2007JA012352), 2007.

778 Lapenta, G., Krauss-Varban, D., Karimabadi, H., Huba, J. D., Rudakov, L. I., and Ricci,
779 P.: Kinetic simulations of X-line expansion in 3D reconnection, *Geophys. Res. Lett.*, **33**,
780 L10102, doi:[10.1029/2005GL025124](https://doi.org/10.1029/2005GL025124), 2006.

781 Lee, L. C., and Fu, Z. F., A theory of magnetic flux transfer at the earth's
782 magnetopause, *Geophys. Res. Lett.*, **12**, 105, 1985.

783 Lockwood, M., Sandholt, P. E., and Cowley, S. W. H.: Dayside auroral activity and momentum
784 transfer from the solar wind, *Geophys. Res. Lett.*, **16**, 33, 1989.

785 Lockwood, M., and Smith, M. F.: Low altitude signatures of the cusp and flux transfer
786 events, *Geophys. Res. Lett.*, **16**, 879–882, 1989.

787 Lockwood, M., Cowley, S. W. H., Sandholt, P. E., and Lepping, R. P., The ionospheric
788 signatures of flux transfer events and solar wind dynamic pressure changes, *J. Geophys.*
789 *Res.*, **95**(A10), 17113–17135, doi:[10.1029/JA095iA10p17113](https://doi.org/10.1029/JA095iA10p17113), 1990.

790 Lockwood, M., and Smith, M. F., Low and middle altitude cusp particle signatures for general
791 magnetopause reconnection rate variations: 1. Theory, *J. Geophys. Res.*, **99**(A5), 8531–
792 8553, doi:[10.1029/93JA03399](https://doi.org/10.1029/93JA03399), 1994.

793 Lockwood, M., et al: Co-ordinated Cluster and ground-based instrument observations of
794 transient changes in the magnetopause boundary layer during an interval of predominantly
795 northward IMF: Relation to reconnection pulses and FTE signatures, *Ann.*
796 *Geophys.*, **19**, 1613–1640, doi:[10.5194/angeo-19-1613-2001](https://doi.org/10.5194/angeo-19-1613-2001), 2001.

797 Luhmann, J. G., Walker, R. J., Russell, C. T., Crooker, N. U., Spreiter, J. R., and Stahara, S. S.:
798 Patterns of potential magnetic field merging sites on the dayside magnetopause, *J. Geophys.*
799 *Res.*, **89**, 1739–1742, doi:[10.1029/JA089iA03p01739](https://doi.org/10.1029/JA089iA03p01739), 1984.

800 Lui, A. T. Y., and Sibeck, D. G.: Dayside auroral activities and their implications for impulsive
801 entry processes in the dayside magnetosphere, *J. Atmos. Terr. Phys.*, **53**, 219, 1991.

802 McFadden, J. P., et al., The THEMIS ESA plasma instrument and in-flight calibration, *Space Sci.*
803 *Rev.*, **141**, 277–302, 2008.

804 McWilliams, K. A., Yeoman, T. K., and Provan, G.: A statistical survey of dayside pulsed
805 ionospheric flows as seen by the CUTLASS Finland HF radar, *Ann. Geophys.*, **18**, 445–453,

806 doi:10.1007/s00585 - 000 - 0445 - 8, 2000.

807 McWilliams, K. A., Yeoman, T.K., and Cowley, S.W.H.: Two-dimensional electric field

808 measurements in the ionospheric footprint of a flux transfer event, *Annales Geophysicae*,

809 18, pp. 1584–1598, 2001a.

810 McWilliams, K. A., Yeoman, T.K., Sigwarth, J.B., Frank, L.A., and Brittnacher, M.: The dayside

811 ultraviolet aurora and convection responses to a southward turning of the interplanetary

812 magnetic field, *Annales Geophysicae*, 17, pp. 707–721, 2001b.

813 McWilliams, K. A., Yeoman, T.K., Sibeck, D.G., Milan, S.E., Sofko, G.J., Nagai, T., Mukai, T.,

814 Coleman, I.J., Hori, T., and Rich, F.J., Simultaneous observations of magnetopause flux

815 transfer events and of their associated signatures at ionospheric altitudes, *Annales*

816 *Geophysicae*, 22, pp. 2181–2199, 2004.

817 Milan, S. E., M. Lester, S. W. H. Cowley, and M. Brittnacher (2000), Convection and auroral

818 response to a southward turning of the IMF: Polar UVI, CUTLASS, and IMAGE signatures

819 of transient magnetic flux transfer at the magnetopause, *J. Geophys. Res.*, 105(A7), 15741–

820 15755, doi:[10.1029/2000JA900022](https://doi.org/10.1029/2000JA900022).

821 Milan, S. E., Imber, S. M., Carter, J. A., Walach, M.-T., and Hubert, B.: What controls the local

822 time extent of flux transfer events?, *J. Geophys. Res. Space Physics*, 121, 1391–1401,

823 doi:[10.1002/2015JA022012](https://doi.org/10.1002/2015JA022012), 2016.

824 Moen, J., Carlson, H. C., Milan, S. E., Shumilov, N., Lybekk, B., Sandholt, P. E., and Lester, M.:

825 On the collocation between dayside auroral activity and coherent HF radar backscatter,

826 *Ann. Geophys.*, 18, 1531-1549, <https://doi.org/10.1007/s00585-001-1531-2>, 2000.

827 Nakamura, T. K. M., Nakamura, R., Alexandrova, A., Kubota, Y., and Nagai, T.: Hall

828 magnetohydrodynamic effects for three-dimensional magnetic reconnection with finite

829 width along the direction of the current, *J. Geophys. Res.*, 117, A03220,
830 doi:[10.1029/2011JA017006](https://doi.org/10.1029/2011JA017006), 2012.

831 Neudegg, D. A., Yeoman, T. K., Cowley, S. W. H., Provan, G., Haerendel, G., Baumjohann, W.,
832 Auster, U., Fornacon, K.-H., Georgescu, E., and Owen, C. J.: A flux transfer event
833 observed at the magnetopause by the Equator-S spacecraft and in the ionosphere by the
834 CUTLASS HF radar, *Ann. Geophysicae*, 17, 707, 1999.

835 Neudegg, D. A., et al., A survey of magnetopause FTEs and associated flow bursts in the polar
836 ionosphere, *Ann. Geophys.*, **18**, 416, 2000.

837 Nishitani, N., Ogawa, T., Pinnock, M., Freeman, M. P., Dudeney, J. R., Villain, J.-P., Baker, K.
838 B., Sato, N., Yamagishi, H., and Matsumoto, H.: A very large scale flow burst observed by
839 the SuperDARN radars, *J. Geophys. Res.*, 104(A10), 22469–22486,
840 doi:[10.1029/1999JA900241](https://doi.org/10.1029/1999JA900241), 1999.

841 Newell, P. T., Meng, C.-I., Sibeck, D. G., and Lepping, R.: Some low-altitude cusp dependencies
842 on the interplanetary magnetic field, *J. Geophys. Res.*, 94(A7), 8921–8927,
843 doi:[10.1029/JA094iA07p08921](https://doi.org/10.1029/JA094iA07p08921), 1989.

844 Newell P. T., and Meng C.-I.: Ion acceleration at the equatorward edge of the cusp: Low-altitude
845 observations of patchy merging, *Geophys. Res. Lett.*, 18, 1829–1832,
846 doi:10.1029/91GL02088, 1991.

847 Newell, P. T., and Meng, C. - I : Ionospheric projections of magnetospheric regions under low
848 and high solar wind conditions, *J. Geophys. Res.*, 99, 273, 1994.

849 Newell, P. T., Sotirelis, T., Liou, K., Meng, C. - I. and Rich, F. J., A nearly universal solar
850 wind - magnetosphere coupling function inferred from 10 magnetospheric state variables, *J.*
851 *Geophys. Res.*, 112, A01206, doi: 10.1029/2006JA012015, 2007b.

852 Tsyganenko, N. A., Modeling the Earth's magnetospheric magnetic field confined within a
853 realistic magnetopause, *J. Geophys. Res.*, 100(A4), 5599–5612, doi:[10.1029/94JA03193](https://doi.org/10.1029/94JA03193),
854 1995.

855 Oksavik, K., Moen, J. and Carlson, H. C.: High-resolution observations of the small-scale flow
856 pattern associated with a poleward moving auroral form in the cusp, *Geophys. Res.*
857 *Lett.*, **31**, L11807, doi:[10.1029/2004GL019838](https://doi.org/10.1029/2004GL019838), 2004.

858 Oksavik, K., Moen, J., Carlson, H. C., Greenwald, R. A., Milan, S. E., Lester, M., Denig, W. F.,
859 and Barnes, R. J.: Multi-instrument mapping of the small-scale flow dynamics related to a
860 cusp auroral transient, *Ann. Geophys.*, **23**, 2657–2670, 2005.

861 Paschmann, G., et al.: Plasma acceleration at the Earth's magnetopause: Evidence for magnetic
862 reconnection, *Nature*, 282, 243, 1979.

863 Paschmann, G., et al.: The magnetopause for large magnetic shear: AMPTE/IRM
864 observations, *J. Geophys. Res.*, **91**, 11,099, 1986.

865 Petrinec, S. M., and Fuselier, S. A.: On continuous versus discontinuous neutral lines at the
866 dayside magnetopause for southward interplanetary magnetic field, *Geophys. Res.*
867 *Lett.*, 30(10), 1519, doi:[10.1029/2002GL016565](https://doi.org/10.1029/2002GL016565), 2003.

868 Phan, T. D., and Paschmann, G.: Low - latitude dayside magnetopause and boundary layer for
869 high magnetic shear: 1. Structure and motion, *J. Geophys. Res.*, 101, 7801–7815,
870 doi:[10.1029/95JA03752](https://doi.org/10.1029/95JA03752), 1996.

871 Phan, T.-D., et al.: Extended magnetic reconnection at the Earth's magnetopause from detection
872 of bi-directional jets, *Nature*, **404**, 848, 2000.

873 Phan, T.D., Freeman, M.P., Kistler, L.M. et al, Evidence for an extended reconnection line at the
874 dayside magnetopause, *Earth Planet Sp* 53: 619. <https://doi.org/10.1186/BF03353281>, 2000.

875 Phan, T., et al.: Simultaneous Cluster and IMAGE observations of cusp reconnection and auroral
876 proton spot for northward IMF, *Geophys. Res. Lett.*, 30(10), 1509,
877 doi:10.1029/2003GL016885, 2003.

878 Phan, T. D., Hasegawa, H., Fujimoto, M., Oieroset, M., Mukai, T., Lin, R. P., and Paterson, W.
879 R.: Simultaneous Geotail and Wind observations of reconnection at the subsolar and tail
880 flank magnetopause, *Geophys. Res. Lett.*, 33, L09104, doi:10.1029/2006GL025756, 2006.

881 Phan, T. D., Paschmann, G., Gosling, J. T., Oieroset, M., Fujimoto, M., Drake, J. F., and
882 Angelopoulos, V.: The dependence of magnetic reconnection on plasma β and magnetic
883 shear: Evidence from magnetopause observations, *Geophys. Res. Lett.*, 40, 11–16,
884 doi:10.1029/2012GL054528, 2013.

885 Pinnock, M., Rodger, A. S., Dudeney, J. R., Baker, K. B., Newell, P. T., Greenwald, R. A., and
886 Greenspan, M. E.: Observations of an enhanced convection channel in the cusp ionosphere,
887 *J. Geophys. Res.*, 98, 3767–3776, 1993.

888 Pinnock, M., Rodger, A. S., Dudeney, J. R., Rich, F., and Baker, K. B.: High spatial and
889 temporal resolution observations of the ionospheric cusps, *Ann. Geophys.*, 13, 919–925,
890 1995.

891 Pinnock, M & Rodger, A., On determining the noon polar cap boundary from SuperDARN HF
892 radar backscatter characteristics. *Annales Geophysicae*. 18. 10.1007/s00585-001-1523-2,
893 2001.

894 Pinnock, M., Chisham, G., Coleman, I. J., Freeman, M. P., Hairston, M., and Villain, J.-P.: The
895 location and rate of dayside reconnection during an interval of southward interplanetary
896 magnetic field, *Ann. Geophys.*, 21, 1467–1482, 2003.

897 Plaschke F, Hietala H., Angelopoulos V.: Anti-sunward high-speed jets in the subsolar

898 magnetosheath. *Ann. Geophys.* 2013;31:1877–1889. doi:10.5194/angeo-31-1877-2013,
899 2013.

900 Ponomarenko, P. V., Waters, C. L., and Menk, F. W.: Factors determining spectral width of HF
901 echoes from high latitudes, *Ann. Geophys.*, 25, 675–687, <https://doi.org/10.5194/angeo-25-675-2007>, 2007.

902

903 Provan, G. & Yeoman, T.K.: Statistical observations of the MLT, latitude and size of pulsed
904 ionospheric flows with the CUTLASS Finland radar, *Annales Geophysicae*, 17: 855.
905 <https://doi.org/10.1007/s00585-999-0855-1>, 1999.

906 Provan, G., Yeoman, T. K., and Milan, S. E., CUTLASS Finland radar observations of the
907 ionospheric signatures of flux transfer events and the resulting plasma flows, *Ann.*
908 *Geophys.*, **16**, 1411–1422, 1998.

909 Ruohoniemi, J. M., Greenwald, R. A., Baker, K. B., Villain, J.-P., Hanuise, C., and Kelly,
910 J.: Mapping high-latitude plasma convection with coherent HF radars, *J. Geophys.*
911 *Res.*, 94(A10), 13463–13477, doi:[10.1029/JA094iA10p13463](https://doi.org/10.1029/JA094iA10p13463), 1989.

912 Ruohoniemi, J. M., and Baker, K. B.: Large-scale imaging of high-latitude convection with
913 Super Dual Auroral Radar Network HF radar observations, *J. Geophys.*
914 *Res.*, 103(A9), 20797–20811, doi:[10.1029/98JA01288](https://doi.org/10.1029/98JA01288), 1998.

915 Russell, C. T., and Elphic, R. C.: ISEE observations of flux transfer events at the dayside
916 magnetopause, *Geophys. Res. Lett.*, 6(1), 33–36, doi:[10.1029/GL006i001p00033](https://doi.org/10.1029/GL006i001p00033), 1979.

917 Sandholt, P. E., Deehr, C. S., Egeland, A., Lybekk, B., Viereck, R., and Romick, G.
918 J.: Signatures in the dayside aurora of plasma transfer from the magnetosheath, *J. Geophys.*
919 *Res.*, 91(A9), 10063–10079, doi:[10.1029/JA091iA09p10063](https://doi.org/10.1029/JA091iA09p10063), 1986.

920 Sandholt, P. E., Lockwood, M., Oguti, T., Cowley, S. W. H., Freeman, K. S. C., Lybekk, B.,

921 Egeland, A., and Willis, D. M.: Midday auroral breakup events and related energy and
922 momentum transfer from the magnetosheath, *J. Geophys. Res.*, 95(A2), 1039–1060,
923 doi:[10.1029/JA095iA02p01039](https://doi.org/10.1029/JA095iA02p01039), 1990.

924 Sandholt, P. E., et al.: Cusp/cleft auroral activity in relation to solar wind dynamic pressure,
925 interplanetary magnetic field B_z and B_y , *J. Geophys. Res.*, 99(A9), 17323–17342,
926 doi:[10.1029/94JA00679](https://doi.org/10.1029/94JA00679), 1994.

927 Scholer, M.: Magnetic flux transfer at the magnetopause based on single x line bursty
928 reconnection, *Geophys. Res. Lett.*, **15**, 291, 1988.

929 Scholer, M., Sidorenko, I., Jaroschek, C. H., Treumann, R. A., and Zeiler, A.: Onset of
930 collisionless magnetic reconnection in thin current sheets: Three-dimensional particle
931 simulations, *Phys. Plasmas*, **10**(9), 3521–3527, 2003.

932 Shay, M. A., Drake, J. F., Swisdak, M., Dorland, W., and Rogers, B. N.: Inherently three
933 dimensional magnetic reconnection: A mechanism for bursty bulk flows? *Geophys. Res.*
934 Lett., **30**(6), 1345, doi:[10.1029/2002GL016267](https://doi.org/10.1029/2002GL016267), 2003.

935 Shepherd, L. S., and Cassak, P. A.: Guide field dependence of 3-D X-line spreading during
936 collisionless magnetic reconnection, *J. Geophys. Res.*, **117**, A10101,
937 doi:[10.1029/2012JA017867](https://doi.org/10.1029/2012JA017867), 2012.

938 Smith, M., Lockwood, F.M., Cowley, S.W.H.: The statistical cusp: a simple flux transfer event
939 model, *Planet Space Sci.*, 1992

940 Sonnerup, B. U. Ö., and Cahill Jr., L. J.: Magnetopause structure and attitude from Explorer 12
941 observations, *J. Geophys. Res.*, **72**, 171, 1967.

942 Sonnerup, B. U.: Magnetopause reconnection rate, *J. Geophys. Res.*, **79**(10), 1546–1549,
943 doi:[10.1029/JA079i010p01546](https://doi.org/10.1029/JA079i010p01546), 1974.

944 Southwood, D. J.: Theoretical aspects of ionosphere - magnetosphere - solar wind
945 coupling, *Adv. Space Res.*, 5(4), 7–14, doi:10.1016/0273 - 1177(85)90110 - 3, 1985.

946 Southwood, D. J.: The ionospheric signature of flux transfer events, *J. Geophys. Res.*, **92**, 3207,
947 1987.

948 Southwood, D. J., Farrugia, C. J., and Saunders, M. A.: What are flux transfer events? *Planet.*
949 *Space Sci.*, **36**, 503, 1988.

950 Thorolfsson, A., Cerisier, J.-C., Lockwood, M., Sandholt, P. E., Senior, C. and Lester, M.:
951 Simultaneous optical and radar signatures of poleward-moving auroral forms, *Ann.*
952 *Geophys.*, **18**, 1054, 2000.

953 Trattner, K. J., Fuselier, S. A., and Petrinec, S. M.: Location of the reconnection line for northward
954 interplanetary magnetic field, *J. Geophys. Res.*, 109, A03219, doi:10.1029/2003JA009975,
955 2004.

956 Trattner, K. J., Mulcock, J. S., Petrinec, S. M., and Fuselier, S. A.: Probing the boundary between
957 antiparallel and component reconnection during southward interplanetary magnetic field
958 conditions, *J. Geophys. Res.*, 112, A08210, doi:[10.1029/2007JA012270](https://doi.org/10.1029/2007JA012270), 2007.

959 Trattner, K. J., Fuselier, S. A., Petrinec, S. M., Yeoman, T. K., Escoubet, C. P., and Reme, H.:
960 The reconnection sites of temporal cusp structures, *J. Geophys. Res.*, 113, A07S14,
961 doi:10.1029/2007JA012776, 2008.

962 Trattner, K. J., Burch, J. L., Ergun, R., Eriksson, S., Fuselier, S. A., Giles, B. L., ... Wilder, F.
963 D. :The MMS dayside magnetic reconnection locations during phase 1 and their relation to
964 the predictions of the maximum magnetic shear model. *Journal of Geophysical Research: Space Physics*, 122, 11,991–12,005. <https://doi.org/10.1002/2017JA024488>, 2017.

965 Trenchi, L., Marcucci, M. F., Palloccchia, G., Consolini, G., Bavassano Cattaneo, M. B., Di

967 Lellis, A. M., Rème, H., Kistler, L., Carr, C. M., and Cao, J. B.: Occurrence of reconnection
968 jets at the dayside magnetopause: Double star observations, *J. Geophys. Res.*, 113, A07S10,
969 doi:[10.1029/2007JA012774](https://doi.org/10.1029/2007JA012774), 2008.

970 Tsyganenko, N. A.: A magnetospheric magnetic field model with a warped tail current sheet,
971 *Planet. Space Sci.*, 87, 5, 1989

972 Tsyganenko, N. A.: Modeling the Earth's magnetospheric magnetic field confined within a
973 realistic magnetopause, *J. Geophys. Res.*, 100(A4), 5599–5612, doi:[10.1029/94JA03193](https://doi.org/10.1029/94JA03193),
974 1995.

975 Tsyganenko, N. A.: A model of the magnetosphere with a dawn-dusk asymmetry, 1,
976 Mathematical structure, *J. Geophys. Res.*, 107(A8), doi:[10.1029/2001JA000219](https://doi.org/10.1029/2001JA000219), 2002a.

977 Tsyganenko, N. A.: A model of the near magnetosphere with a dawn-dusk asymmetry, 2,
978 Parameterization and fitting to observations, *J. Geophys. Res.*, 107(A8),
979 doi:[10.1029/2001JA000220](https://doi.org/10.1029/2001JA000220), 2002b.

980 Walsh, B. M., Foster, J. C., Erickson, P. J., and Sibeck, D. G.: Simultaneous ground- and space-
981 based observations of the plasmaspheric plume and reconnection, *Science*, **343**, 1122–1125,
982 doi:[10.1126/science.1247212](https://doi.org/10.1126/science.1247212), 2014a.

983 Walsh, B. M., Phan, T. D., Sibeck, D. G., and Souza, V. M.: The plasmaspheric plume and
984 magnetopause reconnection, *Geophys. Res. Lett.*, 41, 223–228, doi:[10.1002/2013GL058802](https://doi.org/10.1002/2013GL058802),
985 2014b.

986 Walsh, B. M., Komar, C. M., and Pfau-Kempf, Y.: Spacecraft measurements constraining the
987 spatial extent of a magnetopause reconnection X line, *Geophys. Res. Lett.*, 44, 3038–3046,
988 doi:[10.1002/2017GL073379](https://doi.org/10.1002/2017GL073379), 2017.

989 Wang, Y., et al.: Initial results of high-latitude magnetopause and low-latitude flank flux transfer

990 events from 3 years of Cluster observations, *J. Geophys. Res.*, 110, A11221,
991 doi:[10.1029/2005JA011150](https://doi.org/10.1029/2005JA011150), 2005.

992 Wang, J., et al., TC1 and Cluster observation of an FTE on 4 January 2005: A close
993 conjunction, *Geophys. Res. Lett.*, 34, L03106, doi:[10.1029/2006GL028241](https://doi.org/10.1029/2006GL028241), 2007.

994 Wild, J. A., Cowley, S. W. H., Davies, J. A., Khan, H., Lester, M., Milan, S. E., Provan, G.,
995 Yeoman, T. K., Balogh, A., Dunlop, M. W., Fornacon, K.-H., and Georgescu, E.: First
996 simultaneous observations of flux transfer events at the high-latitude magnetopause by the
997 Cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS
998 and EISCAT radars, *Ann. Geophys.*, 19, 1491–1508, 2001.

999 Wild, J. A., Milan, S. E., Davies, J. A., Cowley, S. W. H., Carr, C. M., and Balogh, A.: Double
1000 Star, Cluster, and groundbased observations of magnetic reconnection during an interval of
1001 duskward oriented IMF: preliminary results, *Ann. Geophys.*, 23, 2903–2907, 2005.

1002 Wild, J. A., Milan, S. E., Davies, J. A., Dunlop, M. W., Wright, D. M., Carr, C. M., Balogh, A.,
1003 Reme, H., Fazakerley, A. N., ` and Marchaudon, A.: On the location of dayside magnetic
1004 reconnection during an interval of duskward oriented IMF, *Ann. Geophys.*, 25, 219–238,
1005 2007.

1006 Zhang, Q.-H., et al.: Simultaneous tracking of reconnected flux tubes: Cluster and conjugate
1007 SuperDARN observations on 1 April 2004, *Ann. Geophys.*, **26**, 1545–1557,
1008 doi:[10.5194/angeo-26-1545-2008](https://doi.org/10.5194/angeo-26-1545-2008), 2008.

1009 Zou, Y., Walsh, B. M., Nishimura, Y., Angelopoulos, V., Ruohoniemi, J. M., McWilliams, K.
1010 A., & Nishitani, N. Spreading speed of magnetopause reconnection X-lines using ground-
1011 satellite coordination. *Geophysical Research Letters*, 45.
1012 <https://doi.org/10.1002/2017GL075765>, 2018.

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036 Figure 1a: OMNI IMF condition on Feb 2, 2013. Figure 1b: THE and THA locations projected to
1037 the GSM X-Y plane. The inner curve marks the magnetopause and the outer curve marks the bow
1038 shock.

1039

1040 Figure 2a: SuperDARN LOS speeds (color tiles) and merged velocity vectors (color arrows) in the
1041 Altitude adjusted corrected geomagnetic (AACGM) coordinates. The FOVs of the RKN, INV, and
1042 CLY radars are outlined with the black dashed lines. The colors of the tiles indicate the LOS speeds
1043 away from the radar. The colors and the lengths of the arrows indicate the merged velocity
1044 magnitudes and the arrow directions indicate the velocity directions. Red and anti-sunward
1045 directed flows are the ionospheric signature of magnetopause reconnection. The dashed magenta
1046 lines mark the flow western and eastern boundaries. The open-closed field line boundary was
1047 delineated by the dashed black curve marked by the “OCB” marker. The satellite footprints under
1048 the T89 are shown as the THE and THA marker. Figure 2b: Similar to Figure 2a but showing
1049 SECS velocity vectors (color arrows). Figure 2c: Similar to Figure 2a but showing SHF velocity
1050 vectors (color arrows). Figure 2d: SuperDARN spectral width measurements (color tiles). The red
1051 contour marks localized enhanced soft electron precipitation. Figure 2e: Time evolution of the
1052 northward component of SECS velocities along 79° MLAT. Figure 2f: Profile of convection
1053 velocities along 79° MLAT at 1929 UT as a function of the distance from magnetic noon. The
1054 profile in black is based on the LOS measurements and the profile in red is the northward
1055 component of the SECS velocities. The FWHM is determined based on each profile. Figures 2g-j:
1056 THE measured magnetic field (0.25 s resolution), ion energy flux (3 s), ion density (3 s), and ion
1057 velocity (3 s). The ion measurements were taken from ground ESA moments. The magnetic field
1058 and the ion velocity components are displayed in the LMN boundary normal coordinate system.

1059 The magnetopause crossing is shaded in pink. Figure 2k: THE ion distribution function on the bulk
1060 velocity-magnetic field plane. The small black line indicates the direction and the bulk velocity of
1061 the distributions. Figures 2l-p: THA measurements in the same format as in Figures 2g-k. Figures
1062 2q-z: THA and THE measurements during a subsequent magnetopause crossing shown in the same
1063 format as in Figures 2g-p.

1064

1065 Figures 3a-c: Snapshots of spectral width measurements around the space-ground conjunction time
1066 and longitude. The open-closed field line boundary is drawn as the dashed black line. Figures 3d-
1067 f: time series of the spectral width measurements along INV beams 4, 7, and 10, as a function of
1068 latitude, from which the motion of the open-closed field line boundary can be derived. Figure 3g:
1069 the electric field along the open-closed field line boundary in the frame of boundary (solid) and in
1070 the rest frame (dashed) following Pinnock et al. [2003], Freeman et al. [2007], Chisham et al.
1071 [2008]. The former is the reconnection electric field.

1072

1073 Figure 4: OMNI IMF condition and THEMIS satellite locations on Apr 19, 2015 in a similar format
1074 to Figure 1.

1075

1076 Figure 5. THEMIS and SuperDARN measurements of reconnection bursts on Apr 19, 2015 in a
1077 similar format to Figure 2. The velocity time evolution in Figure 5e and the velocity profile in
1078 Figure 5f are taken along 78° MLAT.

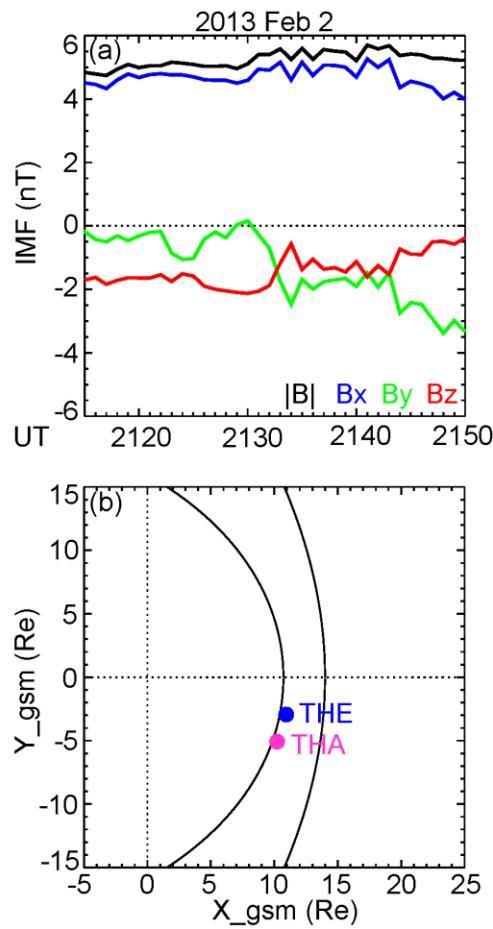
1079

1080 Figure 6. OMNI IMF condition and THEMIS satellite locations on Apr 29, 2015 in a similar format
1081 to Figure 1.

1082

1083 Figure 7. THEMIS and SuperDARN measurements of reconnection bursts on Apr 29, 2015 in a
1084 similar format to Figure 2. The velocity time evolution in Figure 7e and the velocity profile in
1085 Figure 7f are taken along 79° MLAT. The two branches of the LOS velocity profile in Figure 7f
1086 are based on INV and RKN LOS data. The magnetic field and plasma velocities measured by
1087 spacecraft are displayed in the GSM coordinates.

1088


1089

1090 Figure 8. Comparison of the IMF and solar wind driving conditions between the reconnection
1091 events on Feb 2, 2013, Apr 19, 2015, and Apr 29, 2015. From top to bottom: IMF in GSM
1092 coordinates, IMF clock angle, solar wind speed, and solar wind dynamic pressure. The red vertical
1093 lines mark the times of the satellite-ground conjunction.

1094

1095

1096 Figure 1.

1097

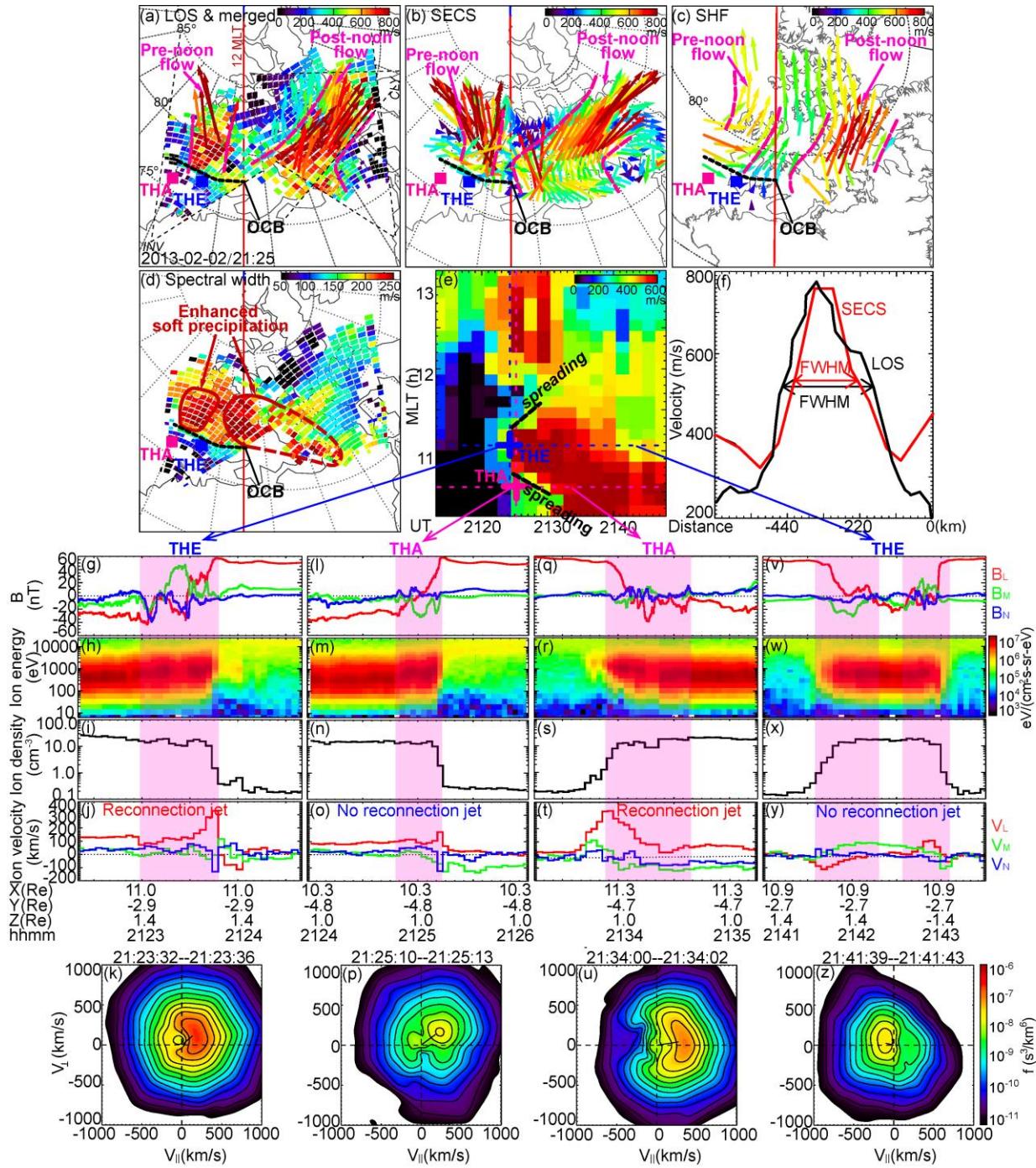
1098

1099

1100

1101

1102


1103

1104

1105

1106

1107 Figure 2.

1108

1109

1110

1111

1112 Figure 3.

1113

1114

1115

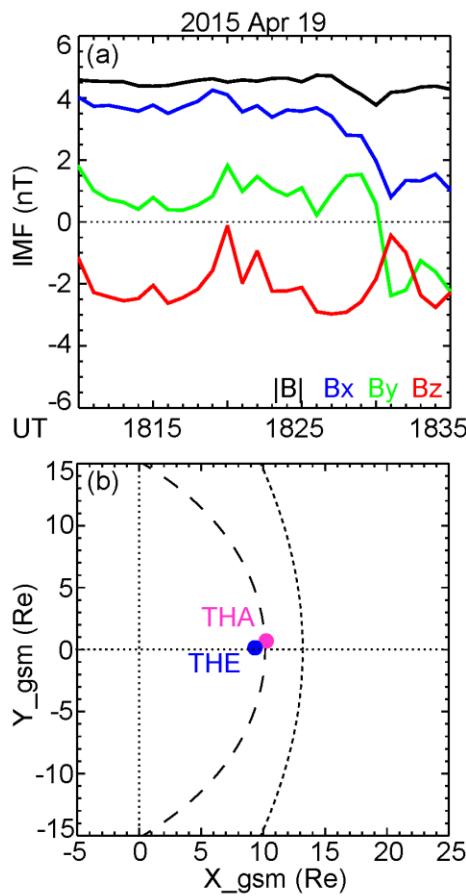
1116

1117

1118

1119

1120


1121

1122

1123

1124

1125 Figure 4.

1126

1127

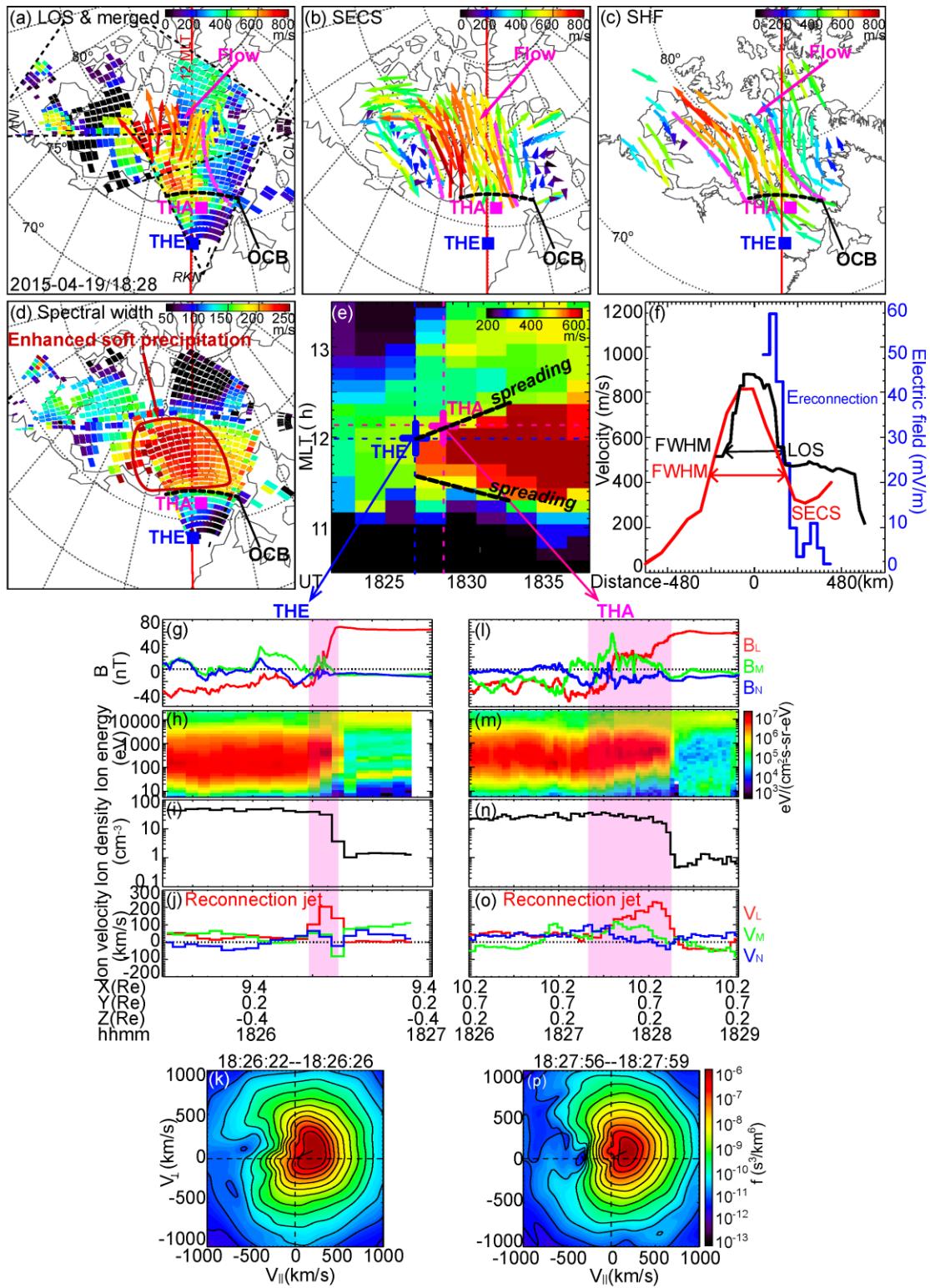
1128

1129

1130

1131

1132


1133

1134

1135

1136

1137 Figure 5.

1138

1139

1140 Figure 6.

1141

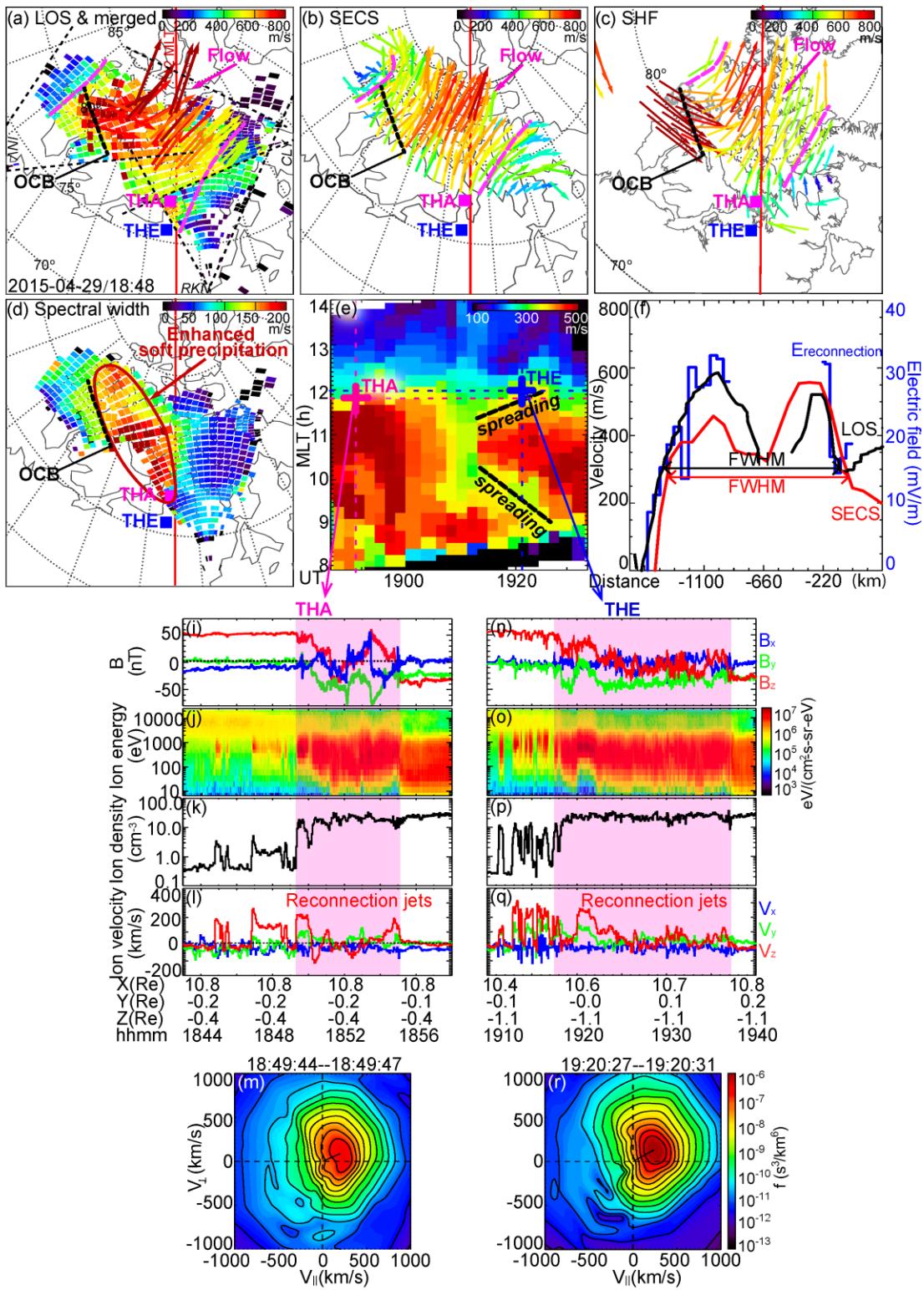
1142

1143

1144

1145

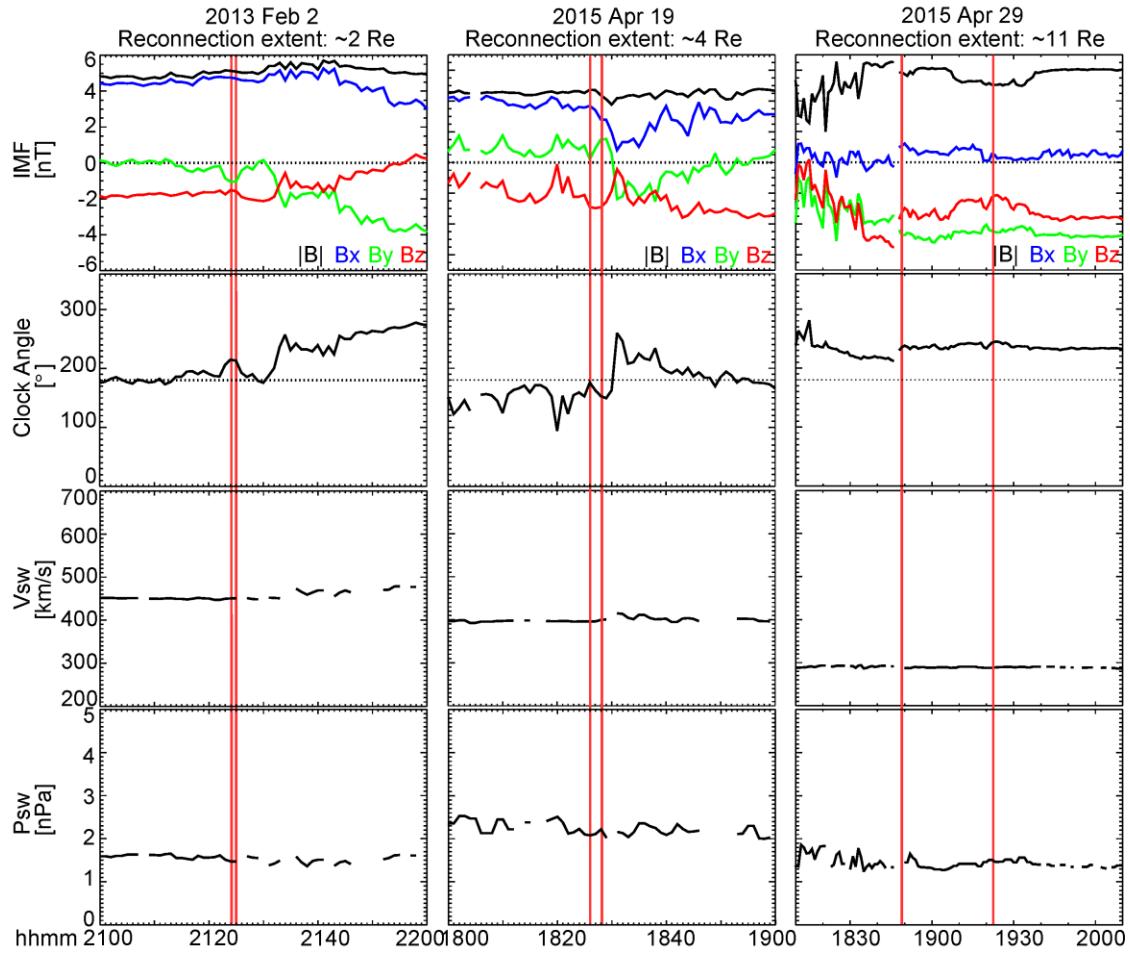
1146


1147

1148

1149

1150


1151 Figure 7.

1152

1153

1154 Figure 8.

1155

1156

1157

1158

1159

1160

1161